河南省郑州市中牟县二中2018届高三第一次月考数学试卷
河南省郑州市2018届高中毕业班第一次质量检测(模拟)数学(理)试卷(扫描版)

p( 3)
p( 4)
0
2 C32C4 2 ; ....9 分 的分布列为: 2 2 C10C10 225
1
2
3
4
P
7 45 E ( ) 0
19. (
91 225
1 3
22 225
2 225
7 91 1 22 2 7 1 2 3 4 ....12 分 45 225 3 225 225 5
) 证 明 : 连 接
1
DE
,
由
题
意
知
AD 4, BD 2, AC2 BC2 AB2 ,ACB 90.
cosABC
2 3 3 . 6 3
CD2 22 12 2 2 2 3 cosABC 8.
CD 2 2.
CD 2 AD 2 AC 2 ,则 CD AB ,...............2 分
①若直线 l 斜率不存在, 则可得 l x 轴, 方程为 x 1, P (1,
F2 P (2,
7 2 2 ), F2Q (2, ) ,故 F2 P F2Q ................6 分 2 2 2
②若直线 l 斜率存在,设直线 l 的方程为 y k ( x 1) ,
由
y k ( x 1), x 2 y 2
2 2
消去 y 得 (2k 2 1) x 2 4k 2 x 2k 2 2 0 ,
设 P ( x1 , y1 ), Q( x2 , y2 ) , 则 x1 x2 分
2 2 所以 a 2b , e
2 ................4 分 2
中牟县高级中学2018-2019学年高二上学期第一次月考试卷数学

中牟县高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知双曲线(a>0,b>0)的一条渐近线方程为,则双曲线的离心率为()A.B.C.D.2.(2015秋新乡校级期中)已知x+x﹣1=3,则x2+x﹣2等于()A.7 B.9 C.11 D.133.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()A.B.C.D.4.设f(x)=e x+x﹣4,则函数f(x)的零点所在区间为()A.(﹣1,0)B.(0,1) C.(1,2) D.(2,3)5.如果a>b,那么下列不等式中正确的是()A.B.|a|>|b| C.a2>b2D.a3>b36.将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为()A .B .﹣C .﹣D .7. 定义运算,例如.若已知,则=( )A .B .C .D .8. 在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .9. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、2510.下列关系式中正确的是( )A .sin11°<cos10°<sin168°B .sin168°<sin11°<cos10°C .sin11°<sin168°<cos10°D .sin168°<cos10°<sin11°11.如图,该程序运行后输出的结果为( )A .7B .15C .31D .6312.已知双曲线﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,若双曲线右支上存在一点P ,使得F 2关于直线PF 1的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .1<e <B .e >C .e >D .1<e <二、填空题13.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 . 14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .15.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= . 16.当时,4x <log a x ,则a 的取值范围 .17.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.18.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .三、解答题19.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.20.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知tanA=,c=.(Ⅰ)求;(Ⅱ)若三角形△ABC 的面积为,求角C .21.在平面直角坐标系xOy 中,点P (x ,y )满足=3,其中=(2x+3,y ),=(2x ﹣﹣3,3y ).(1)求点P 的轨迹方程;(2)过点F (0,1)的直线l 交点P 的轨迹于A ,B 两点,若|AB|=,求直线l 的方程.22. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.23.已知a >0,a ≠1,命题p :“函数f (x )=a x 在(0,+∞)上单调递减”,命题q :“关于x 的不等式x 2﹣2ax+≥0对一切的x ∈R 恒成立”,若p ∧q 为假命题,p ∨q 为真命题,求实数a 的取值范围.24.(本小题满分10分)选修4-5:不等式选讲已知函数()()f x x a a R =-∈.(1)当1a =时,解不等式()211f x x <--;(2)当(2,1)x ∈-时,121()x x a f x ->---,求的取值范围.中牟县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵双曲线的中心在原点,焦点在x轴上,∴设双曲线的方程为,(a>0,b>0)由此可得双曲线的渐近线方程为y=±x,结合题意一条渐近线方程为y=x,得=,设b=4t,a=3t,则c==5t(t>0)∴该双曲线的离心率是e==.故选A.【点评】本题给出双曲线的一条渐近线方程,求双曲线的离心率,着重考查了双曲线的标准方程、基本概念和简单几何性质等知识,属于基础题.2.【答案】A【解析】解:∵x+x﹣1=3,则x2+x﹣2=(x+x﹣1)2﹣2=32﹣2=7.故选:A.【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.3.【答案】D【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题4.【答案】C【解析】解:f(x)=e x+x﹣4,f(﹣1)=e﹣1﹣1﹣4<0,f(0)=e0+0﹣4<0,f(1)=e1+1﹣4<0,f(2)=e2+2﹣4>0,f(3)=e3+3﹣4>0,∵f(1)•f(2)<0,∴由零点判定定理可知,函数的零点在(1,2).故选:C.5.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.6.【答案】D【解析】解:将y=cos(2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数y=cos=cos(2x+φ﹣)的图象,∴φ﹣=kπ+,即φ=kπ+,k∈Z,则φ的一个可能值为,故选:D.7.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.8.【答案】D【解析】解:双曲线(a>0,b>0)的渐近线方程为y=±x联立方程组,解得A (,),B (,﹣),设直线x=与x 轴交于点D ∵F 为双曲线的右焦点,∴F (C ,0)∵△ABF 为钝角三角形,且AF=BF ,∴∠AFB >90°,∴∠AFD >45°,即DF <DA∴c ﹣<,b <a ,c 2﹣a 2<a 2∴c 2<2a 2,e 2<2,e <又∵e >1∴离心率的取值范围是1<e <故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a ,c 的齐次式,再解不等式.9. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =.10.【答案】C【解析】解:∵sin168°=sin (180°﹣12°)=sin12°,cos10°=sin (90°﹣10°)=sin80°. 又∵y=sinx 在x ∈[0,]上是增函数,∴sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.故选:C .【点评】本题主要考查诱导公式和正弦函数的单调性的应用.关键在于转化,再利用单调性比较大小.11.【答案】如图,该程序运行后输出的结果为( ) D【解析】解:因为A=1,s=1判断框内的条件1≤5成立,执行s=2×1+1=3,i=1+1=2; 判断框内的条件2≤5成立,执行s=2×3+1=7,i=2+1=3; 判断框内的条件3≤5成立,执行s=2×7+1=15,i=3+1=4;判断框内的条件4≤5成立,执行s=2×15+1=31,i=4+1=5;判断框内的条件5≤5成立,执行s=2×31+1=63,i=5+1=6;此时6>5,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5.故答案为5.【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束.12.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MF 1F2=60°,∠PF1F2=30°,设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.二、填空题13.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.14.【答案】(﹣3,0).【解析】解:由题意,a≥0时,x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,f(x)在(0,+∞)上至多一个零点;x≥0,函数y=|x﹣3|+a无零点,∴a≥0,不符合题意;﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).故答案为(﹣3,0).15.【答案】.【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,∴10a2=5,即a2=,解得a=.故答案为:.【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.16.【答案】.【解析】解:当时,函数y=4x的图象如下图所示若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x 的图象与y=4x 的图象交于(,2)点时,a=故虚线所示的y=log a x 的图象对应的底数a 应满足<a <1故答案为:(,1)17.【答案】 【解析】试题分析:由()()224+3a 1024f x x x f x b x x =++=++,,得22()4()31024ax b ax b x x ++++=++,即222224431024a x abx b ax b x x +++++=++,比较系数得22124104324a ab a b b ⎧=⎪+=⎨⎪++=⎩,解得1,7a b =-=-或1,3a b ==,则5a b -=.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简()f ax b +的解析式是解答的关键. 18.【答案】.【解析】解:∵抛物线C 方程为y 2=4x ,可得它的焦点为F (1,0), ∴设直线l 方程为y=k (x ﹣1),由,消去x 得.设A (x 1,y 1),B (x 2,y 2), 可得y 1+y 2=,y 1y 2=﹣4①.∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入①得﹣2y2=,且﹣3y22=﹣4,消去y 2得k2=3,解之得k=±.故答案为:.【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.三、解答题19.【答案】【解析】解:不等式|x﹣1|>m﹣1的解集为R,须m﹣1<0,即p是真命题,m<1f(x)=﹣(5﹣2m)x是减函数,须5﹣2m>1即q是真命题,m<2,由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题因此,1≤m<2.【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.20.【答案】【解析】解:(Ⅰ)由题意知,tanA=,则=,即有sinA﹣sinAcosC=cosAsinC,所以sinA=sinAcosC+cosAsinC=sin(A+C)=sinB,由正弦定理,a=b,则=1;…(Ⅱ)因为三角形△ABC的面积为,a=b、c=,所以S=absinC=a2sinC=,则,①由余弦定理得,=,②由①②得,cosC+sinC=1,则2sin(C+)=1,sin(C+)=,又0<C<π,则C+<,即C+=,解得C=….【点评】本题考查正弦定理,三角形的面积公式,以及商的关系、两角和的正弦公式等,注意内角的范围,属于中档题.21.【答案】【解析】解:(1)由题意, =(2x+3)(2x ﹣3)+3y 2=3, 可化为4x 2+3y 2=12,即:; ∴点P 的轨迹方程为;(2)①当直线l 的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l 的斜率存在时,设方程为y=kx+1,A (x 1,y 1),B (x 2,y 2), 代入椭圆方程可得:(4+3k 2)x 2+6kx ﹣9=0, ∴x 1+x 2=,x 1x 2=,∴|AB|=•|x 1﹣x 2|==,∴k=±,∴直线l 的方程y=±x+1. 【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.22.【答案】 【解析】(Ⅰ)(3,0)F在圆22:(16M x y +=内,∴圆N 内切于圆.MNM NF +∴轨迹E 的方程为4(11OA OC =2(14)(14k k ++≤当且仅当182,5>∴∆23.【答案】【解析】解:若p 为真,则0<a <1; 若q 为真,则△=4a 2﹣1≤0,得, 又a >0,a ≠1,∴.因为p ∧q 为假命题,p ∨q 为真命题,所以p ,q 中必有一个为真,且另一个为假.①当p 为真,q 为假时,由;②当p 为假,q 为真时,无解.综上,a 的取值范围是.【点评】1.求解本题时,应注意大前提“a >0,a ≠1”,a 的取值范围是在此条件下进行的.24.【答案】(1){}11x x x ><-或;(2)(,2]-∞-. 【解析】试题解析:(1)因为()211f x x <--,所以1211x x -<--,即1211x x ---<-,当1x >时,1211x x --+<-,∴1x -<-,∴1x >,从而1x >;当112x ≤≤时,1211x x --+<-,∴33x -<-,∴1x >,从而不等式无解; 当12x <时,1211x x -+-<-,∴1x <-,从而1x <-;综上,不等式的解集为{}11x x x ><-或.(2)由121()x x a f x ->---,得121x x a x a -+->--, 因为1121x x a x a x x a -+-≥-+-=--,所以当(1)()0x x a --≥时,121x x a x a -+-=--; 当(1)()0x x a --<时,121x x a x a -+->--记不等式(1)()0x x a --<的解集为A ,则(2,1)A -⊆,故2a ≤-, 所以的取值范围是(,2]-∞-.考点:1.含绝对值的不等式;2.分类讨论.。
河南省郑州市中牟县高二数学第一次月考试题

河南省郑州市中牟县2017-2018学年高二数学第一次月考试题一、选择题(本大题共12小题,每小题5分,共60分) 1.数列1,3,5,7,9,--……的一个通项公式为( ) A .(1)(12)n n a n =-- B .21n a n =-C .(1)(21)n n a n =--D .(1)(21)n n a n =-+2.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且A >B ,则一定有( ) A .cos A > cos B B .sin A > sin B C .tan A > tan B D .sin A < sin B3.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是 ( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定 4. 等差数列{}n a 的前n 项和n S ,若10173=+a a ,则19S 的值是( )、A 55 、B 95 、C 100 、D 105 5. 在锐角三角形ABC 中,b =1,c =2,则a 的取值范围是( )A .1<a <3B .1<a < 5C .3<a < 5D .不确定6.已知数列{}n a 的前n 项和,3,2,1,22=-=n S n n …,那么数列{}n a ( ) A.是等差数列但不是等比数列 B.是等比数列但不是等差数列 C.既是等差数列又是等比数列 D.既不是等差数列也不是等比数列7.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3C.π6或5π6D.π3或2π38.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于 ( )A .8B .-8C .±8D .以上都不对9.数列{a n }满足a 1=19,a n +1=a n -3(n ∈N +),则数列{a n }的前n 项和S n 最大时,n 的值为( )A .6B .7C .8D .910.设n S 为等差数列{}n a 的前n 项的和,20171-=a ,20072005220072005S S -=,则2017a 的值为( )A 、-2015B 、-2017C 、2015D 、201711.在ABC ∆中,角C B A ,,所对应的边分别为c b a ,,,B B A C 2sin 3)sin(sin =-+.若3π=C ,则=ba( ) A.21 B.3 C.21或3 D.3或4112 . 如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .21n +-1B .2n -1C .21n —D .2n +1 二、填空题(本大题共4小题,每小题5分,共20分)13.设等差数列{a n }的前n 项和为S n .若a 5=5a 3,则S 9S 5=________.14.若锐角ABC ∆的面积为 ,且5,8AB AC == ,则BC 等于________. 15.某人在C 点测得塔AB 在南偏西80°,仰角为45°,沿南偏东40°方向前进10 m 到O ,测得塔A 仰角为30°,则塔高为________. 16、若数列{}n a 的前n 项和为3132+=n n a S ,则{}n a 的通项公式=n a ______________. 三、解答题(本大题共6小题,共70分)17.(本题10分)设锐角三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c , a =2b sin A . (1)求角B 的大小; (2)若a =33,c =5,求b .18.(本题12分) ) 已知数列{}n a 是等差数列,{}n b 是等比数列,且112a b ==,454b =,12323a a a b b ++=+,(1)求数列{}n b 的通项公式; (2)求数列{}n a 的前10项和10S .19.(本题12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(1)若b =4,求sin A 的值;(2)若△ABC 的面积S △ABC =4,求b ,c 的值.20.(本题12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .已知 cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围21.(本题12分)已知点(1,2)是函数f (x )=a x(a >0且a ≠1)的图象上一点,数列{a n }的前n 项和S n =f (n )-1.(1)求数列{a n }的通项公式;(2)若b n =log a a n +1,求数列{a n b n }的前n 项和T n .22.(本题12分)已知正项数列{a n}的前n项和为S n,且a n和S n满足:4S n=(a n+1)2(n=1,2,3……).(1)求{a n}的通项公式;(2)设b n=1a n·a n+1,求{b n}的前n项和T n;(3)在(2)的条件下,对任意n∈N*,T n>m23都成立,求整数m的最大值.高二第一次月考试题答案 数学一.选择题C B A B CD D C B C C B 二.填空题13 .9; 14. 7; 15.10; 16. ()12n --三.解答题()()2221sin 2sin sin 1sin 0sin 2=62b 2cos 7A B A A A B ABC a c ac B b π∴=∴≠∴=∴=+-=∴=17.解a=2bsinA 角为三角形内角三角形为锐角三角形B 由余弦定理.18.解 (Ⅰ) 因为3311412,5427323n n b b b q q q b -===⇒=⇒=⇒=⨯ (Ⅱ)1232102,228,6290a a a a d S =+=⇒==⇒=19. 解 (1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45.由正弦定理得a sin A =bsin B,sin A =a sin Bb =2×454=25.(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5.由余弦定理得b 2=a 2+c 2-2ac cos B =22+52-2×2×5×35=17,∴b =17.20.解(1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0,即有sin A sin B -3sin A cos B =0. 因为sin A ≠0,所以sin B -3cos B =0.又cos B ≠0,所以tan B = 3.又0<B <π,所以B =π3.(2)由余弦定理,有b 2=a 2+c 2-2ac cos B .因为a +c =1,cos B =12,有b 2=3(a -12)2+14.又0<a <1,于是有14≤b 2<1,即有12≤b <1.21.解:(1)由题意知12221nn a a s =∴=∴=- 111,211n a s ===-=()1112,21212n n n n n n n a s s ---≥=-=---=经检验n=1适合12n n a -∴=(2)n b n n ==2log 212-=∴n n n n b a()123222124232211--+-++⨯+⨯+⨯+⨯=n n n n n T ()n n n n n T 2212423222121432+-++⨯+⨯+⨯+⨯=-n n n n T 222221132-+++++=--()12121222121--=--=---=n n n n n n n n ()121+-=∴n n n T 22.解(1)∵4S n =(a n +1)2,①∴4S n -1=(a n -1+1)2(n ≥2),② ①-②得4(S n -S n -1)=(a n +1)2-(a n -1+1)2. ∴4a n =(a n +1)2-(a n -1+1)2. 化简得(a n +a n -1)·(a n -a n -1-2)=0. ∵a n >0,∴a n -a n -1=2(n ≥2). 由4a 1=(a 1+1)2得a 1=1,∴{a n }是以1为首项,2为公差的等差数列. ∴a n =1+(n -1)·2=2n -1. (2)b n =1a n ·a n +1=1n -n +=12(12n -1-12n +1). ∴T n =12〔〕-13+13-15+…+12n -1-12n +1=12(1-12n +1)=n 2n +1. (3)由(2)知T n =12(1-12n +1),T n +1-T n =12(1-12n +3)-12(1-12n +1)=12(12n +1-12n +3)>0. ∴数列{T n }是递增数列. ∴[T n ]min =T 1=13.∴m 23<13,∴m <233. ∴整数m 的最大值是7.。
2018年河南省高考数学一诊试卷理科

2018年河南省高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣22.(5分)已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,]B.(,3]C.(1,)D.(,2)3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个4.(5分)在等比数列{a n}中,若a2=,a3=,则=()A.B.C.D.25.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[]=2,()=,执行如图所示的程序框图,若输入的x=,则输出的z=()A.﹣B.﹣C.﹣D.﹣7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或29.(5分)函数f(x)=的部分图象大致是()A.B.C.D.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2 11.(5分)设椭圆E:的一个焦点为F(1,0),点A(﹣1,1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=9,则椭圆E的离心率的取值范围是()A. B.C.D.12.(5分)已知函数f(x)=lnx+(2e2﹣a)x﹣,其中e是自然对数的底数,若不等式f(x)≤0恒成立,则的最小值为()A.﹣B.﹣C.﹣ D.﹣二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=14.(5分)已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3=.15.(5分)已知S n为数列{a n}的前n项和,a1=1,当n≥2时,恒有ka n=a n S n﹣S成立,若S99=,则k=.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2ccosC=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.18.(12分)某班为了活跃元旦气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取的标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取得一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.(1)求甲获得奖品的概率;(2)设X为甲参加游戏的轮数,求X的分布列和数学期望.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,B1E ⊥平面ABC,△AB1C是等边三角形,AB=2A1B1,AC=2BC,∠ACB=90°.(1)证明:B1C∥平面A1DE;(2)求二面角A﹣BB1﹣C的正弦值.20.(12分)已知抛物线E:y2=2px(p>0),斜率为k且过点M(3,0)的直线l与E交于A,B两点,且,其中O为坐标原点.(1)求抛物线E的方程;(2)设点N(﹣3,0),记直线AN,BN的斜率分别为k1,k2,证明:为定值.21.(12分)已知函数f(x)=(x+1)e ax(a≠0),且x=是它的极值点.(1)求a的值;(2)求f(x)在[t﹣1,t+1]上的最大值;(3)设g(x)=f(x)+2x+3xlnx,证明:对任意x1,x2∈(0,1),都有|g(x1)﹣g(x2)|<++1.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.2018年河南省高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知a∈R,复数z=,若=z,则a=()A.1 B.﹣1 C.2 D.﹣2【解答】解:z===+a﹣1=(a﹣1)﹣(a+1)i,则=(a﹣1)+(a+1)i,∵=z,∴a+1=0,得a=﹣1,故选:B.2.(5分)已知集合M={x|≤0},N={x|y=log3(﹣6x2+11x﹣4)},则M∩N=()A.[1,]B.(,3]C.(1,)D.(,2)【解答】解:∵集合M={x|≤0}={x|1<x≤3},N={x|y=log3(﹣6x2+11x﹣4)}={x|﹣6x2+11x﹣4>0}={x|},∴M∩N={x|1<x≤3}∩{x|}=(1,).故选:C.3.(5分)某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0℃的月份有4个【解答】解:由该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据的折线图,得:在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0℃的月份有3个,故D错误.故选:D.4.(5分)在等比数列{a n}中,若a2=,a3=,则=()A.B.C.D.2【解答】解:∵在等比数列{a n}中,若a2=,a3=,∴公比q===,∴=,∴===.故选:A.5.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有阳马,广五尺,褒七尺,高八尺,问积几何?”其意思为:“今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,问它的体积是多少?”若以上条件不变,则这个四棱锥的外接球的表面积为()A.128π平方尺B.138π平方尺 C.140π平方尺 D.142π平方尺【解答】解:∵今有底面为矩形,一侧棱垂直于底面的四棱锥,它的底面长,宽分别为7尺和5尺,高为8尺,∴构造一个长方体,其长、宽、高分别为7尺、5尺、8尺,则这个这个四棱锥的外接球就是这个长方体的外接球,∴这个四棱锥的外接球的半径R==(尺),∴这个四棱锥的外接球的表面积为S=4π×R2==138π(平方尺).故选:B.6.(5分)定义[x]表示不超过x的最大整数,(x)=x﹣[x],例如[]=2,()=,执行如图所示的程序框图,若输入的x=,则输出的z=()A.﹣B.﹣C.﹣D.﹣【解答】解:模拟程序的运行,可得x=y=5﹣=x=5﹣1=4满足条件x≥0,执行循环体,x=,y=1﹣=﹣,x=1﹣1=0满足条件x≥0,执行循环体,x=﹣,y=﹣1﹣=﹣,x=﹣1﹣1=﹣2不满足条件x≥0,退出循环,z=﹣2+(﹣)=﹣.输出z的值为﹣.故选:C.7.(5分)若对于任意x∈R都有f(x)+2f(﹣x)=3cosx﹣sinx,则函数f(2x)图象的对称中心为()A.(k∈Z)B.(k∈Z)C.(k ∈Z)D.(k∈Z)【解答】解:∵对任意x∈R,都有f(x)+2f(﹣x)=3cosx﹣sinx ①,用﹣x代替x,得f(﹣x)+2f(x)=3cos(﹣x)﹣sin(﹣x)②,即f(﹣x)+2f(﹣x)=3cosx+sinx②;由①②组成方程组,解得f(x)=sinx+cosx,∴f(x)=sin(x+),∴f(2x)=sin(2x+).令2x+=kπ,k∈Z,求得x=﹣,故函数f(2x)图象的对称中心为(﹣,0),k∈Z,故选:D.8.(5分)设x,y满足约束条件,若z=﹣ax+y取得最大值的最优解不唯一,则实数a的值为()A.2或﹣3 B.3或﹣2 C.﹣或D.﹣或2【解答】解:作出不等式组对应的平面区域如图:(阴影部分OAB).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y=1平行,此时a=﹣3,综上a=﹣3或a=2,故选:A.9.(5分)函数f(x)=的部分图象大致是()A.B.C.D.【解答】解:∵函数f(x)的定义域为(﹣∞,﹣)∪(﹣,)∪(,+∞)f(﹣x)===f(x),∴f(x)为偶函数,∴f(x)的图象关于y轴对称,故排除A,令f(x)=0,即=0,解得x=0,∴函数f(x)只有一个零点,故排除D,当x=1时,f(1)=<0,故排除C,综上所述,只有B符合,故选:B.10.(5分)已知某几何体的三视图如图所示,则该几何体的表面积为()A.20+12+2B.20+6+2C.20+6+2D.20+12+2【解答】解:由三视图可知该几何体为侧放的四棱锥,棱锥的底面为矩形ABCD,底面与一个侧面PBC垂直,PB=PC=4,AB=3.S ABCD=3×=12,S△PBC=,S△PCD=S△PBA=,△PAD中AP=PD=5,AD=4,∴AD边上的高为,=,∴S△PAD则该几何体的表面积为12+8+6+6+2=12+20+2,故选:D11.(5分)设椭圆E:的一个焦点为F(1,0),点A(﹣1,1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=9,则椭圆E的离心率的取值范围是()A. B.C.D.【解答】解:记椭圆的左焦点为F1(﹣1,0),则|AF1|=1,∵|PF1|≤|PA|+|AF1|,∴2a=|PF1|+|PF|≤|PA|+|AF1|+|PF|≤1+9=10,即a≤5;∵|PF1|≥|PA|﹣|AF1|,∴2a=|PF1|+|PF|≥|PA|﹣|AF1|+|PF|≥9﹣1=8,即a≥4,∴4≤a≤5,∴故选:C.12.(5分)已知函数f(x)=lnx+(2e2﹣a)x﹣,其中e是自然对数的底数,若不等式f(x)≤0恒成立,则的最小值为()A.﹣B.﹣C.﹣ D.﹣【解答】解:∵函数f(x)=lnx+(2e2﹣a)x﹣,其中e为自然对数的底数,∴f′(x)=+(2e2﹣a),x>0,当a≤2e2时,f′(x)>0,f(x)在(0,+∞)上是增函数,∴f(x)≤0不可能恒成立,当a>2e2时,由f′(x)=0,得x=,∵不等式f(x)≤0恒成立,∴f(x)的最大值为0,当x∈(0,)时,f′(x)>0,f(x)单调递增,当x∈(,+∞)时,f′(x)<0,f(x)单调递减,∴当x=时,f(x)取最大值,f()=﹣ln(a﹣2e2)﹣b﹣1≤0,∴ln(a﹣2e2)+b+1≥0,∴b≥﹣1﹣ln(a﹣2e2),∴•≥(a>2e2),令F(x)=,x>2e2,F′(x)==,令H(x)=(x﹣2e2)ln(x﹣2e2)﹣2e2,H′(x)=ln(x﹣2e2)+1,由H′(x)=0,得x=2e2+,当x∈(2e2+,+∞)时,H′(x)>0,H(x)是增函数,x∈(2e2,2e2+)时,H′(x)<0,H(x)是减函数,∴当x=2e2+时,H(x)取最小值H(2e2+)=﹣2e2﹣,∵x→2e2时,H(x)→0,x>3e2时,H(x)>0,H(3e2)=0,∴当x∈(2e2,3e2)时,F′(x)<0,F(x)是减函数,当x∈(3e2,+∞)时,F′(x)>0,F(x)是增函数,∴x=3e2时,F(x)取最小值,F(3e2)==﹣,∴•的最小值为﹣,即有的最小值为﹣.故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,|+|=|﹣|,||=2,则•=﹣4【解答】解:在△ABC中,|+|=|﹣|,可得|+|2=|﹣|2,即有2+2+2•=2+2﹣2•,即为•=0,则△ABC为直角三角形,A为直角,则•=﹣•=﹣||•||•cosB=﹣||2=﹣4.故答案为:﹣4.14.(5分)已知(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7,a∈R,若a0+a1+a2+…+a6+a7=0,则a3=﹣5.【解答】解:(1+x)(a﹣x)6=a0+a1x+a2x2+…+a7x7中,令x=1得,a0+a1+…+a7=2•(a﹣1)6=0,解得a=1,而a3表示x3的系数,所以a3=C63•(﹣1)3+C62•(﹣1)2=﹣5.故答案为:﹣5.15.(5分)已知S n为数列{a n}的前n项和,a1=1,当n≥2时,恒有ka n=a n S n﹣S成立,若S99=,则k=2.【解答】解:当n≥2时,恒有ka n=a n S n﹣S成立,即为(k﹣S n)(S n﹣S n﹣1)=﹣S,化为﹣=,可得=1+,可得S n=.由S99=,可得=,解得k=2.故答案为:2.16.(5分)设F1,F2分别是双曲线的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(m,18)在第一象限,若△ABF2为等边三角形,则双曲线的实轴长为2.【解答】解:根据双曲线的定义,可得|AF1|﹣|AF2|=2a,∵△ABF2是等边三角形,即|AF2|=|AB|,∴|BF1|=2a,又∵|BF2|﹣|BF1|=2a,∴|BF2|=|BF1|+2a=4a,∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°,∴|F1F2|2=|BF1|2+|BF2|2﹣2|BF1|•|BF2|cos120°,即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解得c2=7a2,b2=6a2,由双曲线的第二定义可得===,则m=,由A在双曲线上,可得﹣=1,解得a=,则2a=2.故答案为:2.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)如图,在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=4,b=2,2ccosC=b,D,E分别为线段BC上的点,且BD=CD,∠BAE=∠CAE.(1)求线段AD的长;(2)求△ADE的面积.【解答】解:(1)根据题意,b=2,c=4,2ccosC=b,则cosC==;又由cosC===,解可得a=4,即BC=4,则CD=2,在△ACD中,由余弦定理得:AD2=AC2+CD2﹣2AC•CDcosC=6,则AD=;(2)根据题意,AE平分∠BAC,则==,变形可得:CE=BC=,cosC=,则sinC==,S△ADE=S△ACD﹣S△ACE=×2×2×﹣×2××=.18.(12分)某班为了活跃元旦气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取的标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取得一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.(1)求甲获得奖品的概率;(2)设X为甲参加游戏的轮数,求X的分布列和数学期望.【解答】解:(1)设甲获得奖品为事件A,在每轮游戏中,甲留下的概率与他摸卡片的顺序无关,则.(2)随机变量X的取值可以为1,2,3,4.,,,.X的分布列为随机变量X的概率分布列为:X1234P所以数学期望.19.(12分)如图,在三棱台ABC﹣A1B1C1中,D,E分别是AB,AC的中点,B1E⊥平面ABC,△AB1C是等边三角形,AB=2A1B1,AC=2BC,∠ACB=90°.(1)证明:B1C∥平面A1DE;(2)求二面角A﹣BB1﹣C的正弦值.【解答】证明:(1)因为A1B1∥AB,AB=2A1B1,D为棱AB的中点,所以A1B1∥BD,A1B1=BD,所以四边形A1B1BD为平行四边形,从而BB1∥A1D.又BB1⊄平面A1DE,A1D⊂平面A1DE,所以B1B∥平面A1DE,因为DE是△ABC的中位线,所以DE∥BC,同理可证,BC∥平面A1DE.因为BB1∩BC=B,所以平面B1BC∥平面A1DE,又B1C⊂平面B1BC,所以B1C∥平面A1DE.解:(2)以ED,EC,EB1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系E﹣xyz,设BC=a,则A(0,﹣a,0),B(a,a,0),C(0,a,0),,则,.设平面ABB1的一个法向量,则,即,取z1=1,得.同理,设平面BB1C的一个法向量,又,,由,得,取z=﹣1,得,所以,故二面角A﹣BB1﹣C的正弦值为:=.20.(12分)已知抛物线E:y2=2px(p>0),斜率为k且过点M(3,0)的直线l与E交于A,B两点,且,其中O为坐标原点.(1)求抛物线E的方程;(2)设点N(﹣3,0),记直线AN,BN的斜率分别为k1,k2,证明:为定值.【解答】解:(1)根据题意,设直线l的方程为y=k(x﹣3),联立方程组得,设A(x1,y1),B(x2,y2),所以,y1y2=﹣6p,又,所以p=2,从而抛物线E的方程为y2=4x.(2)证明:因为,,所以,,因此==,又,y1y2=﹣6p=﹣12,所以,即为定值.21.(12分)已知函数f(x)=(x+1)e ax(a≠0),且x=是它的极值点.(1)求a的值;(2)求f(x)在[t﹣1,t+1]上的最大值;(3)设g(x)=f(x)+2x+3xlnx,证明:对任意x1,x2∈(0,1),都有|g(x1)﹣g(x2)|<++1.【解答】解:(1)f(x)=(x+1)e ax(a≠0)的导数f′(x)=e ax+a(x+1)e ax=(ax+a+1)e ax,因为是f(x)的一个极值点,所以,所以a=﹣3.(2)由(1)知f(x)=(x+1)e﹣3x,f′(x)=(﹣3x﹣2)e﹣3x,易知f(x)在上递增,在上递减,当,即时,f(x)在[t﹣1,t+1]上递增,;当,即时,f(x)在[t﹣1,t+1]上递减,;当,即时,.(3)证明:g(x)=(x+1)e﹣3x+2x+3xlnx,设g(x)=m1(x)+m2(x),x∈(0,1),其中,m2(x)=3xlnx,则,设h(x)=(﹣3x﹣2)e﹣3x+2,则h'(x)=(9x+3)e﹣3x>0,可知m1'(x)在(0,1)上是增函数,所以m1'(x)>m1'(0)=0,即m1(x)在(0,1)上是增函数,所以.又m2'(x)=3(1+lnx),由m2'(x)>0,得;由m2'(x)<0,得,所以m2(x)在上递减,在上递增,所以,从而.所以,对任意x1,x2∈(0,1),.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为(t为参数),直线l2的参数方程为(m为参数),设l1与l2的交点为p,当k变化时,p的轨迹为曲线c1(Ⅰ)写出C1的普通方程及参数方程;(Ⅱ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设曲线C2的极坐标方程为,Q为曲线C1上的动点,求点Q到C2的距离的最小值.【解答】解:(Ⅰ)将参数方程转化为一般方程,①,②①×②消k可得:.即P的轨迹方程为.C1的普通方程为.C1的参数方程为(α为参数α≠kπ,k∈Z).(Ⅱ)由曲线C2:,得:,即曲线C2的直角坐标方程为:x+y﹣8=0,由(Ⅰ)知曲线C1与直线C2无公共点,曲线C1上的点到直线x+y﹣8=0的距离为:,所以当时,d的最小值为.[选修4-5:不等式选讲]23.已知f(x)=|x+a|(a∈R).(1)若f(x)≥|2x+3|的解集为[﹣3,﹣1],求a的值;(2)若∀x∈R,不等式f(x)+|x﹣a|≥a2﹣2a恒成立,求实数a的取值范围.【解答】解:(1)f(x)≥|2x+3|即|x+a|≥|2x+3|,平方整理得:3x2+(12﹣2a)x+9﹣a2≤0,所以﹣3,﹣1是方程3x2+(12﹣2a)x+9﹣a2=0的两根,…2分由根与系数的关系得到…4分解得a=0…5分(2)因为f(x)+|x﹣a|≥|(x+a)﹣(x﹣a)|=2|a|…7分所以要不等式f(x)+|x﹣a|≥a2﹣2a恒成立只需2|a|≥a2﹣2a…8分当a≥0时,2a≥a2﹣2a解得0≤a≤4,当a<0时,﹣2a≥a2﹣2a此时满足条件的a不存在,综上可得实数a的范围是0≤a≤4…10分。
中牟县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案

中牟县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α2. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示3. 若曲线f (x )=acosx 与曲线g (x )=x 2+bx+1在交点(0,m )处有公切线,则a+b=( ) A .1 B .2 C .3 D .44. 设a=sin145°,b=cos52°,c=tan47°,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <b <a C .b <a <c D .a <c <b5. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A. B. C. D.6. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( ) A .3B .2C .3D .47. 已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( )A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭C 、16t t ⎧⎫>-⎨⎬⎩⎭D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 不等式的解集是( )A .{x|≤x ≤2}B .{x|≤x <2}C .{x|x >2或x ≤}D .{x|x ≥}9. “a >b ,c >0”是“ac >bc ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.若函数)1(+=x f y 是偶函数,则函数)(x f y =的图象的对称轴方程是( )] A .1=x B .1-=x C .2=x D .2-=x 11.已知在R 上可导的函数f (x )的图象如图所示,则不等式f (x )•f ′(x )<0的解集为( )A .(﹣2,0)B .(﹣∞,﹣2)∪(﹣1,0)C .(﹣∞,﹣2)∪(0,+∞)D .(﹣2,﹣1)∪(0,+∞)12.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题13.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .14.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .15.已知实数x ,y 满足,则目标函数z=x ﹣3y 的最大值为16.不等式的解集为R ,则实数m 的范围是.17.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应的复数为 .18.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.三、解答题19.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n 人,回答问题“湖南省有哪几个著名的旅游景点?”统计结果如下图表.(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.20.甲、乙两位选手为为备战我市即将举办的“推广妈祖文化•印象莆田”知识竞赛活动,进行针对性训练,近8次的训练成绩如下(单位:分):甲8381937978848894乙8789897774788898(Ⅰ)依据上述数据,从平均水平和发挥的稳定程度考虑,你认为应派哪位选手参加?并说明理由;(Ⅱ)本次竞赛设置A、B两问题,规定:问题A的得分不低于80分时答题成功,否则答题失败,答题成功可获得价值100元的奖品,问题B的得分不低于90分时答题成功,否则答题失败,答题成功可获得价值300元的奖品.答题顺序可自由选择,但答题失败则终止答题.选手答题问题A,B成功与否互不影响,且以训练成绩作为样本,将样本频率视为概率,请问在(I)中被选中的选手应选择何种答题顺序,使获得的奖品价值更高?并说明理由.21.有一批同规格的钢条,每根钢条有两种切割方式,第一种方式可截成长度为a的钢条2根,长度为b的钢条1根;第二种方式可截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b 的钢条至少需要27根.问:如何切割可使钢条用量最省?22.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.23.在平面直角坐标系xOy中,F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,B为短轴的一个端点,E是椭圆C上的一点,满足,且△EF1F2的周长为.(1)求椭圆C的方程;(2)设点M是线段OF2上的一点,过点F2且与x轴不垂直的直线l交椭圆C于P、Q两点,若△MPQ是以M为顶点的等腰三角形,求点M到直线l距离的取值范围.24.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.中牟县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.2.【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 3.【答案】A【解析】解:∵f(x)=acosx,g(x)=x2+bx+1,∴f′(x)=﹣asinx,g′(x)=2x+b,∵曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,∴f(0)=a=g(0)=1,且f′(0)=0=g′(0)=b,即a=1,b=0.∴a+b=1.故选:A.【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题.4.【答案】A【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,∴y=sinx在(0,90°)单调递增,∴sin35°<sin38°<sin90°=1,∴a<b<c故选:A【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.5.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.6.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.7.【答案】A【解析】考点:函数的性质。
河南省郑州市2018届高三上入学考试数学试题(理)有答案

郑州2017-2018上期高三入学测试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{ln 0}A x x =≤,5{,,}2B x R z x i z i =∈=+≥是虚部单位,A B =( ) A .11(,][,1]22-∞- B .1[,1]2C .(0,1]D .[1,)+∞ 2.已知向量,a b 均为单位向量,若它们的夹角为060,则3a b +等于( ) A .7 B .10 C .13 D .43.若二项式22()n x x-展开式的二项式系数之和为8,则该展开式的系数之和为( ) A .-1 B .1 C .27 D .-27 4.将函数()f x 的图象向左平移6π个单位后得到函数()g x 的图象如图所示,则函数()f x 的解析式是( )A .()sin(2)6f x x π=-(x R ∈)B .()sin(2)6f x x π=+(x R ∈) C. ()sin(2)3f x x π=-(x R ∈) D .()sin(2)3f x x π=+(x R ∈) 5.已知两条不重合的直线,m n 和两个不重合的平面,αβ,若m α⊥,n β⊂,则下列四个命题: ①若//αβ,则m n ⊥;②若m n ⊥,则//αβ; ③若//m n ,则αβ⊥;④若αβ⊥,则//m n 其中正确命题的个数是( )A .0B .1 C.2 D .3 6.阅读下面程序框图,输出的结果s 的值为( )A .32-B .0 C. 32D .3 7.已知圆22()1x a y -+=与直线y x =相切于第三象限,则a 的值是( ) A 2 B .2- C. 2± D .2-8.若变量,x y 满足条件106010x y x y x --≤⎧⎪+-≤⎨⎪-≥⎩,则xy 的取值范围是( )A .[0,5]B .35[5,]4 C. 35[0,]4D .[0,9] 9.在ABC ∆中,060A =,1b =,3ABC S ∆=,则sin cC=( ) A 83 B .2393 C. 2633D .27 10.设m N ∈,若函数()21010f x x m x =--+存在整数零点,则符合条件的m 的取值个数为( ) A .2 B .3 C. 4 D .511.22221x y a b-=(0,0a b >>)的左、右两个焦点分别为12,F F ,以线段12F F 为直径的圆与双曲线的渐近线在第一象限的交点为M ,若122MF MF b -=,该双曲线的离心率为e ,则2e = ) A .2 B .212 C. 322+ D 51+ 12.数学上称函数y kx b =+(,k b R ∈,0k ≠)为线性函数,对于非线性可导函数()f x ,在点0x 附近一点x 的函数值()f x ,可以用如下方法求其近似代替值:'000()()()()f x f x f x x x ≈+-,利用这一方法,4.001m = )A .大于mB .小于m C.等于m D .与m 的大小关系无法确定第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数2()f x ax b=+(0a≠),若3()3()f x dx f x=⎰,00x>,则x=.14.由数学2,0,1,7组成没有重复数字的四位偶数的个数为.15.下图是一个几何体的三视图,其中正视图和侧视图均是高为2,底边长为22的等腰三角形,俯视图是边长为2的正方形,则该几何体的外接球的体积是.16.已知函数22cos[(1)sin[(1)]44()45x xf xx xππ--+-=++(40x-≤≤),则()f x的最大值为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 等差数列{}na中,已知35a=,且123,,a a a为递增的等比数列.(1)求数列{}na的通项公式;(2)若数列{}nb的通项公式1212,212,2nn na n kbn k+-=-⎧⎪=⎨⎪=⎩(*k N∈),求数列{}nb的前n项和nS.18. 河南多地遭遇跨年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾,郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动I级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成下表:年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数 5 10 15 10 5 5赞成人数 4 6 9 6 3 4(1)请在图中完成被调查人员年龄的频率分布直方图;(2)若从年龄在[25,35),[65,75]两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为X ,求随机变量X 的分布列和数学期望.19. 如图所示的多面体中,ABCD 是平行四边形,BDEF 是矩形,BD ⊥面ABCD ,6ABD π∠=,2AB AD =.(1)求证:平面BDEF ⊥平面ADE ;(2)若ED BD =,求AF 与平面AEC 所成角的正弦值.20. 已知椭圆2222:1x y C a b+=(0a b >>)的离心率为32,以椭圆的四个顶点为顶点的四边形的面积为8.(1)求椭圆C 的方程; (2)如图,斜率为12的直线l 与椭圆C 交于,A B 两点,点(2,1)P 在直线l 的左上方,若090APB ∠=,且直线,PA PB 分别与y 轴交于,M N 点,求线段MN 的长度 21. 已知函数ln ()xf x x a=+(a R ∈),曲线()y f x =在点(1,(1))f 处的切线与直线10x y ++=垂直. (1)试比较20172016与20162017的大小,并说明理由;(2)若函数()()g x f x k =-有两个不同的零点12,x x ,证明:212x x e •>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为cos x t α=⎧⎨,(t 为参数,[0,)απ∈),以原点O 为极点,以x 2cos 4sin ρθ=(1)设(,M x y (2)若直线l 23.选修4-5已知()2f x x =(1)当1a =(2)如果函数一、选择题二、填空题13.三、解答题17.解:(1)设数列{n a 即220d d -=所以3(n a a =+(2)当2n k =121321242n n k k S b b b b b b b b b -=+++=+++++++01112(222)k k a a a -=+++++++2(121)1221212kk k k k +--=+=+--22214nn =+-; 当21n k =-,*k N ∈时,12n k +=11122122211(1)23212244n n nn n nn n nS S b++--++++-=-=+--=+综上,2212221,24232,214nn nnn kSn nn k-⎧+-=⎪⎪=⎨+-⎪+=-⎪⎩,(*k N∈)18.解:(1)补全频率分布直方图如图年示:的所有可能的取值为0,1,2,3,264225109015(0)45075CP XC C==•==,2111264644222251051020434(1)45075C C CC CP XC C C C•==•+•==,1112246444222251051013222(2)45075C CC C CP XC C C C==•+•==,124422510244(3)45075C CP XC C==•==X0 1 2 3 P157534752275475()0123 1.275757575E X=⨯+⨯+⨯+⨯=所以X的数学期望为() 1.2E X=.19.(1)证明:在平行四边形ABCD中,6ABDπ∠=,2AB AD=,由余弦定理,得3BD AD=,从而222BD AD AB+=,故BD AD⊥.可得ABD ∆为直角三角形且090ADB ∠=,又由DE ⊥平面ABCD ,BD ⊂平面ABCD ,得DE BD ⊥ 又ADDE D =,所以BD ⊥平面ADE .由BD ⊂平面BDEF ,得平面BDEF ⊥平面ADE , (2)解:由(1)可得在Rt ABD ∆中,3BAD π∠=,3BD AD =,又由ED BD =设1AD =,3BD ED ==,由DE ⊥平面ABCD ,BD AD ⊥,建立以D 为坐标原点,以射线,,DA DB DE 分别为x 轴,y 轴,z 轴正方向的空间直角坐标系,如图所示: 得(1,0,0)A ,(1,3,0)C -,(0,0,3)E ,(0,3,3)F设平面AEC 的法向量为(,,)n x y z =,得00n AE n AC ⎧•=⎪⎨•=⎪⎩,所以30230x z x y ⎧-+=⎪⎨-+=⎪⎩令1z =,得(3,2,1)n = 又因为(1,3,3)AF =-, 所以42cos ,14n AF n AF n AF•==• 所以直线AF 与平面AEC 所成角的正弦值为4214.20.解:(1)由题意知22228c a ab a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解之得:28a =,22b =所以椭圆C 的方程为22182x y += (2)设直线1:l y x m =+,(,)A x y ,(,)B x y 将12y x m =+2(2)m ∆=-于是有12x x +=注意到PA PB k k +上式中,分子===从而,PA PB k k +所以PMN ∆21.解:(1)依题意得所以'211()(1)1a f x a a +==++,又由切线方程可得'(1)1f =,即111a =+,解得0a = 此时ln ()x f x x =,'21ln ()x f x x-=, 令'()0f x >,即1ln 0x ->,解得0x e <<; 令'()0f x <,即1ln 0x -<,解得x e > 所以()f x 的增区间为(0,)e ,减区间为(,)e +∞所以(2016)(2017)f f >,即ln 2016ln 201720162017>, 2017ln 20162016ln 2017>,2017201620162017>.(2)证明:不妨设120x x >>因为12()()0g x g x == 所以化简得11ln 0x kx -=,22ln 0x kx -=可得1212ln ln ()x x k x x +=+,1212ln ln ()x x k x x -=-.要证明212x x e >,即证明12ln ln 2x x +>,也就是12()2k x x +>因为12ln ln x x k -=,所以即证12ln ln 2x x ->即12lnx x >令()h t =故函数(h 所以12x x 22.解:(1∵(,M x ∴x y +(2)将⎧⎨⎩∴∆=所以AB 当0α=时AB 取得最小值4. 23.解:(1)当1a =时,()215f x x x =-+-所以1()92639x f x x ⎧<⎪≥⇔⎨⎪-≥⎩或15249x x ⎧≤<⎪⎨⎪+≥⎩或5369x x ≥⎧⎨-≥⎩ 解之,得1x ≤-或5x ≥,即所求不等式的解集为(,1][5,)-∞-+∞千教网( ) 千万份课件,学案,试题全部免费下载千教网( ) 打造全国最全最大的教育资源免费下载基地 (2)∵05a <<,∴51a >,则1(2)6,215()(2)4,25(2)6,a x x f x a x x a a x x a ⎧-++<⎪⎪⎪=-+≤≤⎨⎪⎪+->⎪⎩, 注意到12x <时()f x 单调递减,5x a>时()f x 单调递增, 故()f x 的是小值在152x a ≤≤时取到, 即min 02()a f x f <≤⎧⎪⎨=⎪⎩解之,得2a =.。
2018届高三第一次月考试题.doc

2018届高三第一次月考试题姓名: 班级: 1、 藁合 M={x|lg x 〉0},N={x|xW4},则 MDN 等于() ⑷(1,2) (B) [1, 2) (C) (1, 2] (D)[l,2]2、 已知命题:p: mxoWR, x$+2xo+2WO,则F 为()(A)日 X 。
w R, x&+2x ()+2〉0 (B)日 x ()GR, x$+2x ()+2〈0 (C) VxGR, X 2+2X +2^0(D) V X GR, X 2+2X +2>03、 设a>0且aHl,则“函数f (x)詔在R 上是减函数”是“函数 g(x) = (2-a)x 3在R 上是增函数”的() (A)充分不必要条件(B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件4、 函数f(x)=ln x+e x 的零点所在的区间是() (A) (0, |) (B) (|, 1) (C) (1, e) (D)(e,+oo)5、 函数y=xcos x+sin x 的图象大致为()[”\V—4 * /p V \1 2 (A)1 k 1(B)\ 2 (D)6、已知tan 9 =2,则 sin 29 +sin 9 cos 9 -2cos 2 9 等于()(A)-| (B)|(0-| (咲7、 若函数 f(x)=[x21+^^1Wf(f(10))等于() (A)lg 101(B)2 (C)l (D)08、 函数f (x)=log 2(4+3x-x 2)的单调递减区间是() (A)(r|](B)[|,+8)(0(-!,|](D)[|,4)9、 已知二次函数y=f(x)的图象如图所示,则它与x 轴所围图形的面积为()⑷詈<B)| (C)|10>已知函数f (x)二仮+1, g (x) =aln x,若在x三处函数f (x)与g(x)的4图象的切线平行,则实数a的值为()(A)i (B)| (C)l (D)411、在△ ABC 中,V3sinQ-A) =3sin( Ji -A),且cos A=-V3cos (Ji -B),则C等于()(A)= (B)= (C)= (D)弓12、设定义在R上的奇函数y=f (x),满足对任意x丘R 都有f(x)=f(l-x),且x W [0, |]时,f (x) =-x2,则f ⑶ +f (-|)的值等于()⑷-| (B)-| (C)-i (D)-|13、在AABC 中,若a-2, b+c-7, cos B=-^,则b= ____ .14、若已知函数f(x+l)的定义域为[-2, 3],则f(2x2-2)的定义域是______ .15、曲线y=ln(2x)±任意一点P到直线y=2x的距离的最小值是______ .16、设8为第二象限角,若tan(0+p弓,则sin 9 +cos 017、在AABC 中,a=3, b=2V6, ZB=2ZA.(1)求cos A的值.⑵求c的值.解:(1)因为a=3, b=2V6, ZB=2ZA, 所以在Z\ABC中,由正弦定理得暑二篦.&耳[\J 2sini4coSi4_2V6乃' 入-sh^4 故COS A=y.⑵由⑴知cos A=y,所以sin A* — cos—订普. 又因为ZB=2ZA,所以cos B=2cos 2A-l=i所以sin B=Ji - cos_ =攀在AABC中,sin C=sin(A+B)=sin Acos B+cos Asin B=晋. 所以c=^=5.13. (2013 年高考天津卷)已知函数 f (x) =-V2sin(2x+^) +6sin xcos4x-2cos2x+l, xGR.(1)求f(x)的最小正周期;(2)求f (x)在区间[0,日上的最大值和最小值.解:(l)f(x)二-sin 2x-cos 2x+3sin 2x-cos 2x=2sin 2x-2cos 2x=2V2sin(2x-^). 所以f(x)的最小正周期T=^= 31 .⑵由(l)f(x)=2V2sin(2x-=),2x-严[冷乎],则sin(2x-=) G [-乎,1]. 所以f (x)在[0,日上最大值为2Vz,最小值为-2.从而AABC的周长的取值范围是(14,21] 12? + 2bx,由已知得< x f(l) = a+ 20f(D=^ = -l=2=^>a=4,b=-l.f(x)=4ln x-x24分19、已知a,b,c分别为AABC三个内角A,B,C的对边, acosC + y/3asinC-b-c-Q。
2018届河南省郑州市第一中学高三12月月考数学(理)试题(解析版)

河南省郑州市第一中学2018届高三上学期诊断测试数学(理科)本试卷共23小题,满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,集合,则中元素的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】【分析】分别求出集合A的定义域和集合B的值域,再求两个集合的交集,确定元素个数即可。
【详解】解集合A可得因为,所以可解得且所以所以有三个元素所以选C【点睛】本题考查了集合的交集运算,关键是看清题目所给条件限制,属于基础题。
2.已知为虚数单位,且复数满足,若为实数,则实数的值为()A. 4B. 3C. 2D. 1【答案】D【解析】因为,所以由题设可得,应选答案D 。
3.已知函数为定义在上的偶函数,且在上单调递增,则的解集为( )A. B. C. D.【答案】C 【解析】由函数奇偶性的定义可知,所以函数在单调递增,则不等式可化为,应选答案C 。
4.将函数的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移个单位,得到函数的图象,则函数图象的一条对称轴的方程为( )A. B. C. D.【答案】B 【解析】由题设可知,由于,所以是函数的一条对称轴,应选答案B 。
5.已知焦点在轴上,渐近线方程为的双曲线的离心率和曲线的离心率之积为1,则的值为 ( )A. B. C. 3或4 D. 或【答案】D 【解析】由题意可设双曲线中的,则,离心率,若,离心率,则;若,离心率,则,应选答案D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页 共6页 第2页 共6页绝密★启用前河南省郑州市中牟县二中2018届高三第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、满足M ⊆{a 1,a 2,a 3,a 4},且M∩{a 1,a 2,a 3}={a 1,a 2}的集合M 的个数是( ) A .1 B .2 C .3 D .42、下列命题中的假命题是 ( ) A . B .C .D .3、已知,则a,b,c 三者的大小关系是 ()A .a>b>cB .b>a>cC .b>c>aD .c>b>a4、函数的一个零点所在的区间是()A .(0,1)B .(1,2) C .(2,3) D .(3,4)5、函数的图象必经过定点P 的坐标为 ( )A .B .C .D .6、已知命题存在;命题中,是的充分不必要条件;则下列命题是真命题的是 ( )且或且或7、已知函数 则的值是 ( )A .B .C .24D .128、若函数在上是增函数,那么的大致图象是 ( )A .B .C .D .9、函数是定义在上的奇函数,当时,则的值为 ( )A .B .C .D .10、设函数f(x)=x|x|+bx+c,给出下列四个命题:①c=0时,y=f(x)是奇函数.②b=0,c>0时,方程f(x)=0只有一个实数根;③y=f(x)的图象关于点(0,c)对称;④方程f(x)=0最多有两个实根.其中正确的命题是()A.①② B.②④ C.①②③ D.①②④11、已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=.若函数y=f(x)-a在区间[-3,4]上有10个零点(互不相同),则实数a的取值范围是()A .B .C .D .第3页共6页◎第4页共6页第5页 共6页 第6页 共6页第II 卷(非选择题)二、填空题(题型注释)12、已知幂函数的图像关于y 轴对称且与y 轴有公共点,则m 的值为______________.13、指数函数f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值与最小值的差为,则a =________.14、若log a (a 2+1)<log a 2a<0,则实数a 的取值范围是______________.15、设函数在R 内有定义,对于给定的正数K ,若定义函数,取函数当时,函数的单调递增区间为________.三、解答题(题型注释)16、函数,则函数的递减区间是( )A .B .C .D .17、函数的定义域为集合A ,函数的值域为集合B .(Ⅰ)求集合A ,B ; (Ⅱ)若集合A ,B 满足,求实数a 的取值范围.18、(本题满分12分)已知不等式ax 2-3x +6>4的解集为{x|x<1或x>b}, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc<0.19、已知命题p :关于x 的不等式a x >1(a >0,a≠1)的解集是{x|x <0},命题q :函数y =lg(ax 2-x +a)的定义域为R ,如果p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.20、二次函数 ,满足为偶函数,且方程有相等实根。
(1)求的解析式; (2)求在上的最大值。
21、已知函数在区间[2,3]有最大值4,最小值1,设函数求a,b 的值及函数f(x)的解析式 若不等式在时恒成立,求实数k 的取值范围22、设函数定义域为R 的奇函数(1)求k 的值(2)若f(1)<0,判断函数单调性,并求使不等式恒成立t 的取值范围(3)若且在上的最小值为-2,求m 的值参考答案1、B2、B3、C4、B5、A6、B7、B8、A9、A10、C11、D12、0或113、或14、15、16、B17、(1) ,(2)18、解:(1)因为不等式ax2-3x+6>4的解集为{x|x<1或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系,得(2)所以不等式ax2-(ac+b)x+bc<0,(6分)即x2-(2+c)x+2c<0,即(x-2)(x-c)<0. (7分)①当c>2时,不等式(x-2)(x-c)<0的解集为{x|2<x<c};(9分)②当c<2时,不等式(x-2)(x-c)<0的解集为{x|c<x<2};(11分)③当c=2时,不等式(x-2)(x-c)<0的解集为∅. (12分)综上所述:当c>2时,不等式ax2-(ac+b)x+bc<0的解集为{x|2<x<c};当c<2时,不等式ax2-(ac+b)x+bc<0的解集为{x|c<x<2};当c=2时,不等式ax2-(ac+b)x+bc<0的解集为∅.19、∪[1,+∞)20、21、(1) (2)22、(1)2(2)(3)2【解析】1、因为M∩{a1,a2,a3}={a1,a2},所以或,选B.2、因为,所以B错,选B.3、因为所以,选C.4、因为,所以由零点存在定理得零点所在的区间是(1,2),所以选B.5、因为时,,所以必经过定点,选A.6、令,则由于,所以由零点存在定理得存在,即命题为真;中,,即是的充分必要条件;所以命题为假,因此且为假;或且为假,或为假,选B.7、,选B.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.8、因为函数在上是增函数,所以,因此是单独递增函数,去掉B,D;因为,所以去掉C,选A.9、)=,选A.点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.10、c=0时,,所以y=f(x)是奇函数.b=0,c>0时,,所以方程f(x)=0只有一个实数根;因为,所以y=f(x)的图象关于点(0,c)对称;方程f(x)=0可以有三个根,如b=-1,c=0时,方程f(x)=0有0,1,-1三个根;因此选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.11、先作出y=f(x)在区间[-3,4]上图像:所以要有10个零点,需,选D.点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.12、由题意得所以,又,所以,当时,幂函数的图像关于y轴对称13、当时,当时,14、当时,,无解;当时,,所以15、由得,所以当时,函数的单调递增;即单调递增区间为点睛:判断函数单调性的常用方法:(1)定义法和导数法,注意证明函数单调性只能用定义法和导数法;(2)图象法,由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集:二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接;(3)利用函数单调性的基本性质,尤其是复合函数“同增异减”的原则,此时需先确定函数的单调性.16、因为,所以递减区间是,选B.17、试题分析:(1)先根据对数真数大于零得集合A ,根据指数大于零以及指数函数单调性得函数值域得集合B .(2)由,得,结合数轴得实数a的不等关系,解不等式组可得实数a的取值范围.试题解析:解:(Ⅰ)A===,B= .(Ⅱ)∵,∴,∴或,、∴或,即的取值范围是.18、试题分析:解:(1)因为不等式ax2-3x+6>4的解集为{x|x<1,或x>b},所以x1=1与x2=b是方程ax2-3x+2=0的两个实数根,且b>1.由根与系数的关系,得解得6分(2)不等式ax2-(ac+b)x+bc<0,即x2-(2+c)x+2c<0,即(x-2)(x-c)<0.①当c>2时,不等式(x-2)(x-c)<0的解集为{x|2<x<c};②当c<2时,不等式(x-2)(x-c)<0的解集为{x|c<x<2};③当c=2时,不等式(x-2)(x-c)<0的解集为.∴当c>2时,不等式ax2-(ac+b)x+bc<0的解集为{x|2<x<c};当c<2时,不等式ax2-(ac+b)x+bc<0的解集为{x|c<x<2};当c=2时,不等式ax2-(ac+b)x+bc<0的解集为. 12分考点:二次不等式的解集点评:主要是考查了二次不等式的求解,属于基础题。
19、试题分析:本题是复合命题的真假判断,解决此类问题可以先求出简单命题为真时的参数取值范围,然后由“p ∧q”为假命题,“p ∨q”为真命题知中一真一假,然后分真假和假真两种情况求解.试题解析:若p 为真命题,则0<a<1; 若p 为假命题,则a≥1或a≤0.若q 为真命题,由得a>;若q 为假命假,则a≤.又p ∧q 为假命题,p ∨q 为真命题,即p 和q 有且仅有一个为真命题,当p 真q 假时,0<a≤;当p 假q 真时,a≥1.故实数a 的取值范围为∪[1,+∞)考点:复合命题的真假判断.20、略21、试题分析:(1)因为对称轴x=1不在定义区间内,所以函数单调,根据单独递增与单独递减分类讨论,解得a,b 的值,代人可得函数f(x)的解析式(2)先分离变量得,只需求出函数最小值,即得实数k 的取值范围 试题解析:(1)对称轴x=1.由题意得:,或解得或(舍去)故所以(2)不等式即即设所以 又因故22、试题分析:(1)由奇函数性质得,代人解得k 的值(2)由f(1)<0得,因此可得函数单独递减,再化简不等式得,最后根据一元二次不等式恒成立得判别式为负,解得t 的取值范围(3)由解得,代人化简得,根据二次函数对称轴与定义区间位置关系得最小值,最后根据最小值为-2,解得m 的值 试题解析:点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.。