高中数学限时训练试题9

合集下载

高中数学,函数的单调性限时训练

高中数学,函数的单调性限时训练

函数的单调性作业一.填空题1.下列函数①()f x =1x;②()f x =2(1)x -;③()f x =x e ④;()ln(1)f x x =+中,满足 “对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x ”的有 (填序号).2.函数y =的单调减区间是 .3.函数)34ln()(2x x x f -+=的单调递减区间是 .4.若函数()21f x ax x =++在区间[)2,-+∞上为单调增函数,则实数a 的取值范围是 .5.已知函数()()21,1,log ,1.a a x x f x x x --⎧⎪=⎨>⎪⎩≤若()f x 在(),-∞+∞上单调递增,则实数a 的取值范围为 .6.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是 .7.已知)(x f y =是定义在)2,2(-上的增函数,若)21()1(m f m f -<-,则m 的取 值范围是 .8.已知⎩⎨⎧≥<+-=)1(log )1(4)13()(x x x a x a x f a 是),(+∞-∞上的减函数,那么a 的取值范围是 .9.已知函数()1p f x x x =+-(p 为常数且0p >),若()f x 在区间(1,)+∞的最小值为4,则实数p 的值为 .10.设函数f (x )=x-1x ,对任意[1,),()()0x f mx mf x ∈+∞+<恒成立,则实数m 的取值范围是________.二.解答题11.设函数f (x )=bx a x ++(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性.12.(1)求函数20.7log (32)y x x =-+的单调区间;(2)已知函数2()2(1)2f x x a x =+-+在区间[2,4]-上是单调函数,求实数a 的取值范围.(3)已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性.13.已知)()(a x ax x x f ≠-=.(1)若2-=a ,试证)(x f 在)2,(--∞内单调递增;(2)若0>a 且)(x f 在),1(+∞内单调递减,求a 的取值范围.14.已知奇函数f (x )的定义域为R ,且)(x f 在),0[+∞上是增函数,是否存在实数m ,使)0()cos 24()32(cos f m m f f >-+-θθ对所有]2,0[πθ∈都成立?若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由.。

高中数学必修2课后限时训练28 圆的一般方程

高中数学必修2课后限时训练28 圆的一般方程

高中数学必修2课后限时训练28 圆的一般方程一、选择题1.两圆x 2+y 2-4x +6y =0和x 2+y 2-6x =0的圆心连线方程为( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案:C解析:两圆的圆心分别为(2,-3)、(3,0),直线方程为y =0+33-2(x -3)即3x -y -9=0,故选C. 2.圆C :x 2+y 2+x -6y +3=0上有两个点P 和Q 关于直线kx -y +4=0对称,则k =( )A .2B .-32C .±32D .不存在 答案:A解析:由题意得直线kx -y =4=0经过圆心C (-12,3),所以-k 2-3+4=0,解得k =2.故选A. 3.当a 取不同的实数时,由方程x 2+y 2+2ax +2ay -1=0可以得到不同的圆,则( )A .这些圆的圆心都在直线y =x 上B .这些圆的圆心都在直线y =-x 上C .这些圆的圆心都在直线y =x 或y =-x 上D .这些圆的圆心不在同一条直线上答案:A解析:圆的方程可化为(x +a )2+(y +a )2=2a 2+1,圆心为(-a ,-a ),在直线y =x 上.4.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:D解析:圆x 2+y 2-2ax +3by =0的圆心为(a ,-32b ), 则a <0,b >0.直线y =-1a x -b a ,其斜率k =-1a >0,在y 轴上的截距为-b a>0,所以直线不经过第四象限,故选D.5.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面只为( )A .5 2B .102C .15 2D .202答案:B解析:圆x 2+y 2-2x -6y =0化成标准方程为(x -1)2+(y -3)2=10,则圆心坐标为M (1,3),半径长为10.由圆的几何性质可知:过点E 的最长弦AC 为点E 所在的直径,则|AC |=210.BD 是过点E 的最短弦,则点E 为线段BD 的中点,且AC ⊥BD ,E 为AC 与BD 的交点,则由垂径定理可是|BD |=2|BM |2-|ME |2=210-[(1-0)2+(3-1)2]=2 5.从而四边形ABCD 的面积为12|AC ||BD |=12×210×25=10 2. 6.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π答案:B解析:设点P 的坐标为(x ,y ),则(x +2)2+y 2=4[(x -1)2+y 2],即(x -2)2+y 2=4,所以点P 的轨迹是以(2,0)为圆心,2为半径长的圆,故面积为π×22=4π.二、填空题7.圆心是(-3,4),经过点M (5,1)的圆的一般方程为________.答案:x 2+y 2+6x -8y -48=0解析:只要求出圆的半径即得圆的标准方程,再展开化为一般式方程.8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是________. 答案:x 2+y 2-4x +2y +1=0解析:设M (x ,y ),A (2,-1),则P (2x -2,2y +1),将P 代入圆方程得:(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即为:x 2+y 2-4x +2y +1=0.9.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.答案:-2解析:由题意可知直线l :x -y +2=0过圆心,∴-1+a 2+2=0,∴a =-2. 三、解答题10.判断方程x 2+y 2-4mx +2my +20m -20=0能否表示圆,若能表示圆,求出圆心和半径.解析:解法一:由方程x 2+y 2-4mx +2my +20m -20=0,可知D =-4m ,E =2m ,F =20m -20,∴D 2+E 2-4F =16m 2+4m 2-80m +80=20(m -2)2,因此,当m =2时,D 2+E 2-4F =0,它表示一个点,当m ≠2时,D 2+E 2-4F >0,原方程表示圆的方程,此时,圆的圆心为(2m ,-m ),半径为r =12D 2+E 2-4F =5|m -2|.解法二:原方程可化为(x -2m )2+(y +m )2=5(m -2)2,因此,当m =2时,它表示一个点,当m ≠2时,原方程表示圆的方程.此时,圆的圆心为(2m ,-m ),半径为r =5|m -2|.[点评] (1)形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时有如下两种方法:①由圆的一般方程的定义判断D 2+E 2-4F 是否为正.若D 2+E 2-F >0,则方程表示圆,否则不表示圆.②将方程配方变形成“标准”形式后,根据圆的标准方程的特征,观察是否可以表示圆.(2)在书写本题结果时,易出现r =5(m -2)的错误结果,导致这种错误的原因是没有理解对一个数开偶次方根的结果为非负数.11.自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程.解析:方法1:(直接法)设P (x ,y ),连接OP ,则OP ⊥BC ,当x ≠0时,k OP ·k AP =-1,即y x ·y x -4=-1, 即x 2+y 2-4x =0. ①当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分).方法2:(定义法)由方法1知OP ⊥AP ,取OA 中点M ,则M (2,0),|PM |=12|OA |=2, 由圆的定义知,P 的轨迹方程是(x -2)2+y 2=4(在已知圆内的部分).12.已知圆经过点(4,2)和(-2,-6),该圆与两坐标轴的四个截距之和为-2,求圆的方程.解析:设圆的一般方程为x 2+y 2+Dx +Ey +F =0.∵圆经过点(4,2)和(-2,-6),代入圆的一般方程,得⎩⎪⎨⎪⎧4D +2E +F +20=0, ①2D +6E -F -40=0. ②设圆在x 轴上的截距为x 1、x 2,它们是方程x 2+Dx +F =0的两个根,得x 1+x 2=-D .设圆在y 轴上的截距为y 1、y 2,它们是方程y 2+Ey +F =0的两个根,得y 1+y 2=-E .由已知,得-D +(-E )=-2,即D +E -2=0. ③由①②③联立解得D =-2,E =4,F =-20.∴所求圆的方程为x 2+y 2-2x +4y -20=0.。

2019_2020学年高中数学第三章三角恒等变换3.1.3二倍角的正弦、余弦、正切公式限时规范训练新人教A版必修4

2019_2020学年高中数学第三章三角恒等变换3.1.3二倍角的正弦、余弦、正切公式限时规范训练新人教A版必修4

3.1.3 二倍角的正弦、余弦、正切公式【基础练习】1.(2019年河南安阳模拟)已知角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过点(-4,3),则sin 2α-cos 2α=( )A .-1725B .-3125C .-53D .75【答案】B【解析】由三角函数的定义,可得sin α=35,cos α=-45,所以sin 2α=2sin αcosα=-2425,cos 2α=cos 2α-sin 2α=725,sin 2α-cos 2α=-3125.故选B .2.对于函数f (x )=2sin x cos x ,下列选项中正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫π4,π2上是递增的 B .f (x )的图象关于原点对称 C .f (x )的最小正周期为2π D .f (x )的最大值为2【答案】B【解析】因为f (x )=2sin x cos x =sin 2x ,所以f (x )是奇函数,即f (x )的图象关于原点对称.故选B .3.(2019年安徽马鞍山模拟)已知cos ⎝ ⎛⎭⎪⎫π6-α=23,则sin ⎝ ⎛⎭⎪⎫5π3+2α的值为( ) A .59 B .19 C .±459D .-59【答案】C【解析】因为cos ⎝ ⎛⎭⎪⎫π6-α=23,所以cos ⎝ ⎛⎭⎪⎫α-π6=23,sin ⎝ ⎛⎭⎪⎫α-π6=±53.所以sin ⎝⎛⎭⎪⎫5π3+2α=sin ⎝ ⎛⎭⎪⎫2α-π3=2sin ⎝ ⎛⎭⎪⎫α-π6cos ⎝ ⎛⎭⎪⎫α-π6=2×⎝ ⎛⎭⎪⎫±53×23=±459.故选C . 4.若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α=( )A .-13B .-79C .79 D .13【答案】B 【解析】cos ⎝ ⎛⎭⎪⎫2π3+2α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=2cos 2⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α-1=2sin 2⎝ ⎛⎭⎪⎫π6-α-1=29-1=-79. 5.(2017年福建莆田一模)已知sin ⎝ ⎛⎭⎪⎫π2-α=14,则cos 2α的值是( )A .78 B .-78C .89D .-89【答案】B【解析】∵sin ⎝ ⎛⎭⎪⎫π2-α=14,∴cos α=14,∴cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫142-1=-78.故选B .6.(2019年广东佛山期末)已知tan ⎝ ⎛⎭⎪⎫α+π6=2,则tan ⎝ ⎛⎭⎪⎫2α+7π12=________. 【答案】-17【解析】由tan ⎝ ⎛⎭⎪⎫α+π6=2,可得tan ⎝ ⎛⎭⎪⎫2α+π3=2×21-22=-43,则tan ⎝ ⎛⎭⎪⎫2α+7π12=tan ⎝ ⎛⎭⎪⎫2α+π3+π4=-43+11-⎝ ⎛⎭⎪⎫-43×1=-17.7.已知sin(α-45°)=-210且0°<α<90°,则cos 2α的值为________. 【答案】725【解析】由于sin(α-45°)=-210且0°<α<90°,则-45°<α-45°<45°,cos(α-45°)=1-⎝ ⎛⎭⎪⎫-2102=7210, ∴cos α=cos(α-45°+45°)=cos(α-45°)cos 45°-sin(α-45°)sin 45°=7210×22-⎝ ⎛⎭⎪⎫-210×22=45,则cos 2α=2cos 2α-1=2×⎝ ⎛⎭⎪⎫452-1=725.8.已知1-tan α2+tan α=1,求证:3sin 2α=-4cos 2α.【证明】因为1-tan α2+tan α=1,所以tan α=-12.tan 2α=2tan α1-tan 2α=-43,即sin 2αcos 2α=-43, 所以3sin 2α=-4cos 2α.9.已知cos α=17,cos(α-β)=1314且0<β<α<π2,求:(1)tan 2α的值; (2)β的大小.【解析】(1)由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫172=437.所以tan α=sin αcos α=43,于是tan 2α=2tan α1-tan 2α=2×431-432=-8347. (2)由0<β<α<π2,得0<α-β<π2.因为cos(α-β)=1314,所以sin(α-β)=3314.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=12,所以β=π3.【能力提升】10.(2018年四川模拟)若1+sin 2x =2cos 2x2,x ∈(0,π),则tan 2x 的值构成的集合为( )A .{3}B .{-3,3}C .{-3,0,3}D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-33,0,33【答案】C【解析】∵1+sin 2x =2cos 2x2,∴2sin x cos x =2cos 2x2-1=cos x .∴cos x =0或sinx =12.又x ∈(0,π),∴x =π2,π6,5π6.∴2x =π,π3,5π3.∴tan 2x =0或±3,则tan 2x的值构成的集合为{-3,0,3},故选C .11.已知cos 2θ=23,则sin 4θ+cos 4θ的值为( ) A .1318 B .1118 C .79 D .-1【答案】B【解析】sin 4θ+cos 4θ=(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=1-12sin 22θ=1-12(1-cos 22θ)=1118.12.已知θ∈(0,π)且sin ⎝ ⎛⎭⎪⎫θ-π4=210,则tan 2θ=________. 【答案】-247【解析】∵sin ⎝⎛⎭⎪⎫θ-π4=22(sin θ-cos θ)=210,∴sin θ-cos θ=15.∴1-2sin θcos θ=125,2sin θcos θ=2425>0.依题意知,θ∈⎝⎛⎭⎪⎫0,π2,又(sin θ+cos θ)2=1+sin 2θ=4925,∴sin θ+cos θ=75.∴sin θ=45,cos θ=35.∴cos 2θ=2cos 2θ-1=-725,∴tan 2θ=sin 2θcos 2θ=-247.13.已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫ax -π4cos ⎝ ⎛⎭⎪⎫ax -π4+2cos 2⎝ ⎛⎭⎪⎫ax -π4(a >0),且函数的最小正周期为π2.(1)求a 的值;(2)求f (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.【解析】(1)函数f (x )=23sin ⎝ ⎛⎭⎪⎫ax -π4cos ⎝ ⎛⎭⎪⎫ax -π4+2cos 2⎝⎛⎭⎪⎫ax -π4(a >0),化简可得f (x )=3sin ⎝⎛⎭⎪⎫2ax -π2+cos ⎝⎛⎭⎪⎫2ax -π2+1=-3cos 2ax +sin 2ax +1 =2sin ⎝⎛⎭⎪⎫2ax -π3+1. ∵函数的最小正周期为π2,即T =π2,∴T =2π2a =π2,可得a =2.∴a 的值为2.(2)由(1)得f (x )=2sin ⎝⎛⎭⎪⎫4x -π3+1. x ∈⎣⎢⎡⎦⎥⎤0,π4时,4x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.当4x -π3=-π3时,函数f (x )取得最小值为1-3;当4x -π3=π2时,函数f (x )取得最大值为2×1+1=3,∴f (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值为3,最小值为1- 3.。

2020_2021学年高中数学第2章圆锥曲线与方程2.4.2抛物线的简单几何性质限时规范训练含解析新

2020_2021学年高中数学第2章圆锥曲线与方程2.4.2抛物线的简单几何性质限时规范训练含解析新

第二章 2.4 2.4.2基础练习1.直线y =x -1被抛物线y 2=4x 截得的线段的中点坐标是( ) A .(1,2) B .(2,1) C .(2,3) D .(3,2) 【答案】D【解析】将y =x -1代入y 2=4x ,整理,得x 2-6x +1=0.由根与系数的关系,得x 1+x 2=6,x 1+x 22=3.∴y 1+y 22=x 1+x 2-22=6-22=2.∴所求点的坐标为(3,2).2.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A .2 B .4 C .6D .8 【答案】A【解析】由已知可知抛物线的准线x =-p2与圆(x -3)2+y 2=16相切,圆心为(3,0),半径为4,圆心到准线的距离d =3+p2=4.解得p =2.3.(2020年某某五校联考)直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A.y 2=-12xB.y 2=-8xC.y 2=-6xD.y 2=-4x 【答案】B【解析】设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,∴-x 1+x 22=2,∴x 1+x 2=-4,∴p =4,∴所求抛物线的方程为y 2=-8x .故选B.4.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|FA |=2|FB |,则k 的值为( )A .13B .23C .23D .223【答案】D【解析】C 的准线为l :x =-2,直线y =k (x +2)过定点P (-2,0).过点A ,B 分别作AM ⊥l 于点M ,BN ⊥l 于点N ,由|FA |=2|FB |,则|AM |=2|BN |,点B 为AP 的中点.连接OB ,则|OB |=12|AF |,∴|OB |=|BF |.∴点B (1,22).∴k =22-01--2=223.故选D .5.(2019年某某某某期末)已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是__________________.【答案】x 2=2y【解析】由题意得F ⎝ ⎛⎭⎪⎫0,p 2,不妨设A ⎝ ⎛⎭⎪⎫p ,-p 2,B ⎝⎛⎭⎪⎫-p ,-p 2,∴S △FAB =12·2p ·p =1,则p =1,即抛物线C 1的方程是x 2=2y .6.(2020年某某某某质量监测)已知抛物线x 2=4y 的焦点为F ,准线为l ,P 为抛物线上一点,过P 作PA ⊥l 于点A ,当∠AFO =30°(O 为坐标原点)时,|PF |=.【答案】43【解析】设l 与y 轴的交点为B ,在Rt △ABF 中,∠AFB =30°,|BF |=2,所以|AB |=233.设P (x 0,y 0),则x 0=±233,代入x 2=4y 中,得y 0=13,从而|PF |=|PA |=y 0+1=43.7.斜率为1的直线经过抛物线y 2=4x 的焦点且与抛物线相交于A ,B 两点,求线段AB 的长.解:如图,由抛物线的标准方程可知焦点F (1,0),准线方程为x =-1.由题意,直线AB 的方程为y =x -1,代入抛物线方程y 2=4x ,整理得x 2-6x +1=0. (方法一)由x 2-6x +1=0,得x 1+x 2=6,x 1·x 2=1,∴|AB |=2|x 1-x 2|=2×x 1+x 22-4x ·x 2=2×62-4=8.(方法二)设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=|AA 1|=x 1+1,|BF |=|BB 1|=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2=6+2=8.8.设抛物线C :y 2=2px (p >0)上有两动点A ,B (AB 不垂直于x 轴),F 为焦点且|AF |+|BF |=8,线段AB 的垂直平分线恒过定点Q (6,0),求抛物线C 的方程.解:设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则x 1+x 2=8-p .又|QA |=|QB |,∴(x 1-6)2+y 21=(x 2-6)2+y 22,即(x 1+x 2-12)(x 1-x 2)=2p (x 2-x 1).∵x 1≠x 2,∴x 1+x 2=12-2p .∴12-2p =8-p .解得p =4. ∴所求抛物线C 的方程为y 2=8x .能力提升9.过抛物线y 2=4x 的焦点,作一条直线与抛物线交于A ,B 两点,若它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有两条C .有无穷多条D .不存在 【答案】B【解析】设A (x 1,y 1),B (x 2,y 2),由抛物线定义知|AB |=x 1+x 2+p =5+2=7.又直线AB 过焦点且垂直于x 轴的直线被抛物线截得的弦长最短,且|AB |min =2p =4,∴这样的直线有两条.故选B .10.(多选题)如图,AB 为过抛物线y 2=2px (p >0)焦点F 的弦,点A ,B 在抛物线准线上的射影分别为A 1,B 1,且A (x 1,y 1),B (x 2,y 2),直线AB 的斜率存在,则( )A.|AB |=x 1+x 2+pB.x 1x 2=p 24C.y 1y 2=-p 2D.以AB 为直径的圆与抛物线的准线相切 【答案】ABCD【解析】由抛物线的定义知|AB |=|AF |+|BF |=|AA 1|+|BB 1|=x 1+x 2+p ,A 正确.设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,联立抛物线方程,消x 得y 2-2pk y -p 2=0,∴y 1y 2=-p 2,x 1x 2=y 212p ·y 222p =p 24,B ,C 正确.设AB 的中点为M ,M 到准线的距离为d ,则d =|AA 1|+|BB 1|2=|AF |+|BF |2=|AB |2,∴以AB 为直径的圆与准线相切,D 正确.综上,ABCD 全选. 11.(2020年某某永州模拟)已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为.【答案】2+2【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义得M 到准线的距离为|MF |,N 到准线的距离为|NF |,由梯形的中位线定理得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab (a +b )2=1-(2-2)ab (a +b )2≥1-(2-2)ab(2ab )2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时,取得最小值2+2.12.已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A ,B 两点且|AB |=52p ,求AB 所在的直线方程.解:焦点F ⎝ ⎛⎭⎪⎫p 2,0,设A (x 1,y 1),B (x 2,y 2).若AB ⊥x 轴,则|AB |=2p <52p ,不合题意.所以直线AB 的斜率存在,设为k ,则直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2(k ≠0).由⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系,得y 1+y 2=2pk,y 1y 2=-p 2.∴|AB |=1+1k2|y 1-y 2|=1+1k2·y 1+y 22-4y1y 2=2p ⎝ ⎛⎭⎪⎫1+1k 2=52p .解得k =±2.∴AB 所在直线方程为y =2⎝ ⎛⎭⎪⎫x -p 2或y =-2⎝ ⎛⎭⎪⎫x -p 2.。

数学新题型分专题多选题特训24套

数学新题型分专题多选题特训24套

数学新题型分专题多选题特训24套您好,我是阳子,专注于人教版高中数学老师日常备课工作中需用到的各类资料整理。

在这承诺所整理的资料均为最新更新的,均为精品,每个系列都齐全,可以编辑打印,大部分都无水印,拿上手直接就能用。

------如需电子版请直接拉至文末获取------今日更新【备战新高考】数学新题型:分专题多选题特训24套目录:专题01 集合与常用逻辑用语多选题(原卷版).doc专题01 集合与常用逻辑用语多选题(解析版).doc专题02 函数多选题(原卷版).docx专题02 函数多选题(解析版).docx专题03 导数多选题(解析版).docx专题03 导数多选题(原卷版).docx专题04 导数及其应用【多选题】(原卷版).docx专题04 导数及其应用【多选题】(解析版).docx专题05 平面向量多选题(原卷版).doc专题05 平面向量多选题(解析版).doc专题06 不等式多选题1(原卷版).doc专题06 不等式多选题1(解析版).doc专题07 不等式【多选题】(原卷版).docx专题07 不等式【多选题】(解析版).docx专题08 三角函数多选题(原卷版).docx专题08 三角函数多选题(解析版).docx专题09 平面向量【多选题】(原卷版).docx专题09 平面向量【多选题】(解析版).docx专题10 三角函数【多选题】(原卷版).docx专题10 三角函数【多选题】(解析版).docx专题11 三角恒等变换与解三角形【多选题】(原卷版).docx专题11 三角恒等变换与解三角形【多选题】(解析版).docx专题12 三角形多选题(原卷版).docx专题12 三角形多选题(解析版).docx专题13 立体几何初步【多选题】(原卷版).docx专题13 立体几何初步【多选题】(解析版).docx专题14 立体几何多选题(原卷版) -.docx专题14 立体几何多选题(解析版).docx专题15 空间向量与立体几何多选题(原卷板).doc专题15 空间向量与立体几何多选题(解析版).doc专题16 数列1多选题(原卷版).doc专题16 数列1多选题(解析版).doc专题17 数列2【多选题】(原卷版).docx专题17 数列2【多选题】(解析版).docx专题18 直线与圆【多选题】(原卷版).docx专题18 直线与圆【多选题】(解析版).docx专题19 解析几何多选题1(原卷版).docx专题19 解析几何多选题1(解析版).docx专题20 解析几何多选题2(原卷版).doc专题20 解析几何多选题2(解析版).doc专题21 概率统计多选题(原卷版).docx专题21 概率统计多选题(解析版).docx专题22 计数原理及随机变量及其分布【多选题】(原卷版).docx专题22 计数原理及随机变量及其分布【多选题】(解析版).docx专题23 统计【多选题】(原卷版).docx专题23 统计【多选题】(解析版).docx专题24 复数及推理与证明【多选题】(原卷版).docx专题24 复数及推理与证明【多选题】(解析版).docx资料会每天更新一次,一直有新的在增加哦!这个只作为基本的介绍以上是目录简介高中数学会员群部分目录必修一新人教版高中数学必修第一册全套导学案+课件+练习(学科版)新人教版高中数学必修第一册全套导学案word版(凤凰新学案版)新人教版高中数学必修第一册全套教学设计(新教材精创)新人教版高中数学必修第一册全套教学设计教案word版(精创版)新人教版高中数学必修第一册全套教学设计课件及课时作业Word版(步步高版)新人教版高中数学必修第一册全套精品教学课件PPT(正确云)新人教版高中数学必修第一册全套精准培优讲义课件(精讲课堂)新人教版高中数学必修第一册全套精准培优讲义课件(精品)新人教版高中数学必修第一册全套课件(精品)新人教版高中数学必修第一册全套课件含章末复习(版本二)新人教版高中数学必修第一册全套课件及配套试题(红对勾版)新人教版高中数学必修第一册全套课件讲义作业复习资料(优化设计)新人教版高中数学必修第一册全套课件与配套word课时作业(世纪金榜)新人教版高中数学必修第一册全套课时作业新人教版高中数学必修第一册全套课时作业跟踪模块试题Word版(三维设计版)新人教版高中数学必修第一册全套课时作业及章末测试卷Word版新人教版高中数学必修第一册全套课时作业微专题培优阶段练习试题纯word版(学习方略)新人教版高中数学必修第一册全套完整课时作业word版必修二新人教版高中数学必修第二册电子教材PDF版(A版)新人教版高中数学必修第二册电子教材及教师用书(扫描版)新人教版高中数学必修第二册教师用书PDF(A版)新人教版高中数学必修第二册解读(视频版)新人教版高中数学必修第二册全套PPT课件(红对勾)新人教版高中数学必修第二册全套PPT课件(精创)新人教版高中数学必修第二册全套PPT课件(三维设计)新人教版高中数学必修第二册全套PPT课件(中学数学教材全解)新人教版高中数学必修第二册全套导学案新人教版高中数学必修第二册全套讲义教案(带核心素养带情景引入)新人教版高中数学必修第二册全套教案含素养(精创版)新人教版高中数学必修第二册全套教学设计(含核心素养)新人教版高中数学必修第二册全套教学设计(三维设计)新人教版高中数学必修第二册全套课件(5年高考3年模拟)新人教版高中数学必修第二册全套课件(一遍过)新人教版高中数学必修第二册全套课件(优化设计)新人教版高中数学必修第二册全套课件(正确云)新人教版高中数学必修第二册全套课件及配套课时作业(步步高)新人教版高中数学必修第二册全套课件及配套课时作业(金版)新人教版高中数学必修第二册全套课件及配套课时作业(全品)新人教版高中数学必修第二册全套课时作业(步步高)新人教版高中数学必修第二册全套课时作业word版(5年高考3年模)新人教版高中数学必修第二册全套课时作业及章节试卷(三维设计)新人教版高中数学必修第二册一遍过电子书PDF选择性必修一新人教版高中数学各书课后习题答案大全(2019人A版)新人教版高中数学选择性必修第一册单元测试AB卷word版新人教版高中数学选择性必修第一册电子教材PDF新人教版高中数学选择性必修第一册教材习题选编(考前回归系列)新人教版高中数学选择性必修第一册培优班精讲精练(学科版)新人教版高中数学选择性必修第一册全套PPT课件及配套WORD讲义(步步高版)新人教版高中数学选择性必修第一册全套PPT课件及配套word试题(金版学案)新人教版高中数学选择性必修第一册全套单元测试卷基础提升满分三层设计新人教版高中数学选择性必修第一册全套分层练习(学科版)新人教版高中数学选择性必修第一册全套教案含情景引入核心素养新人教版高中数学选择性必修第一册全套教学讲义word版(精品)新人教版高中数学选择性必修第一册全套教学讲配套课时作业章末测试word版(步步高)新人教版高中数学选择性必修第一册全套教学设计word版(学科版)新人教版高中数学选择性必修第一册全套精品课件含素养及全套课时作业(创新设计)新人教版高中数学选择性必修第一册全套课件(未知教辅)新人教版高中数学选择性必修第一册全套课件及配套课时作业(新三维设计)新人教版高中数学选择性必修第一册全套课件及配套课时作业章节测试(53版)新人教版高中数学选择性必修第一册全套课时作业word版(世纪金榜)新人教版高中数学选择性必修第一册全套课时作业及章节测试卷word版(三维设计版)新人教版高中数学选择性必修第一册全套培优测试题word版(学科版)新人教版高中数学选择性必修第一册全套同步课件(精品)新苏教版高中数学选择性必修第一册全套导学案WORD版(凤凰新学案)新苏教版选择性必修第一册全套教学讲义word版(步步高)选择性必修二新人教版高中数学选择性必修第二册电子教材(A版)新人教版高中数学选择性必修第二册培优班精讲资料(解析版)新人教版高中数学选择性必修第二册全套讲义含配套课作业章末测试综合模拟试卷(步步高版)新人教版高中数学选择性必修第二册全套课件(步步高版)新人教版高中数学选择性必修第二册全套课件及配套课时作业(53版)新人教版高中数学选择性必修第二册全套课件及配套课时作业(创新设计版)新人教版高中数学选择性必修第二册全套课件全套讲义全套同步作(步步高版)新人教版高中数学选择性必修第二册全套课件整合850页新人教版高中数学选择性第二册全套课件及配套课时作业(世纪金榜)高考复习备战2022年高考数学一轮复习全套课件及配套课时作业试题(优化设计)备战2022年高考数学一轮复习全套课件讲义及配套word试题(衡中学案版)备战2022年高考数学一轮复习全套课件讲义及配套word试题(红对勾讲与练)备战2022年高考数学一轮复习全套课件讲义及配套word试题(未知品牌)备战2022年高考数学一轮复习全套试题(高考必刷题)备战2021高考数学二轮复习冲刺50天系列“高人一筹”特色强化训练备战2021高考数学二轮复习冲刺选、填-中档、压轴题30篇备战2021高考数学二轮复习全套课件及配套试题(优化设计版)备战2021高考数学二轮复习专题冲刺双一流培优26讲精编备战2021高考数学二轮复习专题方法技巧讲义33讲备战2021高考数学二轮复习专题全套课件及配套试题(全品版)备战2021高考数学二轮专题复习巅峰冲刺专项提升备战2021高考数学二轮专题复习讲义及配套限时训练备战2021高考数学二轮专题复习全套课件及配套试题(步步高版)备战2021高考数学二轮专题复习全套课件及配套试题(高考调研版)备战2021高考数学二轮专题复习全套课件及配套试题(金版教程版)备战2021高考数学二轮专题复习全套课件及配套试题(考势版)备战2021高考数学二轮专题复习全套课件及配套试题(绿色通道版)备战2021高考数学二轮专题复习全套课件及配套试题(南方凤凰台)备战2021高考数学二轮专题复习全套课件及配套试题(全品版2)备战2021高考数学二轮专题复习全套课件及配套试题(三维设计版1)备战2021高考数学二轮专题复习全套课件及配套试题(三维设计版2)备战2021高考数学二轮专题复习全套课件及配套试题(题型大通关)备战2021高考数学二轮专题复习全套课件及配套试题(优化设计版)备战2021高考数学二轮专题复习全套培优讲义45讲艺考生艺体生基础生考点培优讲义经典讲义艺体生高考数学专题讲义60讲及真题演练带答案艺体生高考数学基础知识专题训练(24套)艺体生高考数学复习资料艺体生高考数学复习专用讲义无答案艺体生高考数学复习专用讲义374页艺体生高考数学复习专用复习资料艺体生高考数学复习抓分题型复习讲义(含答案)艺体生高考数学复习押题54题考前必做艺体生高考数学复习系统性教案艺体生高考数学复习文化课快速提分秘籍(带答案)艺体生高考数学复习全套复习资料9个专题(带答案)艺体生高考数学复习全课讲义(安老师版)艺体生高考数学复习考前100天及配套课时作业带答案艺体生高考数学复习讲义含基础训练试题无答案艺体生高考数学复习含课时作业及答案艺体生高考数学复习辅导一本通带部分答案285页艺体生高考数学复习Word版带答案(南方凤凰台)。

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)

2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。

2011年高考数学总复习 提能拔高限时训练:y=Asin(ωx φ)的图象(练习 详细解析)大纲人教版

2011年高考数学总复习 提能拔高限时训练:y=Asin(ωx φ)的图象(练习 详细解析)大纲人教版

提能拔高限时训练20 y=Asin(ωx+φ)的图象一、选择题1.把函数y=f(x)的图象沿直线x+y=0的方向向右下方平移22个单位,得到函数y=sin3x 的图象,则( )A.f(x)=sin(3x+6)+2B.f(x)=sin(3x-6)-2C.f(x)=sin(3x+2)+2D.f(x)=sin(3x-2)-2解析:实质上是将y=f(x)向右平移2个单位,向下平移2个单位,得到y=sin3x,逆向思维即得y=f(x)=sin [3(x+2)]+2=sin(3x+6)+2.故选A. 答案:A2.把函数y=sin(ωx+φ)(ω>0,|φ|<2π)的图象向左平移3π个单位,所得曲线的一部分如图所示,则ω、φ的值分别为( )A.1,3π B.1,3π- C.2,3πD.2,3π-解析:将y=sin(ωx+φ)(ω>0,|φ|<2π)的图象向左平移3π个单位,得到])3(sin[ϕπω++=x y .∴⎪⎪⎩⎪⎪⎨⎧=++=++.23)3127(,)33(πϕππωπϕππω 解得⎪⎩⎪⎨⎧-==.3,2πϕω故选D.答案:D3.已知函数f(x)=sinωx 在[0,4π]上单调递增且在这个区间上的最大值为23,则实数ω的一个值可以是( ) A.32 B.38 C.34 D.310解析:∵f(x)=sinωx 在[0,4π]上单调递增,∴当4π=x 时,234sin )(max =•=ωπx f .检验,当34=ω时,有233sin =π,符合题意.故选C.答案:C4.已知函数f(x)=sinx,g(x)=cosx,则下列结论中正确的是( ) A.函数y=f(x)·g(x)是偶函数 B.函数y=f(x)·g(x)的最大值为1C.将f(x)的图象向右平移2π个单位长度后得到g(x)的图象 D.将f(x)的图象向左平移2π个单位长度后得到g(x)的图象解析:∵f(x)=sinx 是奇函数,g(x)=cosx 是偶函数,∴y=f(x)·g(x)是奇函数.故A 错; ∵y=f(x)·g(x)=sinx·cosx=21·sin2x, ∴y=f(x)·g(x)的最大值为21.故B 错; ∵)2sin(cos )(π+==x x x g ,∴将f(x)=sinx 的图象向左平移2π个单位长度后得到g(x)的图象.故选D. 答案:D5.函数y=Asin(ωx+φ)图象的一部分如图所示,则此函数的解析式可以写成( )A.)8sin(π+=x y B.)82sin(π+=x yC.)42sin(π+=x y D.)42sin(π-=x y 解析:由图象可知41周期是4π,所以周期是π,再根据原点向左平移了8π,可知)42sin(π+=x y .故选C.答案:C6.函数f(x)=Asin(ωx+φ)+b 的图象如图,则f(x)的解析式及S=f(0)+f(1)+f(2)+…+f(2 006)的值分别为( )A.12sin 21)(+=x x f π,S=2 006 B.12sin 21)(+=x x f π,212007=SC.12sin 21)(+=x x f π,212006=SD.12sin 21)(+=x x f π,S=2 007解析:观察题中图象可知,12sin 21)(+=x x f π, f(0)=1,23)1(=f ,f(2)=1,21)3(=f ,f(4)=1,∴f(x)以4为周期.f(0)+f(1)+f(2)+f(3)=4,2 006=4×501+2,∴f(0)+f(1)+f(2)+f(3)+…+f(2 006)=4×501+f(2 004)+f(2 005)+f(2 006)21200712312004=+++=.故选B. 答案:B7. 为了得到函数)63sin(2π+=x y ,x∈R 的图象,只需把函数y=2sinx,x∈R 的图象上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)解析:2sinx2sin(x+6π) )63sin(2π+x .故选C.答案:C8.已知函数y=Asin(ωx+φ)+m 的最大值为4,最小值为0,最小正周期为2π,直线3π=x 是其图象的一条对称轴,则下列各式中符合条件的解析式是( ) A.)44sin(4π+=x y B.2)32sin(2++=πx yC.2)34sin(2++=πx y D.2)64sin(2++=πx y解析:由最大值为4,最小值为0,得A=2,m=2. 由2π=T ,得ω=4. 由3π=x 是一条对称轴得234ππϕπ+=+⨯k .∴65ππϕ-=k .令k=1得6πϕ=, ∴2)64sin(2++=πx y .答案:D9.把函数x x y sin 3cos -=的图象沿向量a =(-m,m)(m >0)的方向平移后,所得的图象关于y 轴对称,则m 的最小值是( )A.6π B.3πC.32πD.65π解析:)3cos(2sin 3cos π+=-=x x x y ,y=cosx(x∈R )的图象关于y 轴对称,将y=cosx 的图象向左平移π个单位时,图象仍关于y 轴对称.故选C. 答案:C10.如果f(x)=sin(πx+θ)(0<θ<2π)的最小正周期是T,且当x=2时取得最大值,那么( ) A.T=2,2πθ=B.T=1,θ=πC.T=2,θ=πD.T=1,2πθ=解析:∵22==ππT ,又∵x=2时,有222ππθπ+=+k ,∴2)1(2ππθ+-=k ,k∈Z .又0<θ<2π,则k=1,2πθ=.故选A. 答案:A 二、填空题11.曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则|P 2P 4|=____________. 解析:12sin )4cos()4sin(2+=-+=x x x y ππ, 联立方程组⎪⎩⎪⎨⎧+==,12sin ,21x y y ∴|P 2P 4|=|x 2-x 4|=π.答案:π12.要得到)42cos(π-=x y 的图象,且使平移的距离最短,则需将y=sin2x 的图象向_______平移____________个单位,即可得到.解析:由y=sin2x 的图象向左平移8π个单位,得到)8(2sin π+=x y 的图象.而)42cos()24cos()]42(2cos[)42sin()8(2sin ππππππ-=-=+-=+=+=x x x x x y .答案:左 8π13.函数)3sin()(x x f -=π的单调递增区间为___________.若将函数的图象向左平移a(a >0)个单位,得到的图象关于原点对称,则a 的最小值为______________. 解析:(1)∵)3sin()3sin()(ππ--=-=x x x f , ∴22ππ+k ≤3π-x ≤232ππ+k 时,f(x)单调递增,解得函数增区间为[652ππ+k ,6112ππ+k ](k∈Z ).(2)向左平移a 个单位,得g(x)=-sin(x+a-3π).因其关于原点对称,∴33ππππ+=⇒=-k a k a ,a 的最小值为3π.答案:[652ππ+k ,6112ππ+k ](k∈Z ) 3π14.函数f(x)=sinx+2|sinx|,x∈[0,2π]的图象与直线y=k 有且仅有两个不同的交点,则k的取值范围是_____________. 解析:⎩⎨⎧∈-∈=].2,[,sin ],,0[,sin 3)(πππx x x x x f作图如下:由图知k∈(1,3). 答案:(1,3) 三、解答题15.已知函数)23sin(2)3cos(2)(x x x f ++-=ππ.(1)用“五点法”画出函数f(x)在[0,35π]上的简图; (2)在△ABC 中,a,b,c 分别是角A,B,C 的对边,f(A)=1,3=a ,b+c=3(b >c),求b,c 的长.解:(1)x x x x f cos 2)3sin sin 3cos(cos 2)(-+=ππx x x x x cos sin 3cos 2cos sin 3-=-+=)6sin(2)cos 21sin 23(2π-=-=x x x . 列表:x 0 6π32π 67π 35π y-12-2描点、连线可得函数f(x)的图象如下:(2)∵f(A)=1,即1)6sin(2=-πA ,∴21)6sin(=-πA . ∵0<A <π,∴-6π<6π-A <65π.∴66ππ=-A .∴3π=A .由bca cb A 221cos 222-+==,即(b+c)2-a 2=3bc,∴bc=2.又b+c=3(b >c), ∴⎩⎨⎧==.1.2c b 16.已知函数f(x)=Asin(x+φ)(A >0,0<φ<π)(x∈R )的最大值是1,其图象经过点M(3π,21). (1)求f(x)的解析式; (2)已知α,β∈(0,2π),且53)(=αf ,1312)=(βf ,求f(α-β)的值.解:(1)∵f(x)=Asin(x+φ)(A>0,0<φ<π)的最大值是1,∴A=1.∵f(x)的图象经过点M(3π,21), ∴21)3sin(=+ϕπ. ∵0<φ<π⇒2πϕ=,∴x x x f cos )2sin()(=+=π.(2)∵f(x)=cosx, ∴53cos )(==ααf ,1312cos )(==ββf . 已知α,β∈(0,2π),∴54)53(1sin 2=-=α,135)1312(1sin 2=-=β.故f(α-β)=cos(α-β)=cosαcosβ+sinαsinβ=655613554131253=⨯+⨯.数学参考例题志鸿优化系列丛书【例1】如图,某地一天从6时至14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+b.(1)求这段时间的最大温差;(2)写出这段曲线的函数解析式.解:(1)由题图,知最大温差为30-10=20(℃).(2)题图中从6时到14时的图象是函数y=Asin(ωx+φ)+b的半个周期的图象.∴8614221=-=•ωπ.∴8πω=.由题图所示1021030=-=A,2021030=+=b.这时20)8sin(10++=ϕπxy,将x=6,y=10代入上式,可得43πϕ=.综上,所求解析式为20)438sin(10++=ππxy,x∈[6,14].【例2】作出函数y=|sinx|+|cosx|,x∈[0,π]的图象,并写出函数的值域.解:⎪⎪⎩⎪⎪⎨⎧∈-∈+=].,2[),4sin(2],2,0[),4sin(2πππππxxxxy如下图,函数的值域为[1,2]。

高中数学小题限时训练(适合基础薄弱学生)(20份附答案)

高中数学小题限时训练(适合基础薄弱学生)(20份附答案)
【详解】
由题可得: , ,
所以 ,又 ,
所以利润与年号的回归方程为: ,
当 时, ,
故选C.
【点睛】
本题主要考查了线性回归方程及其应用,考查计算能力,属于基础题.
5.B
【解析】
【分析】
分成甲单独到 县和甲与另一人一同到 县两种情况进行分类讨论,由此求得甲被派遣到 县的分法数.
【详解】
如果甲单独到 县,则方法数有 种.
高二下学期数学小题限时训练1
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知 为虚数单位,复数 满足 ,则 的共轭复数为()
A. B. C. D.
2.曲线 在点 处的切线与 轴、 轴围成的封闭图形的面积为()
A.1B. C. D.
【解析】
【分析】

【详解】
解:因为 ,
所以 ,
所以其共轭复数为
故选:C
【点睛】
本题考查复数的除法运算,共轭复数的概念,是基础题.
2.B
【解析】
【分析】
【详解】
由 ,则直线方程为 ,当 时, ;当 时, . ,故选B.
3.C
【解析】
随机变量 服从正态分布 , .
4.C
【解】
【分析】
利用表中数据求出 , ,即可求得 ,从而求得 ,从而求得利润与年号的线性回归方程为 ,问题得解.
C.在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别有关”
D.在犯错误的概率不超过 的前提下,认为“爱好该项运动与性别无关”
5.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到 , , 三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9练 班级 姓名
1.等差数列{}n a 中,1030a =,2050a =,则30a = .
2.等比数列{}n a 中,1030S =,2050S =,则30S = .
3.无论m 取何实数时,直线(m -1)x -(m +3)y -(m -11)=0恒过定点,则定点的坐标为 .
4.给出如下四个命题:①棱柱的侧面都是平行四边形;②棱锥的侧
面为三角形,且所有侧面都有一个共同的公共点;③多面体至少有四个面;④棱台的侧棱所在直线均相交于同一点,其中正确的命题是 .
5.圆心在直线x y =上且与x 轴相切于点(1,0)的圆的方程为 .
6.不等式组⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0
625y x y x y x 的点中,目标函数y x k 86+=的最大值为 .
7.两圆相交于两点)3,1(和)1,(-m ,且两圆的圆心都在直线0=+-c y x 上,则c m +的值为 .
8.已知圆222410220(,)x y x y ax by a b R ++-+=-+=∈关于直线
,ab 对称则的取值范围 .
9.已知圆()()161222=++-y x 的一条直径通过直线032=--y x 被圆所截弦的中点,求该直径所在的直线的方程.
10.过点P(1,4),作直线与两坐标轴的正半轴相交,当直线在两坐标轴上的截距之和最小时,求此直线方程.。

相关文档
最新文档