最新精选西安市交XX中学精选九年级上期末数学试卷(含答案)(已纠错)

合集下载

【名师精编】西安市交XX中学届九年级上期末数学试卷(有答案)

【名师精编】西安市交XX中学届九年级上期末数学试卷(有答案)

2016-2017学年陕西省西安市中学九年级(上)期末数学试卷一、选择题1.9的平方根是()A.±3 B.3 C.﹣3 D.±2.如图为正六棱柱与圆锥组成的几何体,其俯视图是()A.B.C.D.3.下列运算结果正确的是()A.6÷2=3B.(﹣)﹣1=C.(23)2=46D.﹣2a2•a3=﹣2a64.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17° B.34°C.56°D.68°5.在平面直角坐标系中,点(﹣7,﹣2m+1)在第三象限,则m的取值范围是()A.m<B.m>﹣ C.m<﹣ D.m>6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30°C.20°D.10°7.如图,是直线y=﹣3的图象,点P(2,m)在该直线的上方,则m的取值范围是()A.m>﹣3 B.m>﹣1 C.m>0 D.m<38.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2B.3 C.D.69.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.B. C.8 D.610.若二次函数y=a2+b+c(a<0)的图象经过点(2,0),且其对称轴为=﹣1,则使函数值y>0成立的的取值范围是()A.<﹣4或>2 B.﹣4≤≤2 C.≤﹣4或≥2 D.﹣4<<2二、填空题11.计算|﹣2|+2cos45°=.12.一元二次方程2+9=0的解是.13.如图,正六边形ABCDEF的边长为2,则对角线AF=.14.比较大小:sin57°tan57°.15.如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为米.16.如图,在平面直角坐标系中,函数y=(>0常数>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标.17.如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为.三、解答题(共9小题,满分72分)18.解方程:=+1.19.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)20.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.21.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.22.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?23.小励同学有面额10元.20元.50元和100元的纸币各一张,分别装入大小外观完全样的四个红包中,每个红包里只装入一张纸币,若小励从中随机抽取两个红包.(1)请用树状图或者列表的方法,求小励取出纸币的总额为70元的概率;(2)求小励取出纸币的总额能购买一件价格为120元文具的概率.24.如图,BC是圆O的弦,CF是圆O切线,切点为C,经过点B作MN⊥CF于E,且∠CBM=135°,过G的直线分别与圆O,MN交于A,D两点.(1)求证:MN是圆O的切线;(2)当∠D=30°,BD=时,求圆O的半径r.25.已知二次函数y═a2+b+c(a>0)的图象与轴交于A(﹣5,0)、B(1,0)两点,与y 轴交于点C,抛物线的顶点为D.(1)直接写出顶点D、点C的坐标(用含a的代数式表示);(2)若∠ADC=90°,试确定二次函数的表达式.26.如图,三角形有一边上的中线长恰好等于这边的长,那么这个三角形可称为“等中三角形”,探索体验(1)如图①,点D是线段AB的中点,请画一个△ABC,使其为“等中三角形”.(2)如图②,在Rt△ABC中,∠C=90°,AC=2,BC=,判断△ABC是否为“等中三角形”,并说明理由.拓展应用(3)如图③,正方形ABCD木板的边长AB=6,请探索在正方形木板上是否存在点P,使△ABP为面积最大的“等中三角形”?若存在,求出CP的长;若不存在,请说明理由.2016-2017学年陕西省西安市中学九年级(上)期末数学试卷参考答案与试题解析一、选择题1.9的平方根是()A.±3 B.3 C.﹣3 D.±【考点】平方根.【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.【解答】解:±,故选:A.2.如图为正六棱柱与圆锥组成的几何体,其俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】从几何体上方观察,得到俯视图即可.【解答】解:如图为正六棱柱与圆锥组成的几何体,其俯视图是.故选D3.下列运算结果正确的是()A.6÷2=3B.(﹣)﹣1=C.(23)2=46D.﹣2a2•a3=﹣2a6【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、单项式的乘法计算即可.【解答】解:A、6÷2=4,错误;B、(﹣)﹣1=﹣,错误;C、(23)2=46,正确;D、﹣2a2•a3=﹣2a5,错误;故选C4.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17° B.34°C.56°D.68°【考点】平行线的性质.【分析】首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.【解答】解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.5.在平面直角坐标系中,点(﹣7,﹣2m+1)在第三象限,则m的取值范围是()A.m<B.m>﹣ C.m<﹣ D.m>【考点】点的坐标.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得﹣2m+1<0,求不等式的解即可.【解答】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+1<0,解得m>.故选D.6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40° B.30°C.20°D.10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB 的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.7.如图,是直线y=﹣3的图象,点P(2,m)在该直线的上方,则m的取值范围是()A.m>﹣3 B.m>﹣1 C.m>0 D.m<3【考点】一次函数图象上点的坐标特征.【分析】把=2代入直线的解析式求出y的值,再根据点P(2,m)在该直线的上方即可得出m的取值范围.【解答】解:当=2时,y=2﹣3=﹣1,∵点P(2,m)在该直线的上方,∴m>﹣1.故选B.8.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2B.3 C.D.6【考点】矩形的性质;菱形的性质.【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,解直角三角形BDC,即可求出BC的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∠ABC=90°,AB=CD,即EA⊥AB,∵四边形BFDE是菱形,∴BD⊥EF,∵OE=AE,∴点E在∠ABD的角平分线上,∴∠ABE=∠EBD,∵四边形BFDE是菱形,∴∠EBD=∠DBC,∴∠ABE=∠EBD=∠DBC=30°,∵AB的长为3,∴BC=3,故选B.9.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A.B. C.8 D.6【考点】圆周角定理;勾股定理.【分析】首先延长CA,交⊙A于点F,易得∠BAF=∠DAE,由圆心角与弦的关系,可得BF=DE,由圆周角定理可得:∠CBF=90°,然后由勾股定理求得弦BC的长.【解答】解:延长CA,交⊙A于点F,∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC==8.故选C.10.若二次函数y=a2+b+c(a<0)的图象经过点(2,0),且其对称轴为=﹣1,则使函数值y>0成立的的取值范围是()A.<﹣4或>2 B.﹣4≤≤2 C.≤﹣4或≥2 D.﹣4<<2【考点】二次函数与不等式(组).【分析】由抛物线与轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的的取值范围即可.【解答】解:∵二次函数y=a2+b+c(a<0)的图象经过点(2,0),且其对称轴为=﹣1,∴二次函数的图象与轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的的取值范围是﹣4<<2.故选D.二、填空题11.计算|﹣2|+2cos45°=2.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用绝对值的性质结合特殊角的三角函数值代入化简即可.【解答】解:原式=2﹣+2×=2﹣+=2.故答案为:2.12.一元二次方程2+9=0的解是=0或=﹣9.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵(+9)=0,∴=0或+9=0,解得:=0或=﹣9,故答案为:=0或=﹣9.13.如图,正六边形ABCDEF的边长为2,则对角线AF=2.【考点】正多边形和圆.【分析】作BG⊥AF,垂足为G.构造等腰三角形ABF,在直角三角形ABG中,求出AG的长,即可得出AF.【解答】解:作BG⊥AF,垂足为G.如图所示:∵AB=BF=2,∴AG=FG,∵∠ABF=120°,∴∠BAF=30°,∴AG=AB•cos30°=2×=,∴AC=2AG=2;故答案为2.14.比较大小:sin57°<tan57°.【考点】锐角三角函数的增减性.【分析】根据正弦函数的增减性,正切函数的增减性,可得答案.【解答】解:∵sin57<sin90°=1,tan57°>tan45°=1,∴tan57°>sin57°,故答案为:<.15.如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为70米.【考点】相似三角形的应用.【分析】由BC∥DE,可得,△ABC∽△ADE,进而利用对应边成比例求解线段的长度.【解答】解:由题意可得,△ABC∽△ADE,∴,即,解得AB=70米.16.如图,在平面直角坐标系中,函数y=(>0常数>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标(3,).【考点】反比例函数综合题.【分析】由于函数y=(>0常数>0)的图象经过点A(1,2),把(1,2)代入解析式即可确定=2,依题意BC=m,BC边上的高是2﹣n=2﹣,根据三角形的面积公式得到关于m的方程,解方程即可求出m,然后把m的值代入y=,即可求得B的纵坐标,最后就求出点B的坐标.【解答】解:∵函数y=(>0常数>0)的图象经过点A(1,2),∴把(1,2)代入解析式得2=,∴=2∵B(m,n)(m>1),∴BC=m,当=m时,n=,∴BC边上的高是2﹣n=2﹣,=m(2﹣)=2,而S△ABC∴m=3,∴把m=3代入y=,∴n=,∴点B的坐标是(3,).故答案为:(3,).17.如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为6.【考点】相似三角形的判定与性质;一次函数的性质;矩形的性质.【分析】(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,易证得△FOM∽△EON,=﹣+6,根据然后由相似三角形的对应边成比例结合分割图形求面积法即可得出S四边形OMBN一次函数的性质即可解决最值问题;(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F 重合时,四边形OMBN面积取最大值,根据矩形的面积即可得出结论.【解答】解:(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,如图所示.∵四边形ABCD为矩形,AB=4,AD=6,∴OE=3,OF=2,OE⊥OF,∴∠EOM+∠FOM=90°,∵∠FON+∠FOM=90°,∴∠EOM=∠FON.∵∠OEM=∠OFN=90°,∴△FON∽△EOM,∴OM:ON=OE:OF=3:2,∴=.设ME=(0≤≤2),则FN=,=S矩形EBFO﹣S△EOM+S△FON=2×3﹣×3+×2×=﹣+6,∴S四边形OMBN取最大值,最大值为6.∴当=0时,S四边形OMBN故答案为:6.(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F 重合时,四边形OMBN面积取最大值,如图所示.=2×3=6,∵S矩形EBFO∴四边形OMBN面积的最大值为6.故答案为:6三、解答题(共9小题,满分72分)18.解方程:=+1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣+3=1+﹣4,移项合并得:﹣2=﹣6,解得:=3,经检验=3是分式方程的解.19.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)【考点】作图—基本作图;角平分线的性质.【分析】作∠BAC的平分线交BC边于点D,则点D即为所求.【解答】解:如图,点D即为所求.20.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质可得∠C=∠EDB,再证明△EBD≌△BAC,根据全等三角形的性质可得∠E=∠CBA.【解答】证明:∵DE∥AC,∴∠C=∠EDB,在△EBD和△BAC中,∴△EBD≌△BAC(SAS),∴∠E=∠CBA.21.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据∠ANB=30°时,作ME⊥CB,垂足为E,根据锐角三角函数的定义求出EB及BN 的长,进而可得出结论.【解答】解:当∠ANB=30°时,作ME⊥CB,垂足为E,∵MB=MN,∴∠B=∠ANB=30°.在Rt△BEM中,∵cosB=,∴EB=MB•cosB=(AN﹣AM)•cosB=6cm.∵MB=MN,ME⊥BC,∴BN=2BE=12cm.∵CB=AN=20cm,且12>20,∴此时N不在CB边上,与题目条件不符,随着∠ANB度数的减小,BN的长度增加,∴倾斜角不可以小于30°.22.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【考点】一次函数的应用.【分析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把=5880,代入(1)中的函数求得数值,比较得出答案即可.【解答】解:(1)方案一:y=0.95;方案二:y=0.9+300;(2)当=5880时,方案一:y=0.95=5586(元),方案二:y=0.9+300=5592(元),5586<5592所以选择方案一更省钱.23.小励同学有面额10元.20元.50元和100元的纸币各一张,分别装入大小外观完全样的四个红包中,每个红包里只装入一张纸币,若小励从中随机抽取两个红包.(1)请用树状图或者列表的方法,求小励取出纸币的总额为70元的概率;(2)求小励取出纸币的总额能购买一件价格为120元文具的概率.【考点】列表法与树状图法.【分析】(1)先利用树状图展示所有12种等可能的结果数,再找出取出纸币的总额为70元的结果数,然后根据概率公式计算;(2)根据(1)中树状图找到取出纸币的总额大于或等于120元的结果数,根据概率公式计算可得.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中取出纸币的总额为70元的结果数为2,所以取出纸币的总额为70元的概率==;(2)小励取出纸币的总额能购买一件价格为120元文具的概率为=.24.如图,BC是圆O的弦,CF是圆O切线,切点为C,经过点B作MN⊥CF于E,且∠CBM=135°,过G的直线分别与圆O,MN交于A,D两点.(1)求证:MN是圆O的切线;(2)当∠D=30°,BD=时,求圆O的半径r.【考点】切线的判定与性质.【分析】(1)连接OB、OC,证明OC⊥CE即可.因为MN是⊙O的切线,所以OB⊥MN.因∠CBN=45°可得∠OBC=∠OCB=∠BCE=45°,所以∠OCE=90°,得证;(2)可证四边形BOCE为正方形,所以半径等于CE,可设半径为r,在△BCE中表示BE;在△CDE中表示DE,根据BD的长得方程求解.【解答】(1)证明:连接OB、OC.∵MN是⊙O的切线,∴OB⊥MN,∵∠CBM=135°,∴∠CBN=45°,∴∠OBC=45°,∠BCE=45°.∵OB=OC,∴∠OBC=∠OCB=45°.∴∠OCE=90°,∴CE是⊙O的切线;(2)解:∵OB⊥BE,CE⊥BE,OC⊥CE,∴四边形BOCE是矩形,又OB=OC,∴四边形BOCE是正方形,∴BE=CE=OB=OC=r.在Rt△CDE中,∵∠D=30°,CE=r,∴DE=r.∵BD=2,∴r+r=2,∴r=﹣,即⊙O的半径为﹣.25.已知二次函数y═a2+b+c(a>0)的图象与轴交于A(﹣5,0)、B(1,0)两点,与y 轴交于点C,抛物线的顶点为D.(1)直接写出顶点D、点C的坐标(用含a的代数式表示);(2)若∠ADC=90°,试确定二次函数的表达式.【考点】抛物线与轴的交点;待定系数法求二次函数解析式.【分析】(1)根据抛物线y═a2+b+c(a>0)与轴的交点可得解析式为y=a(+5)(﹣1)=a2+4a ﹣5a=a(+2)2﹣9a,从而得出答案;(2)由A、D、C的坐标得出AD2、CD2、AC2,根据∠ADC=90°知AD2+CD2=AC2,据此列出关于a的方程,解之可得a的值,从而得出答案.【解答】解:(1)∵二次函数y═a2+b+c(a>0)的图象与轴交于A(﹣5,0)、B(1,0)两点,∴抛物线的解析式为y=a(+5)(﹣1)=a2+4a﹣5a=a(+2)2﹣9a,则点D的坐标为(﹣2,﹣9a),点C的坐标为(0,﹣5a);(2)∵A(﹣5,0)、D(﹣2,﹣9a)、C(0,﹣5a),∴AD2=(﹣2+5)2+(﹣9a﹣0)2=81a2+9,CD2=(﹣2﹣0)2+(﹣9a+5a)2=16a2+4,AC2=(0+5)2+(﹣5a﹣0)2=25a2+25,∵∠ADC=90°,∴AD2+CD2=AC2,即81a2+9+16a2+4=25a2+25,解得:a=±,∵a>0,∴a=﹣,则该二次函数的解析式为y=﹣(+2)2﹣.26.如图,三角形有一边上的中线长恰好等于这边的长,那么这个三角形可称为“等中三角形”,探索体验(1)如图①,点D是线段AB的中点,请画一个△ABC,使其为“等中三角形”.(2)如图②,在Rt△ABC中,∠C=90°,AC=2,BC=,判断△ABC是否为“等中三角形”,并说明理由.拓展应用(3)如图③,正方形ABCD木板的边长AB=6,请探索在正方形木板上是否存在点P,使△ABP为面积最大的“等中三角形”?若存在,求出CP的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)通过同圆的半径相等,取DC=AB,则△ABC就是所求作的等中三角形;(2)作中线BD,根据勾股定理求中线BD=AC,则△ABC是“等中三角形”;(3)分别以△ABP三边画等中三角形,对比后得图5中的等中三角形的面积最大,求出此时的CP的长即可.【解答】解:(1)如图1,作法:①以D为圆心,以AB为半径画圆,在圆上任意取一点C,②连接AC、BC,则△ABC就是所求作的“等中三角形”;(2)△ABC是“等中三角形”,理由是:如图2,取AC的中点D,连接BD,∵AC=2,∴CD=AC=1,∵∠ACB=90°,由勾股定理得:BD==2,∴BD=AC,∴△ABC是“等中三角形”,(3)分三种情况:①当中线长BE=AP时,如图3,②当中线长AE=PB时,如图4,③当中线长PE=AB时,如图5,由三个图形可得:图5中的等中三角形的面积最大,此时,P是DC的中点,∴PC=CD==3.。

2022年陕西省西安交大附中九年级数学第一学期期末达标检测模拟试题含解析

2022年陕西省西安交大附中九年级数学第一学期期末达标检测模拟试题含解析

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率2.从一副完整的扑克牌中任意抽取1张,下列事件与抽到“A”的概率相同的是()A.抽到“大王”B.抽到“2”C.抽到“小王”D.抽到“红桃”3.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+1x=3 D.x2=2x﹣34.某学习小组在研究函数y=16x3﹣2x的图象与性质时,列表、描点画出了图象.结合图象,可以“看出”16x3﹣2x=2实数根的个数为()A.1 B.2 C.3 D.45.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.3∶2 D.3∶3 6.边长等于6的正六边形的半径等于()A.6 B.33C.3 D.327.若反比例函数y=kx的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限8.下列说法正确的是()A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似9.若反比例函数y=kx的图象经过点(2,﹣1),则k的值为()A.﹣2B.2C.﹣12D.1210.一个几何体的三视图如图所示,则这个几何体是()A.球体B.圆锥C.棱柱D.圆柱二、填空题(每小题3分,共24分)11.抛物线y=2x2﹣4x+1的对称轴为直线__.12.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为 .13.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.14.在△ABC 中,∠B =45°,∠C =75°,AC =2,则BC 的值为_____.15.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.16.若某人沿坡度i=3∶4的斜坡前进10m ,则他比原来的位置升高了_________m .17.找出如下图形变化的规律,则第100个图形中黑色正方形的数量是_____.18.如图,要拧开一个边长为8a mm 的正六边形螺帽,扳手张开的开口b 至少为__________mm .三、解答题(共66分)19.(10分)某市有A 、B 、C 三个公园,甲、乙两位同学随机选择其中一个公园游玩.(1)甲去A 公园游玩的概率是 ;(2)求甲、乙恰好在同一个公园游玩的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)20.(6分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m ),另外三边利用学校现有总长36m 的铁栏围成,留出2米长门供学生进出.若围成的面积为2180m ,试求出自行车车棚的长和宽.21.(6分)如图,在△ABC 和△ADE 中,AB BC AC AD DE AE==,点B 、D 、E 在一条直线上,求证:△ABD ∽△ACE .22.(8分)如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度=1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置P 的铅直高度PB .(测倾器高度忽略不计,结果保留根号形式)23.(8分)已知⊙O 中,AC 为直径,MA 、MB 分别切⊙O 于点A 、B .(1)如图①,若25BAC ∠=︒,求AMB ∠的大小;(2)如图②,过点B 作BD ∥MA ,交AC 于点E ,交⊙O 于点D ,若BD MA =,求AMB ∠的大小.24.(8分)某商店经过市场调查,整理出某种商品在第x (90x ≤)天的售价与销量的相关信息如下表.已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求y 与x 的函数关系是;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?25.(10分)如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP ∆∽COA ∆?若存在,求出点P 的坐标;若不存在,请说明理由.26.(10分)如图,△ABC 的三个顶点和点O 都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC 先向右平移4个单位,再向上平移2个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)请画出△A 2B 2C 2,使△A 2B 2C 2和△ABC 关于点O 成中心对称.参考答案一、选择题(每小题3分,共30分)1、C【解析】解:A.掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为12,故此选项错误.故选C.2、B【分析】根据扑克牌的张数,利用概率=频数除以总数即可解题.【详解】解:扑克牌一共有54张,所以抽到“A”的概率是42 5427=,A. 抽到“大王” 的概率是21 5427=,B. 抽到“2” 的概率是42 5427=,C. 抽到“小王”的概率是21 5427=,D. 抽到“红桃”的概率是13 54,故选B.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概率的计算方法是解题关键.3、D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【详解】A. 2x+y=1是二元一次方程,故不正确;B. x2+1=2xy是二元二次方程,故不正确;C. x2+1x=3是分式方程,故不正确;D. x2=2x-3是一元二次方程,故正确;故选:D4、C【分析】利用直线y =2与y 16=x 1﹣2x 的交点个数可判断16x 1﹣2x =2实数根的个数. 【详解】由图象可得直线y =2与y 16=x 1﹣2x 有三个交点,所以16x 1﹣2x =2实数根的个数为1. 故选C .【点睛】本题考查了函数图像的交点问题:把要求方程根的问题转化为函数图像的交点问题是解题关键.5、A【解析】∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴∠C +∠EDC =90°,∠FDE +∠EDC =90°,∴∠C =∠FDE ,同理可得:∠B =∠DFE ,∠A =DEF ,∴△DEF ∽△CAB ,∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭, 又∵△ABC 为正三角形,∴∠B =∠C =∠A =60°∴△EFD 是等边三角形,∴EF =DE =DF ,又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,∴△AEF ≌△CDE ≌△BFD ,∴BF =AE =CD ,AF =BD =EC ,在Rt △DEC 中,DE =DC ×sin ∠C,EC =cos ∠C ×DC =12DC , 又∵DC +BD =BC =AC =32DC ,∴232DE AC DC ==, ∴△DEF 与△ABC的面积之比等于:221:3DE AC ⎛⎫== ⎪⎝⎭⎝⎭故选A .点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边DE AC 之比,进而得到面积比. 6、A【分析】根据正六边形的外接圆半径和正六边形的边长组成一个等边三角形,即可求解.【详解】解:正六边形的中心角为310°÷1=10°,那么外接圆的半径和正六边形的边长组成一个等边三角形,∴边长为1的正六边形外接圆的半径是1,即正六边形的半径长为1.故选:A .【点睛】本题考查了正多边形和圆,解答此题的关键是理解正六边形的外接圆半径和正六边形的边长组成的是一个等边三角形. 7、D 【解析】试题分析:反比例函数k y x=的图象经过点21-(,),求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K 〈0时反比例函数的图象在第二、四象限,因为-2〈0,D 正确.故选D考点:反比例函数的图象的性质.8、A【解析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确; B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.9、A【解析】把点(1,-1)代入解析式得-1=2k ,解得k=-1.故选A.10、D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.二、填空题(每小题3分,共24分)11、x=1【详解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴对称轴为直线x=1,故答案为:x=1.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).12、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.13、7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m14、6【分析】构造直角三角形,利用锐角三角函数及三角形的边角关系求解.【详解】解:如图所示,过点C作CD⊥AB,垂足为D.在Rt△BCD中,∠B=45°,∴∠BCD=45°,∵∠BCA=75°,∴∠ACD=∠ACB﹣∠BCD=30°在Rt△ACD中,∵cos∠ACD=cos30°=2=CDAC,∴CD=2AC 在Rt△ACD中,∵sin∠B=sin45°=2=CDCB∴CB DC.【点睛】本题考查了特殊角的三角函数值及直角三角形的边角间关系,构造直角三角形是解决本题的关键.15、61 1【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=1,∴2020在第61行左起第1个数,故答案为:61,1.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.16、1.【详解】解:如图:由题意得,BC :AC=3:2.∴BC :AB=3:3.∵AB=10,∴BC=1.故答案为:1【点睛】本题考查解直角三角形的应用-坡度坡角问题.17、150个【分析】根据图形的变化寻找规律即可求解.【详解】观察图形的变化可知:当n 为偶数时,第n 个图形中黑色正方形的数量为(n +2n )个; 当n 为奇数时,第n 个图形中黑色正方形的数量为(n +12n )个. 所以第100个图形中黑色正方形的数量是150个.故答案为150个.【点睛】本题难度系数较大,需要根据观察得出奇偶数是不同情况,找出规律.18、83【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.【详解】设正多边形的中心是O ,其一边是AB ,∴∠AOB =∠BOC =60°,∴OA =OB =AB =OC =BC ,∴四边形ABCO 是菱形,∵AB=8mm,∠AOB=60°,∴cos∠BAC=AM AB,∴AM=8×32=43(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=12 AC,∴AC=2AM=83(mm).故答案为:83.【点睛】本题考查了正多边形和圆的知识.构造一个由半径、半边、边心距组成的直角三角形,运用锐角三角函数进行求解是解此题的关键.三、解答题(共66分)19、(1)13;(2)13【分析】(1)直接根据概率公式计算可得;(2)利用列举方法找出所有的可能情况,再找两位同学恰好在同一个公园游玩的情况个数,即可求出所求的概率.【详解】解:(1)甲去A公园游玩的概率为13;故答案为:1 3 .(2)列树状图如下:共有9种等可能结果,其中甲、乙恰好在同一个公园游玩的有3种,∴其概率为31 93 =.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A的结果数目m,然后利用概率公式计算事件A的概率()mP An=.20、若围成的面积为2180m ,自行车车棚的长和宽分别为10米,18米.【分析】设自行车车棚的宽AB 为x 米,则长为(38-2x )米,根据矩形的面积公式,即可列方程求解即可. 【详解】解:现有总长36m 的铁栏围成,需留出2米长门∴设AB x =,则382BC x =-;根据题意列方程(382)180x x -=,解得110x =,29x =;当10x =,38218x -=(米),当9x =,38220x -=(米),而墙长19m ,不合题意舍去,答:若围成的面积为2180m ,自行车车棚的长和宽分别为10米,18米.【点睛】本题考查的是一元二次方程的应用,结合图形求解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.21、证明见解析;【分析】根据三边对应成比例的两个三角形相似可判定△ABC ∽△ADE ,根据相似三角形的性质可得∠BAC=∠DAE ,即可得∠BAD=∠CAE ,再由AB AC AD AE =可得AB AD AC AE =,根据两边对应成比例且夹角相等的两个三角形相似即可判定△ABD ∽△ACE .【详解】∵在△ABC 和△ADE 中,AB BC AC AD DE AE==, ∴△ABC ∽△ADE ,∴∠BAC=∠DAE ,∴∠BAD=∠CAE , ∵AB AC AD AE=, ∴AB AD AC AE =, ∴△ABD ∽△ACE .【点睛】本题考查了相似三角形的判定与性质,熟知相似三角形的判定方法是解决本题的关键.22、OC =米;PB =1003米. 【分析】在图中共有三个直角三角形,即Rt △AOC 、Rt △PCF 、Rt △PAB ,利用60°的三角函数值以及坡度,求出OC,再分别表示出CF和PF,然后根据两者之间的关系,列方程求解即可.【详解】解:过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=1003(米),由坡度=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=1003﹣x.在Rt△PCF中,∠CPF=45°,∴PF=CF,即100+2x=1003﹣x,∴x=10031003-,即PB=10031003-米.【点睛】本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23、(1)50︒;(2)60︒【分析】(1)根据切线性质求出∠OBM=∠OAM=90°,根据圆周角定理求出∠COB,求出∠BOA,即可求出答案;(2)连接AB、AD,得出平行四边形,推出MB=AD,推出AB=AD,求出等边三角形AMB,即可得出答案.【详解】(1)连接OB,∵MA、MB分别切⊙O于A. B,∴∠OBM=∠OAM=90°,∵弧BC对的圆周角是∠BAC,圆心角是∠BOC,∠BAC=25°,∴∠BOC=2∠BAC=50°,∴∠BOA=180°−50°=130°,∴∠AMB=360°−90°−90°−130°=50°.(2)连接AD ,AB ,∵BD ∥AM ,DB=AM ,∴四边形BMAD 是平行四边形,∴BM=AD ,∵MA 切⊙O 于A ,∴AC ⊥AM ,∵BD ∥AM ,∴BD ⊥AC ,∵AC 过O ,∴BE=DE ,∴AB=AD=BM ,∵MA 、MB 分别切⊙O 于A. B ,∴MA=MB ,∴BM=MA=AB ,∴△BMA 是等边三角形,∴∠AMB=60°.【点睛】本题考查切线的性质、平行四边形的判定与性质、等边三角形的判定与性质,解题的关键是掌握切线的性质、平行四边形的判定与性质、等边三角形的判定与性质.24、(1)()()221802000,150********,5090x x x y x x ⎧-++≤<⎪=⎨-+≤≤⎪⎩;(2)销售该商品第45天时,当天销售利润最大,最大利润是6050元【分析】(1)根据利润=(每件售价-进价)×每天销量,分段计算即可得出函数关系式;(2)根据所得函数的性质,分别求出最大值,比较即可.【详解】解:(1)当150x ≤<时,()()22002403021802000y x x x x =-+-=-++当5090x ≤≤时,()()2002903012012000y x x =--=-+故y 与x 的函数关系式为:()()221802000,150********,5090x x x y x x ⎧-++≤<⎪=⎨-+≤≤⎪⎩,(x 为整数) (2)当150x ≤<时,221802000y x x =-++ ()22456050x =--+∵20a =-<,∴当45x =时,y 有最大值6050元;当5090x ≤≤时,12012000y x =-+,∵1200k =-<,∴y 随x 的增大而减小.当50x =时,y 有最大值6000元.∵60506000>,∴当45x =时,y 有最大值6050元.∴销售该商品第45天时,当天销售利润最大,最大利润是6050元.【点睛】本题考查的知识点是二次函数的实际应用,掌握二次函数的性质是解此题的关键.25、(1)3m =-;(2)()4,21Q -或()2,3Q -;(3)不存在,理由见解析.【分析】(1)设对称轴与x 轴交于点E ,如图1,易求出抛物线的对称轴,可得OE 的长,然后根据平行线分线段成比例定理可得OA 的长,进而可得点A 的坐标,再把点A 的坐标代入抛物线解析式即可求出m 的值;(2)设点Q 的横坐标为n ,当点Q 在x 轴上方时,过点Q 作QH ⊥x 轴于点H ,利用tan 3ABQ ∠=可得关于n 的方程,解方程即可求出n 的值,进而可得点Q 坐标;当点Q 在x 轴下方时,注意到tan 3BAC ∠=,所以点Q 与点C 关于直线1x =对称,由此可得点Q 坐标;(3)当点Q 为x 轴上方的点时,若存在点P ,可先求出直线BQ 的解析式,由BP ⊥BQ 可求得直线BP 的解析式,然后联立直线BP 和抛物线的解析式即可求出点P 的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P 是否满足条件;当点Q 取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与x 轴交于点E ,如图1,∴y 轴//ED ,∴::1AC CD AO OE ==, ∵抛物线的对称轴是直线212x -=-=,∴OE =1,∴1AO OE ==,∴()1,0A -∴将点()1,0A -代入函数表达式得:120m ++=,∴3m =-;(2)设()2,23Q n n n --,①点Q 在x 轴上方时,0n <,如图2,过点Q 作QH ⊥x 轴于点H ,∵tan 3ABQ ∠=,∴22333n n n --=-,解得:4n =-或3n =(舍),∴()4,21Q -;②点Q 在x 轴下方时,∵OA =1,OC =3,∴tan 3BAC ∠=,∵tan 3ABQ ∠=,∴点Q 与点C 关于直线1x =对称,∴()2,3Q -;(3)①当点Q 为()4,21-时,若存在点P ,使QBP ∆∽COA ∆,则∠PBQ =∠COA =90°,由B (3,0)、Q ()4,21-可得,直线BQ 的解析式为:39y x =-+,所以直线PB 的解析式为:113y x =-,联立方程组:211323y x y x x ⎧=-⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2223119x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴211,39P ⎛⎫-- ⎪⎝⎭, ∵:1:3OA OC =,11:10:7101:39BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在;②当点Q 为()2,3-时,如图4,由B (3,0)、Q ()2,3-可得,直线BQ 的解析式为:39y x =-,所以直线PB 的解析式为:113y x =-+, 联立方程组:211323y x y x x ⎧=-+⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2243139x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴413,39P ⎛⎫- ⎪⎝⎭, ∵:1:3OA OC =,13:10101:39BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在.综上所述,不存在满足条件的点P ,使QBP ∆∽COA ∆.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.26、解:(1)所画△A 1B 1C 1如图所示.(2)所画△A 2B 2C 2如图所示.【分析】(1)图形的整体平移就是点的平移,找到图形中几个关键的点,也就是A,B,C 点,依次的依照题目的要求平移得到对应的点,然后连接得到的点从而得到对应的图形;(2)在已知对称中心的前提下找到对应的对称图形,关键还是找点的对称点,找法是连接点与对称中心O 点并延长相等的距离即为对称点的位置,最后将对称点依次连接得到关于O 点成中心对称的图形。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

陕西省西安市交大附中2022年数学九年级第一学期期末统考试题含解析

陕西省西安市交大附中2022年数学九年级第一学期期末统考试题含解析
10、D
【分析】逐一对选项进行分析即可.
【详解】A. 不是同类项,不能合并,故该选项错误;
B. ,故该选项错误;
C. ,故该选项错误;
D. ,故该选项正确;
故选:D.
【点睛】
本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.
二、填空题(每小题3分,共24分)
A.1:2B.1:3C.1:8D.1:9
3.已知二次函数 ,当 时,该函数取最大值8.设该函数图象与 轴的一个交点的横坐标为 ,若 ,则a的取值范围是( )
A. B. C. D.
4.如图, 为 的直径,点 为 上一点, ,则劣弧 的长度为()
A. B.
C. D.
5.如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=130°,则∠DCE的度数为( )
三、解答题(共66分)
19.(10分)在锐角三角形 中,已知 , , 的面积为 ,求 的余弦值.
20.(6分)解方程:
(1)解方程: ;
(2) .
21.(6分)如图,在平面直角坐标系中,已知矩形 的三个顶点 、 、 .抛物线的解析式为 .
(1)如图一,若抛物线经过 , 两点,直接写出 点的坐标;抛物线的对称轴为直线;
A.a+b<0B.a+b>0C.a﹣b<0D.ab>0
8.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则( )
A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定

最新精选西安市交XX中学精选九年级上期末数学试卷(含答案)(已审阅)

最新精选西安市交XX中学精选九年级上期末数学试卷(含答案)(已审阅)

2019-2019学年陕西省西安市XX中学九年级(上)期末测试数学试卷一、选择题1.9的平方根是()A.±3 B.3 C.﹣3 D.±2.如图为正六棱柱与圆锥组成的几何体,其俯视图是()A. B.C.D.3.下列运算结果正确的是()A.x6÷x2=x3B.(﹣x)﹣1=C.(2x3)2=4x6D.﹣2a2•a3=﹣2a64.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°5.在平面直角坐标系中,点(﹣7,﹣2m+1)在第三象限,则m的取值范围是()A.m<B.m>﹣ C.m<﹣ D.m>6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m的取值范围是()A.m>﹣3 B.m>﹣1 C.m>0 D.m<38.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2 B.3 C.D.69.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A. B. C.8 D.610.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<2二、填空题11.计算|﹣2|+2cos45°=.12.一元二次方程x2+9x=0的解是.13.如图,正六边形ABCDEF的边长为2,则对角线AF=.14.比较大小:sin57°tan57°.15.如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为米.16.如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标.17.如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为.三、解答题(共9小题,满分72分)18.解方程:=+1.19.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)20.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.21.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.22.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?23.小励同学有面额10元.20元.50元和100元的纸币各一张,分别装入大小外观完全样的四个红包中,每个红包里只装入一张纸币,若小励从中随机抽取两个红包.(1)请用树状图或者列表的方法,求小励取出纸币的总额为70元的概率;(2)求小励取出纸币的总额能购买一件价格为120元文具的概率.24.如图,BC是圆O的弦,CF是圆O切线,切点为C,经过点B作MN⊥CF于E,且∠CBM=135°,过G的直线分别与圆O,MN交于A,D两点.(1)求证:MN是圆O的切线;(2)当∠D=30°,BD=时,求圆O的半径r.25.已知二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,与y 轴交于点C,抛物线的顶点为D.(1)直接写出顶点D、点C的坐标(用含a的代数式表示);(2)若∠ADC=90°,试确定二次函数的表达式.26.如图,三角形有一边上的中线长恰好等于这边的长,那么这个三角形可称为“等中三角形”,探索体验(1)如图①,点D是线段AB的中点,请画一个△ABC,使其为“等中三角形”.(2)如图②,在Rt△ABC中,∠C=90°,AC=2,BC=,判断△ABC是否为“等中三角形”,并说明理由.拓展应用(3)如图③,正方形ABCD木板的边长AB=6,请探索在正方形木板上是否存在点P,使△ABP 为面积最大的“等中三角形”?若存在,求出CP的长;若不存在,请说明理由.2016-2017学年陕西省西安市XX中学九年级(上)期末数学试卷参考答案与试题解析一、选择题1.9的平方根是()A.±3 B.3 C.﹣3 D.±【考点】平方根.【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.【解答】解:±,故选:A.2.如图为正六棱柱与圆锥组成的几何体,其俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】从几何体上方观察,得到俯视图即可.【解答】解:如图为正六棱柱与圆锥组成的几何体,其俯视图是.故选D3.下列运算结果正确的是()A.x6÷x2=x3B.(﹣x)﹣1=C.(2x3)2=4x6D.﹣2a2•a3=﹣2a6【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、单项式的乘法计算即可.【解答】解:A、x6÷x2=x4,错误;B、(﹣x)﹣1=﹣,错误;C、(2x3)2=4x6,正确;D、﹣2a2•a3=﹣2a5,错误;故选C4.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°【考点】平行线的性质.【分析】首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.【解答】解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.5.在平面直角坐标系中,点(﹣7,﹣2m+1)在第三象限,则m的取值范围是()A.m<B.m>﹣ C.m<﹣ D.m>【考点】点的坐标.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得﹣2m+1<0,求不等式的解即可.【解答】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+1<0,解得m>.故选D.6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.7.如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m的取值范围是()A.m>﹣3 B.m>﹣1 C.m>0 D.m<3【考点】一次函数图象上点的坐标特征.【分析】把x=2代入直线的解析式求出y的值,再根据点P(2,m)在该直线的上方即可得出m的取值范围.【解答】解:当x=2时,y=2﹣3=﹣1,∵点P(2,m)在该直线的上方,∴m>﹣1.故选B.8.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2 B.3 C.D.6【考点】矩形的性质;菱形的性质.【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,解直角三角形BDC,即可求出BC的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∠ABC=90°,AB=CD,即EA⊥AB,∵四边形BFDE是菱形,∴BD⊥EF,∵OE=AE,∴点E在∠ABD的角平分线上,∴∠ABE=∠EBD,∵四边形BFDE是菱形,∴∠EBD=∠DBC,∴∠ABE=∠EBD=∠DBC=30°,∵AB的长为3,∴BC=3,故选B.9.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A. B. C.8 D.6【考点】圆周角定理;勾股定理.【分析】首先延长CA,交⊙A于点F,易得∠BAF=∠DAE,由圆心角与弦的关系,可得BF=DE,由圆周角定理可得:∠CBF=90°,然后由勾股定理求得弦BC的长.【解答】解:延长CA,交⊙A于点F,∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC==8.故选C.10.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<2【考点】二次函数与不等式(组).【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.【解答】解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选D.二、填空题11.计算|﹣2|+2cos45°=2.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用绝对值的性质结合特殊角的三角函数值代入化简即可.【解答】解:原式=2﹣+2×=2﹣+=2.故答案为:2.12.一元二次方程x2+9x=0的解是x=0或x=﹣9.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x(x+9)=0,∴x=0或x+9=0,解得:x=0或x=﹣9,故答案为:x=0或x=﹣9.13.如图,正六边形ABCDEF的边长为2,则对角线AF=2.【考点】正多边形和圆.【分析】作BG⊥AF,垂足为G.构造等腰三角形ABF,在直角三角形ABG中,求出AG的长,即可得出AF.【解答】解:作BG⊥AF,垂足为G.如图所示:∵AB=BF=2,∴AG=FG,∵∠ABF=120°,∴∠BAF=30°,∴AG=AB•cos30°=2×=,∴AC=2AG=2;故答案为2.14.比较大小:sin57°<tan57°.【考点】锐角三角函数的增减性.【分析】根据正弦函数的增减性,正切函数的增减性,可得答案.【解答】解:∵sin57<sin90°=1,tan57°>tan45°=1,∴tan57°>sin57°,故答案为:<.15.如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为70米.【考点】相似三角形的应用.【分析】由BC∥DE,可得,△ABC∽△ADE,进而利用对应边成比例求解线段的长度.【解答】解:由题意可得,△ABC∽△ADE,∴,即,解得AB=70米.16.如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标(3,).【考点】反比例函数综合题.【分析】由于函数y=(x>0常数k>0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m,BC边上的高是2﹣n=2﹣,根据三角形的面积公式得到关于m的方程,解方程即可求出m,然后把m的值代入y=,即可求得B的纵坐标,最后就求出点B 的坐标.【解答】解:∵函数y=(x>0常数k>0)的图象经过点A(1,2),∴把(1,2)代入解析式得2=,∴k=2∵B(m,n)(m>1),∴BC=m,当x=m时,n=,∴BC边上的高是2﹣n=2﹣,=m(2﹣)=2,而S△ABC∴m=3,∴把m=3代入y=,∴n=,∴点B的坐标是(3,).故答案为:(3,).17.如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为6.【考点】相似三角形的判定与性质;一次函数的性质;矩形的性质.【分析】(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,易证得△FOM∽△EON,然=﹣x+6,根据一次后由相似三角形的对应边成比例结合分割图形求面积法即可得出S四边形OMBN函数的性质即可解决最值问题;(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F重合时,四边形OMBN面积取最大值,根据矩形的面积即可得出结论.【解答】解:(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,如图所示.∵四边形ABCD为矩形,AB=4,AD=6,∴OE=3,OF=2,OE⊥OF,∴∠EOM+∠FOM=90°,∵∠FON+∠FOM=90°,∴∠EOM=∠FON.∵∠OEM=∠OFN=90°,∴△FON∽△EOM,∴OM:ON=OE:OF=3:2,∴=.设ME=x(0≤x≤2),则FN=x,=S矩形EBFO﹣S△EOM+S△FON=2×3﹣×3x+×2×x=﹣x+6,∴S四边形OMBN取最大值,最大值为6.∴当x=0时,S四边形OMBN故答案为:6.(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F重合时,四边形OMBN面积取最大值,如图所示.=2×3=6,∵S矩形EBFO∴四边形OMBN面积的最大值为6.故答案为:6三、解答题(共9小题,满分72分)18.解方程:=+1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣x+3=1+x﹣4,移项合并得:﹣2x=﹣6,解得:x=3,经检验x=3是分式方程的解.19.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)【考点】作图—基本作图;角平分线的性质.【分析】作∠BAC的平分线交BC边于点D,则点D即为所求.【解答】解:如图,点D即为所求.20.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质可得∠C=∠EDB,再证明△EBD≌△BAC,根据全等三角形的性质可得∠E=∠CBA.【解答】证明:∵DE∥AC,∴∠C=∠EDB,在△EBD和△BAC中,∴△EBD≌△BAC(SAS),∴∠E=∠CBA.21.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据∠ANB=30°时,作ME⊥CB,垂足为E,根据锐角三角函数的定义求出EB及BN 的长,进而可得出结论.【解答】解:当∠ANB=30°时,作ME⊥CB,垂足为E,∵MB=MN,∴∠B=∠ANB=30°.在Rt△BEM中,∵cosB=,∴EB=MB•cosB=(AN﹣AM)•cosB=6cm.∵MB=MN,ME⊥BC,∴BN=2BE=12cm.∵CB=AN=20cm,且12>20,∴此时N不在CB边上,与题目条件不符,随着∠ANB度数的减小,BN的长度增加,∴倾斜角不可以小于30°.22.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【考点】一次函数的应用.【分析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.【解答】解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.23.小励同学有面额10元.20元.50元和100元的纸币各一张,分别装入大小外观完全样的四个红包中,每个红包里只装入一张纸币,若小励从中随机抽取两个红包.(1)请用树状图或者列表的方法,求小励取出纸币的总额为70元的概率;(2)求小励取出纸币的总额能购买一件价格为120元文具的概率.【考点】列表法与树状图法.【分析】(1)先利用树状图展示所有12种等可能的结果数,再找出取出纸币的总额为70元的结果数,然后根据概率公式计算;(2)根据(1)中树状图找到取出纸币的总额大于或等于120元的结果数,根据概率公式计算可得.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中取出纸币的总额为70元的结果数为2,所以取出纸币的总额为70元的概率==;(2)小励取出纸币的总额能购买一件价格为120元文具的概率为=.24.如图,BC是圆O的弦,CF是圆O切线,切点为C,经过点B作MN⊥CF于E,且∠CBM=135°,过G的直线分别与圆O,MN交于A,D两点.(1)求证:MN是圆O的切线;(2)当∠D=30°,BD=时,求圆O的半径r.【考点】切线的判定与性质.【分析】(1)连接OB、OC,证明OC⊥CE即可.因为MN是⊙O的切线,所以OB⊥MN.因∠CBN=45°可得∠OBC=∠OCB=∠BCE=45°,所以∠OCE=90°,得证;(2)可证四边形BOCE为正方形,所以半径等于CE,可设半径为r,在△BCE中表示BE;在△CDE中表示DE,根据BD的长得方程求解.【解答】(1)证明:连接OB、OC.∵MN是⊙O的切线,∴OB⊥MN,∵∠CBM=135°,∴∠CBN=45°,∴∠OBC=45°,∠BCE=45°.∵OB=OC,∴∠OBC=∠OCB=45°.∴∠OCE=90°,∴CE是⊙O的切线;(2)解:∵OB⊥BE,CE⊥BE,OC⊥CE,∴四边形BOCE是矩形,又OB=OC,∴四边形BOCE是正方形,∴BE=CE=OB=OC=r.在Rt△CDE中,∵∠D=30°,CE=r,∴DE=r.∵BD=2,∴r+r=2,∴r=﹣,即⊙O的半径为﹣.25.已知二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,与y 轴交于点C,抛物线的顶点为D.(1)直接写出顶点D、点C的坐标(用含a的代数式表示);(2)若∠ADC=90°,试确定二次函数的表达式.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)根据抛物线y═ax2+bx+c(a>0)与x轴的交点可得解析式为y=a(x+5)(x﹣1)=ax2+4ax﹣5a=a(x+2)2﹣9a,从而得出答案;(2)由A、D、C的坐标得出AD2、CD2、AC2,根据∠ADC=90°知AD2+CD2=AC2,据此列出关于a的方程,解之可得a的值,从而得出答案.【解答】解:(1)∵二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,∴抛物线的解析式为y=a(x+5)(x﹣1)=ax2+4ax﹣5a=a(x+2)2﹣9a,则点D的坐标为(﹣2,﹣9a),点C的坐标为(0,﹣5a);(2)∵A(﹣5,0)、D(﹣2,﹣9a)、C(0,﹣5a),∴AD2=(﹣2+5)2+(﹣9a﹣0)2=81a2+9,CD2=(﹣2﹣0)2+(﹣9a+5a)2=16a2+4,AC2=(0+5)2+(﹣5a﹣0)2=25a2+25,∵∠ADC=90°,∴AD2+CD2=AC2,即81a2+9+16a2+4=25a2+25,解得:a=±,∵a>0,∴a=﹣,则该二次函数的解析式为y=﹣(x+2)2﹣.26.如图,三角形有一边上的中线长恰好等于这边的长,那么这个三角形可称为“等中三角形”,探索体验(1)如图①,点D是线段AB的中点,请画一个△ABC,使其为“等中三角形”.(2)如图②,在Rt△ABC中,∠C=90°,AC=2,BC=,判断△ABC是否为“等中三角形”,并说明理由.拓展应用(3)如图③,正方形ABCD木板的边长AB=6,请探索在正方形木板上是否存在点P,使△ABP 为面积最大的“等中三角形”?若存在,求出CP的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)通过同圆的半径相等,取DC=AB,则△ABC就是所求作的等中三角形;(2)作中线BD,根据勾股定理求中线BD=AC,则△ABC是“等中三角形”;(3)分别以△ABP三边画等中三角形,对比后得图5中的等中三角形的面积最大,求出此时的CP的长即可.【解答】解:(1)如图1,作法:①以D为圆心,以AB为半径画圆,在圆上任意取一点C,②连接AC、BC,则△ABC就是所求作的“等中三角形”;(2)△ABC是“等中三角形”,理由是:如图2,取AC的中点D,连接BD,∵AC=2,∴CD=AC=1,∵∠ACB=90°,由勾股定理得:BD==2,∴BD=AC,∴△ABC是“等中三角形”,(3)分三种情况:①当中线长BE=AP时,如图3,②当中线长AE=PB时,如图4,③当中线长PE=AB时,如图5,由三个图形可得:图5中的等中三角形的面积最大,此时,P是DC的中点,∴PC=CD==3.2017年4月16日。

2022-2023学年陕西省西安交大附中九年级(上)期末数学试卷

2022-2023学年陕西省西安交大附中九年级(上)期末数学试卷

2022-2023学年陕西省西安交大附中九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,计24分,在每小题给出的四个选项中,有一项是符合题目要求的)1.已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m的值为()A.4B.﹣4C.3D.﹣32.如图,是由5个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.④B.③C.②D.①3.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,CD是△ABC的高,则tan∠BCD 的值是()A.B.C.D.4.如图,在⊙O中,点C在上.若°,则∠BCD的度数为()A.55°B.70°C.110°D.250°5.对抛物线y=﹣x2+4x﹣3而言,下列结论正确的是()A.开口向上B.顶点坐标是(2,1)C.与y轴的交点坐标是(0,3)D.与两坐标轴有两个交点6.已知反比例函数y=的图象经过点(3,﹣4),那么下列四个点中也在这个函数图象上的是()A.(3,4)B.(﹣3,﹣4)C.(﹣2,6)D.(6,2)7.如图,在矩形ABCD中,AB=6cm,对角线AC与BD相交于点O,DE⊥AC,垂足为E,AE=3CE,则BD的长为()A.B.C.12cm D.8.在同一平面直角坐标系中,抛物线L:y=x2﹣4x+m关于y轴对称的抛物线记为L',且它们的顶点与原点的连线组成等边三角形,已知L的顶点在第四象限,则m的值为()A.B.C.4D.二、选择题(本大题共5小题,每小题3分,计15分)9.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.10.如图,正六边形ABCDEF中,对角线BE长为4,则△BDE的面积为.11.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=2,若菱形ABCD的面积为12,则AB的长为.12.已知直线y=﹣2x+8与双曲线相交于点(m,n),则的值等于.13.已知二次函数y=x2+bx+c,当x≥0时,函数的最小值为﹣3;当x<0时,函数的最小值为﹣4,则b﹣c的值为.三、解答题(本大题共11小题,计81分)14.解方程:3x2﹣6x﹣5=0.15.计算:.16.尺规作图:如图,在△ABC中,∠BAC=2∠C,请在BC上找一点D,使得△ADB∽△CAB.(不写画法,保留作图痕迹)17.如图,四边形ABCD是正方形,点E是BC上一点,连接AE,以AE为一边作正方形AEFG,连接DG.求证:DG=BE.18.五一放假前,我市某中学举行了“喜迎二十大,筑梦向未来”知识竞赛,数学王老师从七、八年级各随机抽取了10名学生的竞赛成绩(百分制),进行整理、描述和分析如下:成绩得分用x表示(x为整数),共分成四组:A.80≤x<85;B.85≤x<90;C.90≤x<95;D.95≤x<100.七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,82.八年级10名学生的成绩在C组中的数据是:90,92,94.抽取的七、八年级学生成绩统计表年级平均数中位数众数方差七年级92b c52八年级929310050.4根据以上信息,解答下列问题:(1)这次比赛中年级成绩更平衡,更稳定.(2)直接写出图表中a,b,c的值:a=,b=,c=•(3)该校八年级共180人参加了此次竞赛活动,估计八年级参加此次竞赛活动成绩优秀(x≥90)的学生人数是多少?19.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移多少m时,才能确保山体不滑坡.(取tan50°≈1.2)20.如图,根据防疫的相关要求,学生入校需晨检,体温超标的同学须进入临时隔离区进行留观.我校要建一个长方形临时隔离区,隔离区的一面利用学校边墙(墙长4.5米),其它三面用防疫隔离材料搭建,与墙垂直的一边还要开一扇1米宽的进出口(不需材料),共用防疫隔离材料8米.(1)若面积为10平方米,隔离区的长和宽分别是多少米?(2)隔离区的面积能为12平方米吗?请说明理由.21.从两副完全相同的扑克中,抽出两张黑桃6和两张黑桃10,现将这四张扑克牌洗匀后,背面向上放在桌子上.(1)从中随机抽取一张扑克牌是黑桃6的概率是多少?(2)请利用画树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率.22.如图,AB是⊙O的直径,四边形ABCD内接于O,OD交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=12,DE=4,求BC的长.23.如图,抛物线y=﹣x2+bx+c(a,b,c是常数,且a≠0)与x轴交于A,B两点,与y 轴交于点C(0,3),对称轴为直线x=1.(1)求抛物线的函数表达式;(2)点F在抛物线的对称轴上,若线段FB绕点F逆时针旋转90°后,点B的对应点B'恰好也落在此抛物线上,请求出点F的坐标.24.问题提出(1)如图1,△ABC中,∠ACB=60°,请在平面内再找一点P,使得∠APB=60°,试画出P点;问题探究(2)如图2,在平行四边形ABCD中,∠BAD=60°,对角线BD的长为6,求平行四边形ABCD面积的最大值;问题解决(3)如图3,某景区有一条笔直的河流AB,在这段河流AB的中点处有一个游船码头P,现准备过P修建一条长为100米的笔直的小路CP,并在道路的尽头C点安装一个张角为135°(即∠ACB=135°)的高清摄像头以观测AB段河流的游人安全,求摄像头能观测区域(△ABC)的最大面积.(结果保留根号)。

西安市数学九年级上册期末试题和答案

西安市数学九年级上册期末试题和答案

西安市数学九年级上册期末试题和答案一、选择题1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm2.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2473.当函数2(1)y a x bx c =-++是二次函数时,a 的取值为( ) A .1a = B .1a =- C .1a ≠- D .1a ≠ 4.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1) C .(2,﹣1) D .(0,1) 5.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤6.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=7.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .68.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .12 9.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( )A .-1B .0C .1D .2 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°12.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(163,453) C .(203,453) D .(163,3 13.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.386cmD .7.64cm14.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323 D .315.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD .若AC =2,则cosD =________.17.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.18.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 19.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.20.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.21.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.22.在▱ABCD 中,∠ABC 的平分线BF 交对角线AC 于点E ,交AD 于点F .若AB BC =35,则EFBF的值为_____.23.抛物线()2322y x =+-的顶点坐标是______.24.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.25.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.26.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.27.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)28.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…29.如图,∠XOY=45°,一把直角三角尺△ABC 的两个顶点A 、B 分别在OX ,OY 上移动,其中AB=10,那么点O 到顶点A 的距离的最大值为_____.30.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.三、解答题31.如图,宾馆大厅的天花板上挂有一盏吊灯AB ,某人从C 点测得吊灯顶端A 的仰角为35︒,吊灯底端B 的仰角为30,从C 点沿水平方向前进6米到达点D ,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB 的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)32.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长. 33.解方程: (1)x 2﹣2x ﹣1=0;(2)(2x ﹣1)2=4(2x ﹣1).34.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数4yx=(x>0)图象上的一个动点,过点C的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.35.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),四、压轴题36.如图1,Rt△ABC两直角边的边长为AC=3,BC=4.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边BC相切于点Y.请你在图2中作出并标明⊙O的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.37.如图,已知矩形ABCD中,BC=2cm,AB3,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF ∽△BCE ;(2)设BE 的长为xcm ,AF 的长为ycm ,求y 与x 的函数关系式,并写出线段AF 长的范围;(3)若点H 是EG 的中点,试说明A 、E 、H 、F 四点在同一个圆上,并求在点E 由A 到B 运动过程中,点H 移动的距离.38.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.39.如图,Rt △ABC ,CA ⊥BC ,AC =4,在AB 边上取一点D ,使AD =BC ,作AD 的垂直平分线,交AC 边于点F ,交以AB 为直径的⊙O 于G ,H ,设BC =x . (1)求证:四边形AGDH 为菱形; (2)若EF =y ,求y 关于x 的函数关系式; (3)连结OF ,CG .①若△AOF 为等腰三角形,求⊙O 的面积;②若BC =3,则30CG+9=______.(直接写出答案).40.矩形ABCD中,AB=2,AD=4,将矩形ABCD绕点C顺时针旋转至矩形EGCF(其中E、G、F分别与A、B、D对应).(1)如图1,当点G落在AD边上时,直接写出AG的长为;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.2.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.3.D解析:D 【解析】 【分析】由函数是二次函数得到a-1≠0即可解题. 【详解】解:∵2(1)y a x bx c =-++是二次函数,∴a-1≠0, 解得:a≠1, 故选你D. 【点睛】本题考查了二次函数的概念,属于简单题,熟悉二次函数的定义是解题关键.4.C解析:C 【解析】 【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可. 【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ), ∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1). 故选:C . 【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.5.B解析:B 【解析】 【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可. 【详解】解:∵直线l 与半径为5的O 相离,∴圆心O 与直线l 的距离d 满足:5d >.故选:B. 【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.6.D解析:D 【解析】∵在△ABC 中,点D、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADEABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.7.C解析:C【解析】【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答.【详解】如图,作直径BD ,连接CD ,∵∠BDC 和∠BAC 是BC 所对的圆周角,∠BAC =30°,∴∠BDC =∠BAC =30°,∵BD 是直径,∠BCD 是BD 所对的圆周角,∴∠BCD =90°,∴BD =2BC =4,故选:C .【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.8.C解析:C【解析】【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.【详解】解:连接OB ,OC ,∵∠BAC =30°,∴∠BOC =60°.∵OB =OC ,BC =8,∴△OBC 是等边三角形,∴OB =BC =8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.9.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.解析:C【解析】【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.12.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=453.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.13.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm ,∴书的宽约为20×0.618=12.36cm .故选:A .【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.14.D解析:D【解析】【分析】根据题意可判断四边形ABNM 为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO ≌△BPO ,可得AP=BP=3,在直角△APO 中,利用三角函数可解出半径的值.【详解】解:连接OP ,OM ,OA ,OB ,ON∵AB ,AM ,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN ∥AB ,∠A =60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO 和△BPO 中,OAP OBP APO BPO OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO ≌△BPO (AAS ),∴AP=12AB=3, ∴tan ∠OAP=tan30°=OP AP∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P是AB中点,难度不大.15.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.17.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.18.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 19.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF ,∴,即解得a=(-舍去)∴【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF ==12. 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 20.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =6,∠AOB =90°,且OA =OB ,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.21.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.22..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =; 故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.23.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .24.25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.25.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.26.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.27.乙【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S甲2>S乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.28.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】解:∵∴当∠ABO=90°时,点O 到顶点A 的距离最大.则OA解析:【解析】【分析】当∠ABO=90°时,点O 到顶点A 的距离的最大,则△ABC 是等腰直角三角形,据此即可求解.【详解】 解:∵sin 45sin AB AO ABO=∠ ∴当∠ABO=90°时,点O 到顶点A 的距离最大.则.故答案是:.【点睛】本题主要考查了等腰直角三角形的性质,正确确定点O 到顶点A 的距离的最大的条件是解题关键.30.1,,【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB 时∴△DCP∽△BCA∴即,解得DP=1如图:当P 在AB 上,即DP∥AC解析:1,83,32【解析】【分析】根据P 的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP ∥AB 时∴△DCP ∽△BCA∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】 本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.三、解答题31.吊灯AB的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.32.(1)见解析;(2)6013 DE .【解析】【分析】对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得12AD ==. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD =, 即51312DE =, ∴6013DE =. 【点睛】 此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.33.(1)x =2;(2)x =52或x =12. 【解析】【分析】(1)根据配方法即可求出答案.(2)根据因式分解法即可求出答案.【详解】解:(1)∵x 2﹣2x ﹣1=0,∴x 2﹣2x +1=2,∴(x ﹣2)2=2,∴x =.(2)∵(2x ﹣1)2=4(2x ﹣1),∴(2x ﹣1﹣4)(2x ﹣1)=0, ∴x =52或x =12. 【点睛】 此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.34.(1)见解析;(2)19180,sin 22MON MPN S αα∠=︒-=△;(3)3OP =,P点坐标为⎝⎭或⎝⎭【解析】【分析】 (1)由角平分线求出∠MOP =∠NOP =12∠AOB =30°,再证出∠OMP =∠OPN ,证明△MOP ∽△PON ,即可得出结论; (2)由∠MPN 是∠AOB 的“相关角”,判断出△MOP ∽△PON ,得出∠OMP =∠OPN ,即可得出∠MPN =180°﹣12α;过点M 作MH ⊥OB 于H ,由三角形的面积公式得出:S △MON =12ON •MH ,即可得出结论; (3)设点C (a ,b ),则ab =3,过点C 作CH ⊥OA 于H ;分两种情况:①当点B 在y 轴正半轴上时;当点A 在x 轴的负半轴上时,BC =3CA 不可能;当点A 在x 轴的正半轴上时;先求出14CA AB =,由平行线得出△ACH ∽△ABO ,得出比例式:14CH AH AC OB OA AB ===,得出OB ,OA ,求出OA •OB ,根据∠APB 是∠AOB 的“相关角”,得出OP ,即可得出点P 的坐标;②当点B 在y 轴的负半轴上时;同①的方法即可得出结论.【详解】(1)证明:∵∠AOB =60°,P 为∠AOB 的平分线上一点,∴∠AOP =∠BOP =12∠AOB =30°, ∵∠MOP +∠OMP +∠MPO =180°,∴∠OMP +∠MPO =150°,∵∠MPN =150°,∴∠MPO +∠OPN =150°,∴∠OMP =∠OPN ,∴△MOP ∽△PON , ∴OM OP OP ON=, ∴OP 2=OM •ON ,∴∠MPN 是∠AOB 的“相关角”;(2)解:∵∠MPN 是∠AOB 的“相关角”,∴OM •ON =OP 2, ∴OM OP OP ON=, ∵P 为∠AOB 的平分线上一点,∴∠MOP =∠NOP =12α, ∴△MOP ∽△PON ,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣12α,即∠MPN=180°﹣12α;过点M作MH⊥OB于H,如图2,则S△MON=12ON•MH=12ON•OM sinα=12OP2•sinα,∵OP=3,∴S△MON=92sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴14 CAAB=,∵CH//OB,∴△ACH∽△ABO,∴14 CH AH ACOB OA AB===,∴14 b OA aOB OA-==,∴OB=4b,OA=43 a,∴OA•OB=43a•4b=163ab=643,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴64833OP OA OB⋅∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:4646,33⎛⎫⎪ ⎪⎝⎭;②当点B在y轴的负半轴上时,如图5所示:∵BC =3CA ,∴AB =2CA , ∴12CA AB =, ∵CH //OB ,∴△ACH ∽△ABO , ∴12CH AH AC OB OA AB ===, ∴12b a OA OB OA -== ∴OB =2b ,OA =23a , ∴OA •OB =23a •2b =43ab =163, ∵∠APB 是∠AOB 的“相关角”,∴OP 2=OA •OB , ∴16433OP OA OB ⋅= ∵∠AOB =90°,OP 平分∠AOB ,∴点P 的坐标为:2626⎝⎭; 综上所述:点P 的坐标为:66,33⎛⎫ ⎪ ⎪⎝⎭或266,33⎛- ⎝⎭. 【点睛】本题考查反比例函数与几何综合,掌握数形结合和分类讨论的思想是解题的关键.35.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9),∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=; (2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.四、压轴题36.(1)作图见解析;(2)49π. 【解析】试题分析:(1)作出∠B 的角平分线BD ,再过X 作OX ⊥AB ,交BD 于点O ,则O 点即为⊙O 的圆心;(2)由于⊙P 与△ABC 哪两条边相切不能确定,故应分⊙P 与Rt △ABC 的边AB 和BC 相切;⊙P 与Rt △ABC 的边AB 和AC 相切时;⊙P 与Rt △ABC 的边BC 和AC 相切时三种情况进行讨论.试题解析:(1)如图所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2019学年陕西省西安市XX中学九年级(上)期末测试数学试卷一、选择题1.9的平方根是()A.±3 B.3 C.﹣3 D.±2.如图为正六棱柱与圆锥组成的几何体,其俯视图是()A. B.C.D.3.下列运算结果正确的是()A.x6÷x2=x3B.(﹣x)﹣1=C.(2x3)2=4x6D.﹣2a2•a3=﹣2a64.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°5.在平面直角坐标系中,点(﹣7,﹣2m+1)在第三象限,则m的取值范围是()A.m<B.m>﹣ C.m<﹣ D.m>6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°7.如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m的取值范围是()A.m>﹣3 B.m>﹣1 C.m>0 D.m<38.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2 B.3 C.D.69.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A. B. C.8 D.610.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<2二、填空题11.计算|﹣2|+2cos45°=.12.一元二次方程x2+9x=0的解是.13.如图,正六边形ABCDEF的边长为2,则对角线AF=.14.比较大小:sin57°tan57°.15.如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为米.16.如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标.17.如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为.三、解答题(共9小题,满分72分)18.解方程:=+1.19.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)20.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.21.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.22.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?23.小励同学有面额10元.20元.50元和100元的纸币各一张,分别装入大小外观完全样的四个红包中,每个红包里只装入一张纸币,若小励从中随机抽取两个红包.(1)请用树状图或者列表的方法,求小励取出纸币的总额为70元的概率;(2)求小励取出纸币的总额能购买一件价格为120元文具的概率.24.如图,BC是圆O的弦,CF是圆O切线,切点为C,经过点B作MN⊥CF于E,且∠CBM=135°,过G的直线分别与圆O,MN交于A,D两点.(1)求证:MN是圆O的切线;(2)当∠D=30°,BD=时,求圆O的半径r.25.已知二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,与y 轴交于点C,抛物线的顶点为D.(1)直接写出顶点D、点C的坐标(用含a的代数式表示);(2)若∠ADC=90°,试确定二次函数的表达式.26.如图,三角形有一边上的中线长恰好等于这边的长,那么这个三角形可称为“等中三角形”,探索体验(1)如图①,点D是线段AB的中点,请画一个△ABC,使其为“等中三角形”.(2)如图②,在Rt△ABC中,∠C=90°,AC=2,BC=,判断△ABC是否为“等中三角形”,并说明理由.拓展应用(3)如图③,正方形ABCD木板的边长AB=6,请探索在正方形木板上是否存在点P,使△ABP 为面积最大的“等中三角形”?若存在,求出CP的长;若不存在,请说明理由.2016-2019学年陕西省西安市XX中学九年级(上)期末数学试卷参考答案与试题解析一、选择题1.9的平方根是()A.±3 B.3 C.﹣3 D.±【考点】平方根.【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.【解答】解:±,故选:A.2.如图为正六棱柱与圆锥组成的几何体,其俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】从几何体上方观察,得到俯视图即可.【解答】解:如图为正六棱柱与圆锥组成的几何体,其俯视图是.故选D3.下列运算结果正确的是()A.x6÷x2=x3B.(﹣x)﹣1=C.(2x3)2=4x6D.﹣2a2•a3=﹣2a6【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂.【分析】根据同底数幂的除法、幂的乘方、单项式的乘法计算即可.【解答】解:A、x6÷x2=x4,错误;B、(﹣x)﹣1=﹣,错误;C、(2x3)2=4x6,正确;D、﹣2a2•a3=﹣2a5,错误;故选C4.如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°【考点】平行线的性质.【分析】首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.【解答】解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.5.在平面直角坐标系中,点(﹣7,﹣2m+1)在第三象限,则m的取值范围是()A.m<B.m>﹣ C.m<﹣ D.m>【考点】点的坐标.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得﹣2m+1<0,求不等式的解即可.【解答】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+1<0,解得m>.故选D.6.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【考点】三角形内角和定理;三角形的外角性质;翻折变换(折叠问题).【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.7.如图,是直线y=x﹣3的图象,点P(2,m)在该直线的上方,则m的取值范围是()A.m>﹣3 B.m>﹣1 C.m>0 D.m<3【考点】一次函数图象上点的坐标特征.【分析】把x=2代入直线的解析式求出y的值,再根据点P(2,m)在该直线的上方即可得出m的取值范围.【解答】解:当x=2时,y=2﹣3=﹣1,∵点P(2,m)在该直线的上方,∴m>﹣1.故选B.8.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且OE=AE,则边BC的长为()A.2 B.3 C.D.6【考点】矩形的性质;菱形的性质.【分析】根据矩形的性质和菱形的性质得∠ABE=∠EBD=∠DBC=30°,解直角三角形BDC,即可求出BC的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∠ABC=90°,AB=CD,即EA⊥AB,∵四边形BFDE是菱形,∴BD⊥EF,∵OE=AE,∴点E在∠ABD的角平分线上,∴∠ABE=∠EBD,∵四边形BFDE是菱形,∴∠EBD=∠DBC,∴∠ABE=∠EBD=∠DBC=30°,∵AB的长为3,∴BC=3,故选B.9.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD=180°,则弦BC的长等于()A. B. C.8 D.6【考点】圆周角定理;勾股定理.【分析】首先延长CA,交⊙A于点F,易得∠BAF=∠DAE,由圆心角与弦的关系,可得BF=DE,由圆周角定理可得:∠CBF=90°,然后由勾股定理求得弦BC的长.【解答】解:延长CA,交⊙A于点F,∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC==8.故选C.10.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<2【考点】二次函数与不等式(组).【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.【解答】解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选D.二、填空题11.计算|﹣2|+2cos45°=2.【考点】实数的运算;特殊角的三角函数值.【分析】直接利用绝对值的性质结合特殊角的三角函数值代入化简即可.【解答】解:原式=2﹣+2×=2﹣+=2.故答案为:2.12.一元二次方程x2+9x=0的解是x=0或x=﹣9.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵x(x+9)=0,∴x=0或x+9=0,解得:x=0或x=﹣9,故答案为:x=0或x=﹣9.13.如图,正六边形ABCDEF的边长为2,则对角线AF=2.【考点】正多边形和圆.【分析】作BG⊥AF,垂足为G.构造等腰三角形ABF,在直角三角形ABG中,求出AG的长,即可得出AF.【解答】解:作BG⊥AF,垂足为G.如图所示:∵AB=BF=2,∴AG=FG,∵∠ABF=120°,∴∠BAF=30°,∴AG=AB•cos30°=2×=,∴AC=2AG=2;故答案为2.14.比较大小:sin57°<tan57°.【考点】锐角三角函数的增减性.【分析】根据正弦函数的增减性,正切函数的增减性,可得答案.【解答】解:∵sin57<sin90°=1,tan57°>tan45°=1,∴tan57°>sin57°,故答案为:<.15.如图,在河两岸分别有A、B两村,现测得三点A、B、D在一条直线上,A、C、E在一条直线上,若BC∥DE,DE=90米,BC=70米,BD=20米,那么A、B两村间的距离为70米.【考点】相似三角形的应用.【分析】由BC∥DE,可得,△ABC∽△ADE,进而利用对应边成比例求解线段的长度.【解答】解:由题意可得,△ABC∽△ADE,∴,即,解得AB=70米.16.如图,在平面直角坐标系中,函数y=(x>0常数k>0)的图象经过点A(1,2),B(m,n)(m>1),过点B作y轴的垂线,垂足为C,若△ABC面积为2,求点B的坐标(3,).【考点】反比例函数综合题.【分析】由于函数y=(x>0常数k>0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m,BC边上的高是2﹣n=2﹣,根据三角形的面积公式得到关于m的方程,解方程即可求出m,然后把m的值代入y=,即可求得B的纵坐标,最后就求出点B 的坐标.【解答】解:∵函数y=(x>0常数k>0)的图象经过点A(1,2),∴把(1,2)代入解析式得2=,∴k=2∵B(m,n)(m>1),∴BC=m,当x=m时,n=,∴BC边上的高是2﹣n=2﹣,=m(2﹣)=2,而S△ABC∴m=3,∴把m=3代入y=,∴n=,∴点B的坐标是(3,).故答案为:(3,).17.如图,O为矩形ABCD对角线的交点,M为AB边上任一点,射线ON⊥OM于点O,且与BC边交于点N,若AB=4,AD=6,则四边形OMBN面积的最大值为6.【考点】相似三角形的判定与性质;一次函数的性质;矩形的性质.【分析】(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,易证得△FOM∽△EON,然=﹣x+6,根据一次后由相似三角形的对应边成比例结合分割图形求面积法即可得出S四边形OMBN函数的性质即可解决最值问题;(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F重合时,四边形OMBN面积取最大值,根据矩形的面积即可得出结论.【解答】解:(方法一)过点O作OE⊥AB于点E,作OF⊥BC于点F,如图所示.∵四边形ABCD为矩形,AB=4,AD=6,∴OE=3,OF=2,OE⊥OF,∴∠EOM+∠FOM=90°,∵∠FON+∠FOM=90°,∴∠EOM=∠FON.∵∠OEM=∠OFN=90°,∴△FON∽△EOM,∴OM:ON=OE:OF=3:2,∴=.设ME=x(0≤x≤2),则FN=x,=S矩形EBFO﹣S△EOM+S△FON=2×3﹣×3x+×2×x=﹣x+6,∴S四边形OMBN取最大值,最大值为6.∴当x=0时,S四边形OMBN故答案为:6.(方法二)过点O作OE⊥AB于点E,作OF⊥BC于点F,当点M和点E重合、点N和点F重合时,四边形OMBN面积取最大值,如图所示.=2×3=6,∵S矩形EBFO∴四边形OMBN面积的最大值为6.故答案为:6三、解答题(共9小题,满分72分)18.解方程:=+1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:﹣x+3=1+x﹣4,移项合并得:﹣2x=﹣6,解得:x=3,经检验x=3是分式方程的解.19.如图,Rt△ABC中,∠C=90°,用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.(保留作图痕迹,不写作法)【考点】作图—基本作图;角平分线的性质.【分析】作∠BAC的平分线交BC边于点D,则点D即为所求.【解答】解:如图,点D即为所求.20.已知,如图,在△ABC中,点D为线段BC上一点,BD=AC,过点D作DE∥AC且DE=BC,求证:∠E=∠CBA.【考点】全等三角形的判定与性质;平行线的性质.【分析】根据平行线的性质可得∠C=∠EDB,再证明△EBD≌△BAC,根据全等三角形的性质可得∠E=∠CBA.【解答】证明:∵DE∥AC,∴∠C=∠EDB,在△EBD和△BAC中,∴△EBD≌△BAC(SAS),∴∠E=∠CBA.21.如图为一种平板电脑保护套的支架侧视图,AM固定于平板电脑背面,与可活动的MB、CB部分组成支架,为了观看舒适,可以调整倾斜角∠ANB的大小,但平板的下端点N只能在底座边CB上.不考虑拐角处的弧度及平板电脑和保护套的厚度,绘制成图(见答题纸),其中AN表示平板电脑,M为AN上的定点,AN=CB=20 cm,AM=8 cm,MB=MN,根据以上数据,判断倾斜角∠ANB能小于30°吗?请说明理由.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据∠ANB=30°时,作ME⊥CB,垂足为E,根据锐角三角函数的定义求出EB及BN 的长,进而可得出结论.【解答】解:当∠ANB=30°时,作ME⊥CB,垂足为E,∵MB=MN,∴∠B=∠ANB=30°.在Rt△BEM中,∵cosB=,∴EB=MB•cosB=(AN﹣AM)•cosB=6cm.∵MB=MN,ME⊥BC,∴BN=2BE=12cm.∵CB=AN=20cm,且12>20,∴此时N不在CB边上,与题目条件不符,随着∠ANB度数的减小,BN的长度增加,∴倾斜角不可以小于30°.22.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?【考点】一次函数的应用.【分析】(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.【解答】解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586(元),方案二:y=0.9x+300=5592(元),5586<5592所以选择方案一更省钱.23.小励同学有面额10元.20元.50元和100元的纸币各一张,分别装入大小外观完全样的四个红包中,每个红包里只装入一张纸币,若小励从中随机抽取两个红包.(1)请用树状图或者列表的方法,求小励取出纸币的总额为70元的概率;(2)求小励取出纸币的总额能购买一件价格为120元文具的概率.【考点】列表法与树状图法.【分析】(1)先利用树状图展示所有12种等可能的结果数,再找出取出纸币的总额为70元的结果数,然后根据概率公式计算;(2)根据(1)中树状图找到取出纸币的总额大于或等于120元的结果数,根据概率公式计算可得.【解答】解:(1)画树状图为:共有12种等可能的结果数,其中取出纸币的总额为70元的结果数为2,所以取出纸币的总额为70元的概率==;(2)小励取出纸币的总额能购买一件价格为120元文具的概率为=.24.如图,BC是圆O的弦,CF是圆O切线,切点为C,经过点B作MN⊥CF于E,且∠CBM=135°,过G的直线分别与圆O,MN交于A,D两点.(1)求证:MN是圆O的切线;(2)当∠D=30°,BD=时,求圆O的半径r.【考点】切线的判定与性质.【分析】(1)连接OB、OC,证明OC⊥CE即可.因为MN是⊙O的切线,所以OB⊥MN.因∠CBN=45°可得∠OBC=∠OCB=∠BCE=45°,所以∠OCE=90°,得证;(2)可证四边形BOCE为正方形,所以半径等于CE,可设半径为r,在△BCE中表示BE;在△CDE中表示DE,根据BD的长得方程求解.【解答】(1)证明:连接OB、OC.∵MN是⊙O的切线,∴OB⊥MN,∵∠CBM=135°,∴∠CBN=45°,∴∠OBC=45°,∠BCE=45°.∵OB=OC,∴∠OBC=∠OCB=45°.∴∠OCE=90°,∴CE是⊙O的切线;(2)解:∵OB⊥BE,CE⊥BE,OC⊥CE,∴四边形BOCE是矩形,又OB=OC,∴四边形BOCE是正方形,∴BE=CE=OB=OC=r.在Rt△CDE中,∵∠D=30°,CE=r,∴DE=r.∵BD=2,∴r+r=2,∴r=﹣,即⊙O的半径为﹣.25.已知二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,与y 轴交于点C,抛物线的顶点为D.(1)直接写出顶点D、点C的坐标(用含a的代数式表示);(2)若∠ADC=90°,试确定二次函数的表达式.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)根据抛物线y═ax2+bx+c(a>0)与x轴的交点可得解析式为y=a(x+5)(x﹣1)=ax2+4ax﹣5a=a(x+2)2﹣9a,从而得出答案;(2)由A、D、C的坐标得出AD2、CD2、AC2,根据∠ADC=90°知AD2+CD2=AC2,据此列出关于a的方程,解之可得a的值,从而得出答案.【解答】解:(1)∵二次函数y═ax2+bx+c(a>0)的图象与x轴交于A(﹣5,0)、B(1,0)两点,∴抛物线的解析式为y=a(x+5)(x﹣1)=ax2+4ax﹣5a=a(x+2)2﹣9a,则点D的坐标为(﹣2,﹣9a),点C的坐标为(0,﹣5a);(2)∵A(﹣5,0)、D(﹣2,﹣9a)、C(0,﹣5a),∴AD2=(﹣2+5)2+(﹣9a﹣0)2=81a2+9,CD2=(﹣2﹣0)2+(﹣9a+5a)2=16a2+4,AC2=(0+5)2+(﹣5a﹣0)2=25a2+25,∵∠ADC=90°,∴AD2+CD2=AC2,即81a2+9+16a2+4=25a2+25,解得:a=±,∵a>0,∴a=﹣,则该二次函数的解析式为y=﹣(x+2)2﹣.26.如图,三角形有一边上的中线长恰好等于这边的长,那么这个三角形可称为“等中三角形”,探索体验(1)如图①,点D是线段AB的中点,请画一个△ABC,使其为“等中三角形”.(2)如图②,在Rt△ABC中,∠C=90°,AC=2,BC=,判断△ABC是否为“等中三角形”,并说明理由.拓展应用(3)如图③,正方形ABCD木板的边长AB=6,请探索在正方形木板上是否存在点P,使△ABP 为面积最大的“等中三角形”?若存在,求出CP的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)通过同圆的半径相等,取DC=AB,则△ABC就是所求作的等中三角形;(2)作中线BD,根据勾股定理求中线BD=AC,则△ABC是“等中三角形”;(3)分别以△ABP三边画等中三角形,对比后得图5中的等中三角形的面积最大,求出此时的CP的长即可.【解答】解:(1)如图1,作法:①以D为圆心,以AB为半径画圆,在圆上任意取一点C,②连接AC、BC,则△ABC就是所求作的“等中三角形”;(2)△ABC是“等中三角形”,理由是:如图2,取AC的中点D,连接BD,∵AC=2,∴CD=AC=1,∵∠ACB=90°,由勾股定理得:BD==2,∴BD=AC,∴△ABC是“等中三角形”,(3)分三种情况:①当中线长BE=AP时,如图3,②当中线长AE=PB时,如图4,③当中线长PE=AB时,如图5,由三个图形可得:图5中的等中三角形的面积最大,此时,P是DC的中点,∴PC=CD==3.2019年4月16日。

相关文档
最新文档