圆柱体的表面积课件
合集下载
人教版六年级下册数学《圆柱的表面积》(课件)

1、圆柱体底面周长和高相等时,沿着它的一条高剪开,侧面展
开是一个正方形。 (
)
2、求压路机压路的面积就是求压路机前轮的侧面积。 (
)
四、巩固练习
(三)选择
1、圆柱的底面直径扩大2倍,高缩小到原来的一半,圆柱的侧面
积是(
)
A.扩大2倍
B.缩小2倍
S侧= 底 ×
= × ×
=
样一顶帽子需要用多少面料?(得保留整10平方厘米。)
第一种情况求出全表面积
第二种只求一个底面和侧面
四、巩固练习
(一)填一填
1、一个圆柱的底面周长是8dm,高是3dm,它的侧面积是( 24dm2 )。
2、一个圆柱的底面直径是10厘米,高是20厘米,它的侧面积是
( 628 )平方厘米。
四、巩固练习
(二)判断
人教版数学六年级下册
圆柱的表面积
导入新课
用彩纸给圆柱体包装,然后算出你用了多少彩纸?
10cm
展示交流
方法一:用彩纸围一圈,剪下多余的部分
无法计算彩纸的面积
展示交流
方法二:计算法
h
h
31.4 cm
10cm
C底= =3.14× Fra bibliotek=31.4 cm
C侧=C底 =31.4×
展示交流
长方形的宽肯定是和圆柱的
×
C.不变
四、巩固练习
(三)选择
底 = =
2、把一个圆柱体的侧面展开得到一个边长4分米的正方形,这个
圆柱体的侧面积是(
A.16
)平方分米。
B.50.24
S侧= 底 ×
= × = (dm2)
开是一个正方形。 (
)
2、求压路机压路的面积就是求压路机前轮的侧面积。 (
)
四、巩固练习
(三)选择
1、圆柱的底面直径扩大2倍,高缩小到原来的一半,圆柱的侧面
积是(
)
A.扩大2倍
B.缩小2倍
S侧= 底 ×
= × ×
=
样一顶帽子需要用多少面料?(得保留整10平方厘米。)
第一种情况求出全表面积
第二种只求一个底面和侧面
四、巩固练习
(一)填一填
1、一个圆柱的底面周长是8dm,高是3dm,它的侧面积是( 24dm2 )。
2、一个圆柱的底面直径是10厘米,高是20厘米,它的侧面积是
( 628 )平方厘米。
四、巩固练习
(二)判断
人教版数学六年级下册
圆柱的表面积
导入新课
用彩纸给圆柱体包装,然后算出你用了多少彩纸?
10cm
展示交流
方法一:用彩纸围一圈,剪下多余的部分
无法计算彩纸的面积
展示交流
方法二:计算法
h
h
31.4 cm
10cm
C底= =3.14× Fra bibliotek=31.4 cm
C侧=C底 =31.4×
展示交流
长方形的宽肯定是和圆柱的
×
C.不变
四、巩固练习
(三)选择
底 = =
2、把一个圆柱体的侧面展开得到一个边长4分米的正方形,这个
圆柱体的侧面积是(
A.16
)平方分米。
B.50.24
S侧= 底 ×
= × = (dm2)
《圆柱体的表面积》ppt课件

一个圆柱的高是18厘米,底 例1: 面半径是5厘米,它的表面 积是多少?
例2:一顶圆柱形厨师帽,高28厘米,
帽顶直径20厘米,做这样一顶帽子 需要用多少面料?
(得数保留整十平方厘米) 问:求表面积还是总面积?
答案:2073平方厘米
一顶厨师帽,高28cm,帽顶直径20cm, 做这样一顶帽子至少需要用多少面 料?(得数保留整十平方厘米)
S表=S侧+2S底=345.4(cm2)
两个圆柱的侧面积相等,表面积不相等。
说一说: 该求哪部分的面积?
茶 叶
做茶叶桶所需铁皮面积
加油啊!
做一个无盖水桶 所需铁皮面积
加油啊!
往井的内壁和底面抹水泥, 求抹水泥部分的面积。
加油啊!
做一个笔筒所需塑料面积
加油啊!
圆柱在木板上滚过的轨迹是什么形状?
S表 = S侧 + 2S底
3、在日常生活中,我们可以利用圆柱的 侧面积计算公式和表面积计算公式,解 决那些问题?
爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”爱是什么? 一个精灵坐在碧绿的枝叶间沉思。 风儿若有若无。 一只鸟儿飞过来,停在枝上,望着远处将要成熟的稻田。 精灵取出一束黄澄澄的稻谷问道:“你爱这稻谷吗?” “爱。” “为什么?” “它驱赶我的饥饿。” 鸟儿啄完稻谷,轻轻梳理着光润的羽毛。 “现在你爱这稻谷吗?”精灵又取出一束黄澄澄的稻谷。 鸟儿抬头望着远处的一湾泉水回答:“现在我爱那一湾泉水,我有点渴了。” 精灵摘下一片树叶,里面盛了一汪泉水。 鸟儿喝完泉水,准备振翅飞去。 “请再回答我一个问题,”精灵伸出指尖,鸟儿停在上面。 “你要去做什么更重要的事吗?我这里又稻谷也有泉水。” “我要去那片开着风信子的山谷,去看那朵风信子。” “为什么?它能驱赶你的饥饿?” “不能。” “它能滋润你的干渴?” “不能。”
【课件】圆柱、圆锥、圆台的表面积与体积+课件高一下学期数学人教A版(2019)必修第二册

设圆台的上底面面积为S',下底面面积为S
r O
1
1
2
2
2
2
V圆台 (r r r r )h ( S S S S )h
3
3
1
这和V棱台 ( S S S S )h是一致的。
3
1
因而得 V台体 = ( S S S S )h
3
【练习】 如图,在直角梯形 ABCD 中,BC∥AD,∠ABC=90°,AB=5,
1
V锥体 Sh
3
1 2
r h
3
1
V台体 = ( S SS S )h
3
1
= h(r 2 rr r 2 )
3
2
感谢聆听
S圆柱 =πr +πr +2πrl 2πr (r l )
2
2
(1)圆柱的表面积、体积
圆柱的侧面展开图是什么?如何计算它的表面积?
r O
l
2 r
O
圆柱的侧面展开图是一个矩形,
S圆柱表面积 2r 2rl 2r (r l ).
2
V圆柱 = πr h
2
例1 将一个边长分别为4π,8π的矩形卷成一个圆柱的侧面,则
圆台的表面积为(
A.81π
)
B.100π
C.168π
D.169π
解 圆台的轴截面如图所示,
设上底面半径为 r,下底面半径为 R,则它的母线长为
l= h2+R-r2= 4r2+3r2=5r=10,
所以 r=2,R=8。
故 S 侧=π(R+r)l=π(8+2)×10=100π,
S 表=S 侧+πr2+πR2=100π+4π+64π=168π。故选 C。
苏教版六年级下册数学2.2 圆柱的侧面积和表面积课件

答:这个圆柱的表面积是18.84平方厘米。
2.计算圆柱的表面积。(单位:cm)
3.14×2×0.8=5.024(平方厘米) 3.14×(2÷2)2×2=6.28 (平方厘米) 5.024+6.28=11.304 (平方厘米)
3.14×0.5×2×3.5=10.99(平方厘米) 3.14×0.52×2=1.57 (平方厘米) 10.99+1.57=12.56 (平方厘米)
随堂练习
1.算一算,填一填。【选自教材P13 练习二 第6题】
底面半径 底面直径 高 侧面积 底面积 表面积
圆 柱
4cm
8cm 5cm 125.6cm2 50.24cm2 226.08cm2
5cm
10cm 10cm 314cm2 78.5cm2 471cm2
2.少先队队鼓是圆柱形的,侧面由铝皮围成,上、下底面蒙 的是羊皮。做这样一个队鼓,至少需要铝皮多少平方分米? 羊皮呢?【选自教材P13 练习二 第4题】
想一想,什么情况下,圆柱的侧面展开图是一个正方形 呢?你可以试着画一画。
底面周长
=
高
1.一个圆柱,底面周长是31.4厘米,高是6厘米。它的侧面积 是多少平方厘米?
31.4×6=188.4(平方厘米)
答:它的侧面积是188.4平方厘米。
把右边圆柱的侧面沿高展开,得到的长方形的长和宽 各是多少厘米?圆柱的底面半径是多少厘米?
3.14×6×2.6=48.984(平方分米) 3.14×(6÷2)2×2=56.52 (平方分米)
答:至少需要铝皮48.984平方分米,羊皮56.52平方分米。
3.一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油 桶至少需要铁皮多少平方米?【选自教材P13 练习二 第5题】
2.计算圆柱的表面积。(单位:cm)
3.14×2×0.8=5.024(平方厘米) 3.14×(2÷2)2×2=6.28 (平方厘米) 5.024+6.28=11.304 (平方厘米)
3.14×0.5×2×3.5=10.99(平方厘米) 3.14×0.52×2=1.57 (平方厘米) 10.99+1.57=12.56 (平方厘米)
随堂练习
1.算一算,填一填。【选自教材P13 练习二 第6题】
底面半径 底面直径 高 侧面积 底面积 表面积
圆 柱
4cm
8cm 5cm 125.6cm2 50.24cm2 226.08cm2
5cm
10cm 10cm 314cm2 78.5cm2 471cm2
2.少先队队鼓是圆柱形的,侧面由铝皮围成,上、下底面蒙 的是羊皮。做这样一个队鼓,至少需要铝皮多少平方分米? 羊皮呢?【选自教材P13 练习二 第4题】
想一想,什么情况下,圆柱的侧面展开图是一个正方形 呢?你可以试着画一画。
底面周长
=
高
1.一个圆柱,底面周长是31.4厘米,高是6厘米。它的侧面积 是多少平方厘米?
31.4×6=188.4(平方厘米)
答:它的侧面积是188.4平方厘米。
把右边圆柱的侧面沿高展开,得到的长方形的长和宽 各是多少厘米?圆柱的底面半径是多少厘米?
3.14×6×2.6=48.984(平方分米) 3.14×(6÷2)2×2=56.52 (平方分米)
答:至少需要铝皮48.984平方分米,羊皮56.52平方分米。
3.一个圆柱形油桶,底面直径是0.6米,高是1米。做这个油 桶至少需要铁皮多少平方米?【选自教材P13 练习二 第5题】
六年级下册数学《圆柱的表面积》(17张PPT)

圆柱的侧面积
圆柱的侧面积和一个底面积
圆柱的侧面积和两个底面积
学习检测
一、基础训练1、一台压路机的滚筒宽1.2米,直径为0.8米。它滚动1周,压路的面积是多少平方米?2、一个圆柱的底面半径5厘米,高10厘米,它的一个底面积是( )平方厘米,侧面积是( )平方厘米,表面积是( )平方厘米。二、提高练习(选做) 一个圆柱形的无盖铁皮桶,底面直径4分米,高4.5分米。为了防止生锈,要在桶的里外都涂上防锈漆,涂漆的面积是多少平方分米?
课堂总结
我们认识了圆柱的表面积、学习了圆柱表面积的计算方法,希望同学们能灵活运用,解决生活中的实际问题。
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
帽子的侧面积:3.14×20×30=1884(cm2)
帽顶的面积:3.14×(20÷2)2=314(cm2)
需要用的面料:1884+314=2198≈2200(cm2)
答:做这样一顶帽子大约要用2200cm2的面料。
巩固练习
一、下面这些生活中的问题实际求的是圆柱的什么?想一想,选一选。A底面积 B侧面积 C表面积 D一个底面+侧面积1.制作一节通风管需要的铁皮面积。( )2.求圆柱形水池的占地面积。( )3.求做一个无盖的圆柱形塑料水桶,需要的塑料面积。( )4.做一个圆柱形茶叶桶,需要的硬纸板的面积。( )10 Nhomakorabea罐头
S侧=ch = 2×5×3.14×10 =314(平方厘米)答:商标纸的面积是314平方厘米。
5
圆柱的表面积=侧面积+两个底面的面积
S表 =S侧+2S底
S表=S侧+2S底
圆柱的侧面积和一个底面积
圆柱的侧面积和两个底面积
学习检测
一、基础训练1、一台压路机的滚筒宽1.2米,直径为0.8米。它滚动1周,压路的面积是多少平方米?2、一个圆柱的底面半径5厘米,高10厘米,它的一个底面积是( )平方厘米,侧面积是( )平方厘米,表面积是( )平方厘米。二、提高练习(选做) 一个圆柱形的无盖铁皮桶,底面直径4分米,高4.5分米。为了防止生锈,要在桶的里外都涂上防锈漆,涂漆的面积是多少平方分米?
课堂总结
我们认识了圆柱的表面积、学习了圆柱表面积的计算方法,希望同学们能灵活运用,解决生活中的实际问题。
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
帽子的侧面积:3.14×20×30=1884(cm2)
帽顶的面积:3.14×(20÷2)2=314(cm2)
需要用的面料:1884+314=2198≈2200(cm2)
答:做这样一顶帽子大约要用2200cm2的面料。
巩固练习
一、下面这些生活中的问题实际求的是圆柱的什么?想一想,选一选。A底面积 B侧面积 C表面积 D一个底面+侧面积1.制作一节通风管需要的铁皮面积。( )2.求圆柱形水池的占地面积。( )3.求做一个无盖的圆柱形塑料水桶,需要的塑料面积。( )4.做一个圆柱形茶叶桶,需要的硬纸板的面积。( )10 Nhomakorabea罐头
S侧=ch = 2×5×3.14×10 =314(平方厘米)答:商标纸的面积是314平方厘米。
5
圆柱的表面积=侧面积+两个底面的面积
S表 =S侧+2S底
S表=S侧+2S底
圆柱体课件

等研究中涉及圆柱体的性质。
工程学
03
在工程学中,圆柱体广泛应用于各种结构设计和建筑设计中,
如水塔、油罐、高层建筑等。
圆柱体的制作方法介绍
旋转成型
通过旋转一个矩形或圆形平面并逐渐缩小尺寸,可以制作出圆柱 体。
切割和拼接
通过将多个矩形或圆形平面切割成细条并拼接起来,也可以制作 出圆柱体。
3D打印
现代技术如3D打印可以方便地制作出各种形状的圆柱体,尤其 是具有复杂内部结构的圆柱体。
起来即可。
计算表面积
利用圆柱体的展开图可以计算圆 柱体的表面积,包括侧面积和底
面积。
理解几何形状
通过观察圆柱体的展开图,可以 更好地理解圆柱体、圆锥体等几
何形状的特点和性质。
05
圆柱体的截面
圆柱体截面的定义
定义
过圆柱体(Cylinder)的任意一平面与 圆柱体的交线称为圆柱体的截面 (Section of Cylinder)。
圆柱体课件
• 圆柱体概述 • 圆柱体的表面积 • 圆柱体的体积 • 圆柱体的展开图 • 圆柱体的截面 • 圆柱体的应用
目录
01
圆柱体概述
圆柱体的定义
圆柱体是一种三维图形,由一 个矩形平面和一个垂直于该平 面的圆形平面相交而成。
圆柱体的两个底面是两个相等 的圆,而侧面是一个矩形。
圆柱体的高度等于矩形的高度 ,而底面的周长等于矩形的长 度。
圆柱体的构成
01
02
03
04
圆柱体由顶面、底面和侧面构 成。
顶面是一个平面,与底面平行 且等距。
底面是一个圆形,与顶面平行 且等距。
侧面是一个矩形,垂直于底面 和顶面,且与底面和顶面等长
第一课时圆柱、圆锥、圆台的表面积和体积课件-高一下学期数学人教A版(2019)必修第二册

19
课堂精炼
【训练 3】
π
如图所示,在梯形 ABCD 中,∠ABC= ,AD∥BC,BC=2AD
2
=2AB=2,将梯形 ABCD 绕 AD 所在的直线旋转一周而形成的曲面所围成的
几何体的体积为(
5
A. π
3
4
B. π
3
2
C. π
3
)
D.2π
解析
由题意,旋转而成的几何体是圆柱,挖去一个圆
锥(如图),
又 BD=A1D·tan 60°=3 3,∴R+r=3 3,
∴R=2 3,r= 3,又 h=3,
1
1
2
2
∴V 圆台= πh(R +Rr+r )= π×3×[(2 3)2+
3
3
2 3× 3+( 3)2]=21π.
∴圆台的体积为 21π.
答案
10
21π
关于旋转体面积、体积等计
算问题,一般重点考察几何
体的轴截面,将立体问题平
面积与两底面积之和
题型二
求圆柱、圆锥、圆台的体积
数 学
7
知识梳理
2.柱体、锥体、台体的体积公式
V 柱体= sh (S 为底面面积,h 为柱体高);
V 锥体=
sh
(S 为底面面积,h 为锥体高);
1
V 台体= (S′+ S′S+S)h(S′,S 分别为上、下底面面积,h 为台体高).
3
8
课堂精讲
8.3.2 第一课时 圆柱、圆
锥、圆台的表面积和体积
数 学
1
题型一
求圆柱、圆锥、圆台的表面积
数 学
2
知识梳理
1.圆柱、圆锥、圆台的表面积和体积
圆柱体表面积课件

底面
ห้องสมุดไป่ตู้
底面的周长
高
底面
圆柱的侧面积=底面周长×高
做一个圆柱形纸盒,至少需要用 多大面积的纸板?(接口处不计)
底面
侧面
圆柱的表面积=
底面
圆柱的侧面积 + 底面的面积×2
底面周长×高
S表面积=2πr×h + 2×πr2
(1)侧面积:2 ×3.14 ×10 ×30=1884(平方厘米)
(2)底面积:3.14 ×102 =314(平方厘米)
复习:
1 、圆的周长、面积怎样计算?
2、长方形面积怎样计算?
3、圆柱的特征是什么?
什么是圆柱的表面积?
圆柱的侧面积加上两个底面 的面积就是圆柱的表面积.
圆柱的侧面展开是一个长方形.
1、有两个底面:
面积相等
2、一个侧面:
长=底面周长
高宽
长
试验小结: 圆柱侧面展开图是长方形 (正方形),长方形的长等于 圆柱的底面周长,宽等于圆柱 的高。
(3)表面积:1884+314 × 2=2512(平方厘米)
达标检测
计算下现各圆柱的表面积。(图中单位:厘米)
做一个无盖的圆柱形铁皮水桶,高是5分米。 底面直径4分米,至少需要多大面积的铁皮?
水桶没有盖,说明它只有一个底面。 (1)水桶的侧面积: 3.14 ×4 ×5=62.8(平方分米) (2)水桶的底面积:
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?
3.14 ×(4÷2) 2=12.56(平方分米)
( 3)需要铁皮:
62.8+12.56=75.36≈ 75.4(平方分米)
2、一个圆柱形烟囱长50分米底面半径 长2厘米,做这样一个烟囱需要多大面 积的材料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛版小学五年级数学下册
莱阳市第二实验小学 执教:许涛
复习:
1、口算。 3.14×5= 3.14×6= 3.14×4= 3.14×8= 3.14×2= 3.14×7= 3.14×3= 3.14×9= 3.14×10=
小组合作
提示: 1、圆柱展开后得到什么图形?
Hale Waihona Puke 2、面积如何计算?侧 面
长方形的长
底面周长
继续
继续
继续
宽= r
C 2
长=
长=C
宽=
长=
宽=
长=
智力闯关
闯关要求: 做对一题就在这一题上画上★, 最后看谁得到的★最多,成为这 堂课的答题明星。
智力闯关
第一关(请你来填)★
沿圆柱体的高剪开,侧面展开后会得 到一个( 长方 )形,长是圆柱的 (底面周长 ),宽是圆柱的 ( 高 ),因此圆柱的侧面积= 底面周长 ( )×( 高)。
A求底面积 B求侧面积 C求1个底面积与侧面积 D求表面积
智力闯关
第三关(做生活的有心人) ★ ★ ★
一个圆柱形的无盖铁皮水桶,底面 直径是4分米,高是4.5分米,为了 防止生锈,要在水桶里外两面都涂 上防锈漆,涂漆的 面积是多少平方 分米?
智力闯关
第四关(拓展提高) ★ ★ ★ ★
工人叔叔把一根高是1米的圆柱形木料,沿 着底面直径平均分成两部分,这时表面积比 原来增加了0.8平方米,求这根木料原来的表 面积。
智力闯关 第二关(精挑细选) ★ ★
联系生活实际,说说生活中的问题与哪些面积有关? (填A、B、C、D) (1)圆形水池的占地面积。( ) (2)做一节烟囱所需铁皮面积。( ) (3)一只水桶的用料面积。( ) (4)往大厅的柱子上涂漆,求涂漆部分面积。( ) (5)做一个油桶所需铁皮面积。( ) (6)压路机的滚筒转动一周,求压路面积。( )
你们真棒!
分享收获 课堂质疑
这节课,你有什么收获? 这节课,你还有什么疑问?
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?
莱阳市第二实验小学 执教:许涛
复习:
1、口算。 3.14×5= 3.14×6= 3.14×4= 3.14×8= 3.14×2= 3.14×7= 3.14×3= 3.14×9= 3.14×10=
小组合作
提示: 1、圆柱展开后得到什么图形?
Hale Waihona Puke 2、面积如何计算?侧 面
长方形的长
底面周长
继续
继续
继续
宽= r
C 2
长=
长=C
宽=
长=
宽=
长=
智力闯关
闯关要求: 做对一题就在这一题上画上★, 最后看谁得到的★最多,成为这 堂课的答题明星。
智力闯关
第一关(请你来填)★
沿圆柱体的高剪开,侧面展开后会得 到一个( 长方 )形,长是圆柱的 (底面周长 ),宽是圆柱的 ( 高 ),因此圆柱的侧面积= 底面周长 ( )×( 高)。
A求底面积 B求侧面积 C求1个底面积与侧面积 D求表面积
智力闯关
第三关(做生活的有心人) ★ ★ ★
一个圆柱形的无盖铁皮水桶,底面 直径是4分米,高是4.5分米,为了 防止生锈,要在水桶里外两面都涂 上防锈漆,涂漆的 面积是多少平方 分米?
智力闯关
第四关(拓展提高) ★ ★ ★ ★
工人叔叔把一根高是1米的圆柱形木料,沿 着底面直径平均分成两部分,这时表面积比 原来增加了0.8平方米,求这根木料原来的表 面积。
智力闯关 第二关(精挑细选) ★ ★
联系生活实际,说说生活中的问题与哪些面积有关? (填A、B、C、D) (1)圆形水池的占地面积。( ) (2)做一节烟囱所需铁皮面积。( ) (3)一只水桶的用料面积。( ) (4)往大厅的柱子上涂漆,求涂漆部分面积。( ) (5)做一个油桶所需铁皮面积。( ) (6)压路机的滚筒转动一周,求压路面积。( )
你们真棒!
分享收获 课堂质疑
这节课,你有什么收获? 这节课,你还有什么疑问?
如果一段圆柱形的木头,截成两截, 它的表面积会有什么变化呢?