相似三角形随堂作业习题课
相似三角形判定(2)课堂作业

课堂检测
学习目标:掌握用相似三角形的定义和判定定理判断两个三角形相似(平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似)
教学重点:相似三角形判定定理的证明与应用
教学难点:相似三角形判定定理的证明
检测习题
1、如图,AB∥EF∥CD,图中共有对相似三角形,写出来并说明理由;
2、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)
3、在△ABC与△DEF中,若AB=12,BC=13,AC=14;DE=6,EF=6.5,DF=7,则△ABC与△DEF相似吗?
4、课本第45页练习1(1)与2(2)。
当堂作业
基础作业:
1.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.
2.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.
3.在△ABC与△DEF中,若AB=24,BC=26,AC=28;DE=12,EF=13,DF=14,则△ABC与△DEF相似吗?
思维拓展:
如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,
求证:△ABC∽△DEF.。
人教版九年级数学随堂练习相似三角形的判定(1)教案

27.2相似三角形1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握平行线判定三角形相似的方法.3.了解三角形相似的三个判定定理的证明过程,能灵活应用三角形相似的三个判定定理证明三角形相似.4.了解直角边斜边判定定理的证明过程,能应用直角边斜边判定定理证明直角三角形相似.5.理解相似三角形的性质,能用三角形相似的性质计算有关角、线段、周长、面积问题.6.能应用三角形相似的判定定理及性质解决数学问题.7.能建立数学模型运用三角形相似的有关知识解决一些实际问题.1.经历平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.在类比全等三角形的证明方法探究三角形相似的证明方法过程中,渗透数学中的类比思想和转化思想.3.经历类比、猜想、探究、归纳、应用等数学活动,提高学生分析问题、解决问题的能力.4.通过应用三角形相似的判定方法和性质解决简单问题,培养学生综合运用知识解决数学问题的能力.5.通过建立与三角形相似有关的数学模型解决实际问题,培养学生数学建模思想,提高学生运用数学知识解决实际问题的能力.1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作能力及直觉思维.2.探究三角形相似的判定定理的证明,培养学生合情推理及演绎推理能力,提高逻辑思维能3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.4.通过类比、猜想、证明的探索过程,让学生体验成功的快乐,同时培养学生严谨的求学精神.5.通过建立数学模型解决实际问题,培养学生积极进取的精神,增强学习数学的自信心.【重点】1.掌握平行线分线段成比例基本事实,利用平行线判定相似三角形.2.能灵活运用三角形相似判定定理证明三角形相似.3.运用三角形相似的性质计算有关角、线段、周长、面积问题.4.能运用三角形相似的知识解决实际问题.【难点】1.探索三角形相似的判定定理及性质的证明.2.灵活运用三角形相似的判定方法证明三角形相似.3.在实际问题中建立数学模型解决问题.27.2.1相似三角形的判定1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握平行线判定三角形相似的方法.3.了解三角形相似的三个判定定理的证明过程,能灵活应用三角形相似的三个判定定理证明三角形相似.4.了解直角边斜边判定定理的证明过程,能应用直角边斜边判定定理证明直角三角形相似.5.能应用三角形相似的判定定理及性质解决简单问题.1.经历平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.在类比全等三角形的证明方法探究三角形相似的证明方法过程中,渗透数学中的类比思想和转化思想.3.经历类比、猜想、探究、归纳、应用等数学活动,提高学生分析问题、解决问题的能力.4.通过应用三角形相似的判定方法和性质解决简单问题,培养学生的应用意识.1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作、合情推理及演绎推理能力.2.通过探究三角形相似的判定定理的证明,渗透数学中的类比思想方法,提高学生逻辑思维能力.3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及勇于思考、大胆质疑的学习习惯.4.通过类比、猜想、证明的探索过程,让学生体验成功的快乐,同时培养学生严谨的求学精神.【重点】1.掌握平行线分线段成比例基本事实,利用平行线判定相似三角形.2.能灵活运用三角形相似判定定理证明三角形相似.3.能运用三角形相似的判定及性质解决简单问题.【难点】1.探索三角形相似的判定定理的证明.2.灵活运用三角形相似的判定方法证明三角形相似.第课时1.了解相似三角形的概念,掌握平行线分线段成比例这一基本事实.2.经历利用平行线判定三角形相似的证明过程,掌握利用平行线判定三角形相似的方法.1.通过平行线分线段成比例这一基本事实在三角形中的转化,体会数学中的化归思想及数形结合思想.2.通过平行线判定三角形相似及利用相似三角形的性质解决问题,提高学生分析问题、解决问题的能力.1.通过观察、测量、归纳平行线分线段成比例定理,培养学生动手操作能力及直觉思维.2.探究利用平行线判定三角形相似的证明,培养学生合情推理及演绎推理能力,提高逻辑思维能力.3.在探究活动中通过小组合作交流,培养学生共同探究的合作意识及探索实践的良好习惯.【重点】1.掌握平行线分线段成比例基本事实.2.能利用平行线判定三角形相似.【难点】探索利用平行线判定三角形相似的方法.【教师准备】多媒体课件.【学生准备】准备距离相等的一组平行线(或语文横格本).导入一:【课件展示】你知道金字塔有多高吗?传说法老命令祭师们测量金字塔的高度,祭师们为此伤透了脑筋,为了帮助祭师们解决困难,古希腊一位伟大的数学家泰勒斯利用巧妙的办法测量金字塔的高度(在金字塔旁边竖立一根木桩,当木桩影子的长度和木桩的长度相等时,只要测量金字塔的影子的长度,便可得出金字塔的高度),展示了他非凡的数学及科学才能.如图所示.导入二:【复习提问】(1)什么是相似多边形?相似多边形有什么性质?(2)当相似比为1时,两个相似多边形有什么关系?【师生活动】学生独立回答,教师点评.[设计意图]通过数学家测量金字塔的高度导入新课,激发学生学习的兴趣,从而向学生进行要刻苦学习的思想教育,同时让学生体会数学在实际生活中的应用;通过复习相似多边形的概念及性质,让学生用类比法得到相似三角形的概念及性质,为本节课的学习做好铺垫.一、认识相似三角形思考并回答:(1)类比相似多边形的概念,你能说出相似三角形的概念吗?(2)如果相似比是1,那么这两个三角形是什么关系?(3)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是多少?(4)类比相似多边形的性质,说出相似三角形的性质,并用几何语言表示.【师生活动】学生思考回答,教师对每个问题点评后展示课件,规范数学语言.(课件展示)(1)定义:三个角分别相等,三条边成比例,我们就说这两个三角形相似.对应边的比就叫做两个三角形的相似比.(2)表示:△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.注意:对应顶点写在对应的位置上.(3)相似比为1时,这两个三角形全等,所以全等三角形是相似三角形的特例.(4)△ABC与△A'B'C'的相似比为k,那么△A'B'C'与△ABC的相似比是错误!未找到引用源。
相似三角形课堂练习题

相似三角形基础课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形 B.两个钝角三角形C.两个等腰三角形 D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对 B.2对 C.3对 D.4对3.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式.4.如图,△ABC ∽△AED,其中∠ADE=∠B,写出对应边的比例式.5.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.面积周长:(1)如果两个相似三角形对应边的比为3∶5 ,那么它们的相似比为________,周长的比为_____,面积的比为_____.(2)如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为________,周长的比为________.(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于_______.(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为________cm,面积为_______cm2.⑸.如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形相似吗?如果相似,求出△A1B1C1和△A2B2C2的面积比.⑹.如图,点D、E分别是△ABC边AB、AC上的点,且DE∥BC,BD=2AD,那么△ADE的周长︰△ABC的周长=.⑺.已知:如图,△ABC中,DE∥BC,若32ECAE,①ACAE的值;(第3题)② ABC ADE S S ∆∆的值 ;③ 若5S ABC =∆,求△ADE 的面积 ; (8)若S S ABC =∆,32EC AE =,过点E 作EF ∥AB 交BC 于F ,□BFED 的面积 ; (9)若k ECAE =, 5S ABC =∆,过点E 作EF ∥AB 交BC 于F ,求□BFED 的面积 . 解答题 1. 已知:如图,△ABC 的高AD 、BE 交于点F .求证:FD EF BF AF =.2.已知:如图,BE 是△ABC 的外接圆O 的直径,CD 是△ABC 的高.(1)求证:AC •BC=BE •CD ;(2)若CD=6,AD=3,BD=8,求⊙O 的直径BE 的长.3.如图,在□ABCD 中,EF ∥AB ,DE:EA=2:3,EF=4,求CD 的长.4.如图,AB•AC=AD•AE,且∠1=∠2,求证:△ABC ∽△AED .5.已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD ,求证:△ADC ∽△CDP .。
九年级数学上册第四章相似三角形4.7图形的位似随堂练习含解析新版浙教版

4.7__图形的位似1.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是( A )A.②③B.①②C.③④D.②③④2.如图4-7-1中两个四边形是位似图形,它们的位似中心是( D )图4-7-1A.点M B.点NC.点O D.点P【解析】根据位似图形的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.点P在对应点M和点N所在直线上,再连结另两个对应点,即可得出P为两图形的位似中心.故选D.3.[xx·绥化]如图4-7-2,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4∶9,则OB′∶OB为( A )图4-7-2A.2∶3 B.3∶2C .4∶5D .4∶9【解析】 由位似变换的性质可知△A ′B ′C ′∽△ABC .∵△A ′B ′C ′与△ABC 的面积的比是4∶9,△A ′B ′C ′与△ABC 的相似比为2∶3,∴OB ′OB =23. 4.如图4-7-3,在平面直角坐标系中,以原点O 为位似中心,将△ABO 的边长扩大到原来的2倍,得到△A ′B ′O .若点A 的坐标是(1,2),则点A ′的坐标是( C )图4-7-3A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)5.[xx·烟台]如图4-7-4,在平面直角坐标系中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且位似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则点C 的坐标为( A )图4-7-4A .(3,2)B .(3,1)C .(2,2)D .(4,2)6.在平面直角坐标系中,已知点E 的坐标为(-4,2),点F 的坐标为(-2,-2),以原点O 为位似中心,位似比为12,把△EFO 缩小,则点E 的对应点E ′的坐标是( D )A .(-2,1)B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)【解析】 根据题意画出相应的图形,找出点E 的对应点E ′的坐标即可.第6题答图∴点E 的对应点E ′的坐标是(-2,1)或(2,-1).故选D.7.如图4-7-5,以O 为位似中心,将△ABC 放大得到△DEF ,若AD =OA ,则△ABC 与△DEF 的面积之比为( B )图4-7-5A .1∶2B .1∶4C .1∶5D .1∶6【解析】 ∵AD =OA ,∴OA ∶OD =1∶2,∴S △ABC ∶S △DEF =(OA ∶OD )2=1∶4.故选B. 8.如图4-7-6,以O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA =10 cm ,OA ′=20 cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是__1∶2__.图4-7-6【解析】 ∵五边形ABCDE 与五边形A ′B ′C ′D ′E ′位似,OA =10 cm ,OA ′=20 cm , ∴五边形ABCDE ∽五边形A ′B ′C ′D ′E ′,且相似比为OA ∶OA ′=10∶20=1∶2, ∴五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是1∶2.9.[xx·长沙]如图4-7-7,△ABO 三个顶点的坐标分别为A (2,4),B (6,0),O (0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A ′B ′O ,已知点B ′的坐标是(3,0),则点A ′的坐标是__(1,2)__.图4-7-7【解析】 ∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是⎝ ⎛⎭⎪⎫2×12,4×12,即(1,2).10.[xx·柳州]如图4-7-8,以原点O 为位似中心,把△OAB 放大后得到△OCD ,求△OAB 与△OCD 的位似比.图4-7-8解:∵点B 的坐标是(4,0),点D 的坐标是(6,0), ∴OB =4,OD =6, ∴OB OD =46=23, ∵△OAB 与△OCD 关于点O 位似, ∴△OAB 与△OCD 的位似比为23.11.[xx·枣庄改编]如图4-7-9,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;图4-7-9(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴的右侧画出△A 2B 2C 2.解: (1)画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1,如答图所示;第11题答图(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到在y 轴右侧的△A 2B 2C 2,如答图所示.12.如图4-7-10,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的图形是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( D ) A .-12aB .-12(a -1)C .-12(a -1)D .-12(a +3)图4-7-10第12题答图【解析】 如答图,过点B 和点B ′作x 轴的垂线,垂足分别是D 和E . ∵点B ′的横坐标是a ,点C 的坐标是(-1,0). ∴EC =a +1.又∵△A ′B ′C 与△ABC 的位似比为2∶1, ∴DC =12(a +1),∴DO =12(a +3),∴点B 的横坐标是-12(a +3).故选D.13.[xx·滨州]在平面直角坐标系中,点C ,D 的坐标分别为C (2,3),D (1,0).现以原点为位似中心,将线段CD 放大得到线段AB ,若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为__(4,6)或(-4,-6)__. 【解析】 依题意作答图:第13题答图由题意,得位似中心是O ,位似比为2∶1, ∴OA =2OC ,∵C (2,3),∴A (4,6)或(-4,-6).14.如图4-7-11,分别按下列要求作出四边形ABCD 以O 为位似中心的位似四边形. (1)沿AO 方向放大为原图的2倍; (2)沿OA 方向放大为原图的2倍.图4-7-11解:(1)如答图所示,四边形A′B′C′D′即为所求;(2)如答图所示,四边形A″B″C″D″即为所求.第14题答图15.[xx·凉山州]如图4-7-12,在边长为1的正方形网格中建立平面直角坐标系,已知△ABC 三个顶点分别为A(-1,2),B(2,1),C(4,5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以原点O为位似中心,在x轴的上方画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2,并求出△A2B2C2的面积.图4-7-12解:(1)如答图所示,△A1B1C1就是所求三角形;(2)如答图所示,△A2B2C2就是所求三角形.第15题答图如答图,分别过点A 2,C 2作y 轴的平行线,过点B 2作x 轴的平行线,交点分别为E ,F , ∵A (-1,2),B (2,1),C (4,5),△A 2B 2C 2与△ABC 位似,且位似比为2, ∴A 2(-2,4),B 2(4,2),C 2(8,10),∴A 2E =2,C 2F =8,EF =10,B 2E =6,B 2F =4, ∴S △A 2B 2C 2=12×(2+8)×10-12×2×6-12×4×8=28.。
浙教版初三上册数学第四章相似三角形的性质及其应用第2课时相似三角形的周长比、面积比随堂练习(解析版)

浙教版初三上册数学第四章41.[2021·重庆B 卷]已知△ABC ∽△DEF ,且相似比为1∶2,则△A BC 与△DEF 的面积比是( A )A. 1∶4B. 4∶1C. 1∶2D. 2∶1【解析】 依照相似三角形的面积比等于相似比的平方可得S △ABC ∶S △DEF =1∶4.2.[2021·重庆A 卷]若△ABC ∽△DEF ,相似比为3∶2,则对应高线的比为( A )A .3∶2B .3∶5C .9∶4D .4∶9【解析】 因为△ABC ∽△DEF ,依照相似三角形的性质“相似三角形对应高线之比等于相似比”,故选A.3.如图4-5-10,在△ABC 中,D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( D )A .BC =2DEB .△ADE ∽△ABC C.AD AE =AB AC D .S △ABC =3S △ADE【解析】 ∵在△ABC 中,D ,E 分别是边AB ,AC 的中点,∴DE ∥B C ,DE =12BC ,∴BC =2DE ,故A 正确;∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确;∵DE ∥BC ,∴AD AB =AE AC ,即AD AE =AB AC ,故C 正确;∵DE 是△ABC 的中位线,∴DE ∶BC =1∶2,∴S △ABC =4S △ADE ,故D 错误. 图4-5-10 图4-5-114.[2021·湘西]如图4-5-11,在△ABC 中,DE ∥BC ,DB =2AD ,△ADE 的面积为1,则四边形DBCE 的面积为( D )A .3B .5C .6D .8【解析】 由DE ∥BC ,DB =2AD ,得△ADE ∽△ABC ,AD AB =13. ∵S △ADE =1,S △ADE S △ABC =19,∴S △ABC =9. ∴S 四边形DBCE =SABC -S △ADE =8.故选D.5.[2021·连云港]如图4-5-12,已知,△ABC ∽△DEF ,AB ∶DE =1∶2,则下列等式一定成立的是( D ) A.BC DF =12 B.∠A 的度数∠D 的度数=12 C.△ABC 的面积△DEF 的面积=12 D.△ABC 的周长△DEF 的周长=12图4-5-12 图4-5-136.[2021·莘县一模]如图4-5-13,在▱ABCD 中,E 为CD 上一点,连结AE ,BE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF =4∶25,则DE ∶EC =( A )A .2∶3B .2∶5C .3∶5D .3∶2【解析】 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EAB =∠DEF ,∠AFB =∠DFE ,∴△DEF ∽△BAF.∵S △DEF ∶S △ABF =4∶25,∴DE AB =25,∵AB =CD ,∴DE ∶EC =2∶3.7.一副三角板叠放如图4-5-14,则△AOB 与△DOC 的面积之比为__1∶3__.图4-5-148.已知△ABC ∽△DEF ,DE AB =23,△ABC 的周长是12 cm ,面积是30 cm2.(1)求△DEF 的周长;(2)求△DEF 的面积. 解:(1)∵△ABC ∽△DEF ,DE AB =23,∴△DEF 的周长为12×23=8(cm);(2)∵△ABC ∽△DEF ,DE AB =23,∴△DEF 的面积为30×⎝ ⎛⎭⎪⎫232=1313(cm2). 9.已知两个相似三角形的一对对应边长分别是35 cm 和14 cm.(1)已知它们的周长相差60 cm ,求这两个三角形的周长;(2)已知它们的面积相差588 cm2,求这两个三角形的面积.解:(1)∵两个相似三角形的对应边长分别是35 cm 和14 cm ,∴这两个三角形的相似比为5∶2,∴这两个三角形的周长比为5∶2.设较大的三角形的周长为5x cm ,较小的三角形的周长为2x cm. ∵它们的周长相差60 cm ,∴5x -2x =60,∴x =20,∴5x =5×20=100,2x =2×20=40,∴较大的三角形的周长为100 cm ,较小的三角形的周长为40 cm ;(2)∵这两个三角形的相似比为5∶2,∴这两个三角形的面积比为25∶4.设较大的三角形的面积为25x cm2,较小的三角形的面积为4x cm2. ∵它们的面积相差588 cm2,∴(25-4)x =588,解得x =28,∴25x =25×28=700,4x =4×28=112,∴较大的三角形的面积为700 cm2,较小的三角形的面积为112 cm2.10.如图4-5-15,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( C )A .1∶ 3B .1∶2C .1∶3D .1∶4图4-5-15 图4-5-1611.[2021·咸宁]如图4-5-16,在△ABC 中,中线BE ,CD 相交于点O ,连结DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADE =13.其中正确的个数有( C )A. 1个B. 2个 C .3个 D. 4个【解析】 ①∵DE 是△ABC 的中位线,∴DE =12BC ,即DE BC =12,故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC ,∴△DOE ∽△COB , ∴S △DOE S △COB =⎝ ⎛⎭⎪⎫DE BC 2=⎝ ⎛⎭⎪⎫122=14,故②错误; ③∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC ,∵△DOE ∽△COB ,∴OE OB =DE CB ,∴AD AB =OE OB ,故③正确;④∵△ABC 的中线BE 与CD 交于点O ,∴O是△ABC的重心,依照重心性质,得BO=2OE,△ABC的高线长=3△BOC的高线长,∵△ABC与△BOC同底(BC),∴S△ABC=3S△BOC,由②和③,得S△ODE=14S△COB,S△ADE=14S△ABC,∴S△ODES△ADE=13.故④正确.综上所述,①③④正确.故选C.12.如图4-5-17,在Rt△ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为(C)A.5 B.6 C.7 D.12图4-5-17 第12题答图【解析】如答图,可知△DEF∽△HMN,∴EFMN=DFHN,即3x-4=x-34,解得x=7(x=0舍去).故选C.13.[2021·河北区校级模拟]如图4-5-18,AD=DF=FB,DE∥FG ∥BC,则SⅠ∶SⅡ∶SⅢ=__1∶3∶5__.图4-5-18【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD∶AF∶AB=1∶2∶3,∴S△ADE∶S△AFG∶S△ABC=1∶4∶9,∴SⅠ∶SⅡ∶SⅢ=1∶3∶5.14.如图4-5-19,在△ABC中,BC>AC,点D在BC上,且DC =AC,∠ACB的平分线CF交AD于点F.E是AB的中点,连结EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.图4-5-19解:(1)证明:∵DC=AC,∴△ACD为等腰三角形.又∵CF平分∠ACD,∴F 为AD 的中点.又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴EF ∥BC ;(2)由(1)得EF ∥BC ,且EF BD =12,∴△AEF ∽△ABD ,∴S △AEF ∶S △ABD =1∶4,∴S 四边形BDFE ∶S △ABD =3∶4.又∵S △ABD =6,∴S 四边形BDFE =92.15.如图4-5-20,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB =30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于E ,交⊙O 于D ,连结C D(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.图4-5-20 第15题答图解:(1)如答图所示;(2)如答图,连结OD ,设⊙O 半径为r , 在△ABE 和△DCE 中,⎩⎪⎨⎪⎧∠BAE =∠CDE ,∠AEB =∠DEC , ∴△ABE ∽△DCE.∵在Rt △ABC 中,∠ABC =90°,∠ACB =30°,∴AB =12AC =r.∵BD 平分∠ABC ,∴∠ABD =∠CBD =45°,又∵∠ABD =∠ACD ,∠ACD =∠ODC =45°,∴∠DOC =90°.∵在Rt △ODC 中,DC =OD2+OC2=2r , ∴S △ABE S △CDE =⎝ ⎛⎭⎪⎫AB DC 2=⎝ ⎛⎭⎪⎫r 2r 2=12. 16.[2021·梅州改编] 如图4-5-21,在Rt △ABC 中,∠C =90°,AC =5 cm ,∠A =60°,动点M 从点B 动身,在BA 边上以2 cm/s 的速度向点A 匀速运动,同时动点N 从点C 动身,在CB 边上以 3 cm/s 的速度向点B 匀速运动,设运动时刻为t(s)(0≤t ≤5),连结MN.图4-5-21(1)若BM =BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值与△MBN 和△ABC 的周长比;(3)当t 为何值时,四边形ACNM 的面积最小?要求出最小值.解:(1)∵在Rt △ABC 中,∠C =90°,AC =5 cm ,∠A =60°,∴A B =10 cm ,BC =5 3 cm.由题意,得BM =2t(cm),CN =3t(cm),BN =(53-3t)cm , 由BM =BN ,得2t =53-3t ,解得t =532+3=103-15; (2)①当△MBN ∽△ABC 时, ∴MB AB =BN BC ,即2t 10=53-3t 53,解得t =52, ∴MB AB =12,∴△MBN 和△ABC 的周长比为12;②当△NBM ∽△ABC 时, NB AB =BM BC ,即53-3t 10=2t 53,解得t =157, ∴BM BC =237,∴△MBN 和△ABC 的周长比为237. 综上所述,当t =52 s 或t =157 s 时,△MBN 与△ABC 相似,对应的△MBN 和△ABC 的周长比为12或237;(3)如答图,过点M 作MD ⊥BC 于点D ,可得MD =t cm.第16题答图设四边形ACNM 的面积为y cm2,∴y =S △ABC -S △BMN =12AC ·BC -12BN ·MD =12×5×53-12×(53-3t)t=32t2-532t +2532=32⎝ ⎛⎭⎪⎫t -522+758 3. ∴依照二次函数的性质可知,当t =52时,y 的值最小.∴当t =52 s 时,四边形ACNM 的面积最小,最小为758 3 cm2.。
相似三角形随堂作业

一、填空题: 1、若bmma2,3,则_____:ba。
2、已知653zyx,且623zy,则__________,yx。 3、在等腰Rt△ABC中,斜边长为c,斜边上的中线长为m,则______:cm。 4、反向延长线段AB至C,使AC=21AB,那么BC:AB= 。 5、如果△ABC∽△A′B′C′,相似比为3:2,若它们的周长的差为40厘米,则 △A′B′C′的周长为 厘米。 6、如图,梯形ABCD中,DC∥AB,DC=2cm,AB=3.5cm,且MN∥PQ∥AB, DM=MP=PA,则MN= ,PQ= 。
第6题图 第7题图 7、如图,四边形ADEF为菱形,且AB=14厘米,BC=12厘米,AC=10厘米,那BE= 厘米。
8、梯形的上底长1.2厘米,下底长1.8厘米,高1厘米,延长两腰后与下底所成的三角形的高为 厘米。
D C M P N
Q
A B
A D
B F E C
12-13初三 数学作业 总第( 40 )期 姓名 班级 学号 命题人:蔡文红 校对人: 杜荣丽 康梅红
相似练习题 二、选择题: 9、等边三角形的中线与中位线长的比值是( )
A、1:3 B、2:3 C、23:21 D、1:3 10、已知直角三角形三边分别为babaa2,,,0,0ba,则ba:( ) A、1:3 B、1:4 C、2:1 D、3:1 11、一个三角形三边长之比为4:5:6,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为( )
A、44厘米 B、40厘米 C、36厘米 D、24厘米 12、如图,△ABC中,AB=AC,AD是高,EF∥BC,则图中与△ADC相似的三角形共有( )
A、1个 B、2个 C、3个 D、多于3个
13、如图,在平行四边形ABCD中,E为BC边上的点,若BE:EC=4:5,AE交BD于F,则BF:FD等于( )
A、4:5 B、3:5 C、4:9 D、3:8