中国数学发展历史共22页文档
数学发展历程

数学发展历程
数学的发展历程可以大致分为四个时期:
1. 数学形成时期:这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。
2. 初等数学时期、常量数学时期:这个时期的基本的、最简单的成果构成中学数学的主要内容。
大约持续了两千年,逐渐形成了初等数学的主要分支:算数、几何、代数。
3. 变量数学时期:变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus)的创立。
4. 现代数学时期:数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学文化:中国数学教育发展历史-2019年精选教学文档

数学文化:中国数学教育发展历史中国的数学教育有悠久的历史,早在西周时期,数学已作为“六艺”之一,成为专门的学问,唐初国子监增设算学馆,设有算学博士和助教,使用李淳风等编纂注释的《算经十书》为教材。
明代算科考试亦以这些教材为准(见中国数学史)。
近现代的初等数学教育,可以说是在晚清(1903)颁布癸卯学制,废除科举,兴办小学、中学后才开始的。
当时小学设算术课,中学设数学课(包括算术、代数、几何、三角、簿记)。
民国初年(1912~1913)公布壬子癸丑学制,中学由五年改为四年,数学课程不再讲授簿记。
执行时间最久的是1922年公布的壬戌学制,将小学、中学都改为六年,各分初高两级,初小四年,高小二年,初高中皆三年。
初中数学讲授算术、代数、平面几何,高中数学讲授平面三角、高中几何、高中代数、平面解析几何(高中曾分文理两科,部分理科加授立体解析几何和微积分初步),这个学制基本沿用到1949年。
中华人民共和国成立后,中小学的教育进行了改革,学制大都改为小学六年,初高中各三年,初中逐步取消算术课。
50年代高中数学一度停授平面解析几何,后又恢复并增授微积分初步以及概率论和电子计算机的初步知识。
中国近代高等数学教育,也是从清朝末年开始的。
1862年洋务派创办的京师同文馆,本来是个外语学校,从1866年增设天文算学馆,1867年招生,开始向中等专科学校转变。
1868年聘李善兰为总教习,设代数、几何(原本)、平面和球面三角、微积分等课程,可以认为,这是向中国学生较系统地传授西方高等数学基础知识的开始。
1898年戊戌变法中,京师大学堂成立,这是中国近代第一个国立大学。
1902年,同文馆并入京师大学堂。
辛亥革命后,1912年京师大学堂改名北京大学,首创数学门(相当于系),1919年改称数学系,这是中国第一个数学系。
随着较早成立数学系的有南开大学(1920)、厦门大学(1926)、中山大学(1926)、四川大学(1926年前后)、清华大学(1927)、浙江大学(1928)等。
中国数学发展历史ppt课件

1
先秦萌芽时期
2
算筹
算筹与圆周率 算筹为人类文明做出过巨大 贡献,我国古代著名的数学 家祖冲之,就是借助算筹计 算出圆周率的值介于 3.1415926和3.1415927之 间;中国古代的天文学家也 运用算筹,总结出了精密的 天文历法。
最古老的计算工具:算筹 祖冲之(公元429-500年)
8
唐朝在数学教育方面有长足的发 展。656年国子监设立算学馆,设有 算学博士和助教,由太史令李淳风等 人编纂注释《算经十书》 包括《周髀算经》、《九章算术》
《海岛算经》、《孙子算经》 《张丘建算经》、《夏侯阳算经》
《缉古算经》、《五曹算经》 《五经算术》、《缀术》,
作为算学馆学生用的课本。对保存古 代数学经典起了重要的作用。
19
20
华罗庚(Hua Loo-Keng,公元1910年11月12 日─公元1985年6月12日)是近代世界有名的 中国数学家。对数学的贡献是多方面的,在数 论中,他解决了高斯完整三角和的估计,对华 林问题、塔里问题的结果做出了重大推进。他 在圆法与三角和估计法方面的结果长期居世界 领先地位。他的著作《堆垒素数论》、《数论 导引》及与王元合着的《数论在近似分析中的 应用》等都已成为经典著作。华罗庚在复分析 和典型群方面也有许多工作,其中论文《典型 域上的多元复变量函数论》被国际学术界称为 「华氏定理」。
15
近现代数学发展时期
16
陈省身 数学家,美国国籍 。曾获美国国家科
学奖(1975),沃尔夫数学奖(1984)等。 1994年当选为中国科学院外籍院士。陈省 身是20世纪的伟大几何学家,在微分几何 方面的成就尤为突出,被世人称为“微分 几何之父”。
中国数学发展简史

中国数学发展简史翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。
中国数学的起源(上古~西汉末期)古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。
的确,一个没有数的世界是不堪设想的。
今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。
在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。
如果当时要有人能数到10,那一定会被认为是杰出的天才了。
后来人们慢慢地会把数字和双手联系在一起了。
每只手各拿一件东西,就是2数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。
先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。
就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。
到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。
这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。
算术领域,四则运算在这一时期内得到了确立,乘法中诀已经各种著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。
几何领域,出现了勾股定理。
代数领域,出现了负数概念的萌芽。
当历史推进到秦汉时期,我们发现,这一时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。
在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。
(2)中国数学的发展繁荣时期(西汉末期~隋朝中叶)(3)这是中国数学理论的第一个高峰期。
这个高峰的标志就是数学专著《九章算术》的诞生。
这本书的诞生,不仅说明我国古代完整的数学体系已经形成,而且在世界上,当时也很难找到另一本能同媲美的数学专著。
在这一数学理论发展的高峰期,除了《九章算术》这部巨著之外,还出现祖冲之的《缀术》等数学专著。
数学史中国数学历史发展概况

王说
是一种均衡的数字配置。在八卦中,相对 天 法
称的卦象,如乾与坤,其象数之和均为45。
下。 ,其
它与洛书中1至9的数字之和相同
龙中 马
明代邵雍的易图数学结构
2.2 先秦显学中的数学思想
儒家以“九数”为核心,具有鲜明的政治和人文色彩,并以 《周易》象数学宇宙论为哲学依托;墨家则以几何学为核心,具有 一定的抽象性和思辨性,以《墨经》的逻辑学为其论说的工具。 • 孔子(前551~前479)的“六艺”中的“周官九数”(方田、粟 米、差分、少广、商功、均输、方程、赢不足、旁要 )是《九章 算术》的雏形 • 墨子(前468~前376)的抽象概念和逻辑知识:
研究认为,《周易》中爻的符号“—”、“--”是由数字或数表演进而 来的。理由是:
其一,卦辞中,当对卦画进行解释时,总是用数“九”和“六”分别 表示阳爻和阴爻。
其二,考古发现商代甲骨文或陶器上有不少由六组数(每组三个数字) 组成的数表 ,所用的数字逐渐增加一、六的使用频率,别的数字似乎有不用 的趋势。大约在周初(约公元前1066),就只有一和六这两个数字了。
三个逻辑方法:“以名举实,以辞抒意,以说出故。以类取,以 类予”,具有比较明确的逻辑思维形式,非常类似演绎数学中的定 义、定理和证明。对几何中的几何形状、几何性质、空间关系提出 了明确的定义。论述了推理(说)的各种形式。 • 惠施(约前370~前318)对无穷性质的认识 :“一尺之棰,日取 其半,万世不竭” ;“镟矢之疾有不行不止之时”。
社会历史背景条件
相对封闭的疆域 大河背景下的农耕文化 集中的王权
中国数学的特点
形成了以计算为核心的算法理论 具有浓郁应用色彩
中国数学的成就
第一部数学著作《九章算术》(大约公元前二百年 左右)
中国数学发展史

中国数学发展史中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。
现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。
乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。
中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。
“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。
”和其他古代国家一样,乘法表的产生在中国也很早。
乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。
现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。
”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。
在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。
中国的数学发展史

肆:中国数学发展的高峰
中国数学发展的高峰
贾宪
刘益
《黄帝九章算 《议古根
法细草》
源》
11世纪中叶 12世纪中 叶
秦九韶 李冶
杨辉
朱世杰
《数书九 章》
《测圆海镜》 《详解九章 《益古演段》 算法》《日
用算法》和 《杨辉算法》
《算学启蒙》 《四元玉鉴》
1247年 1248 1261 1261〔1262〕 〔1299〕 〔1274-1275〕 〔1303〕
此中国的数学开始了自己的发 展。
文 计
数
法
手指计数法
中国数学的起源和发展
《史记·夏本纪》中就记 载了有关几何的知识
夏禹治水时期
《考工记》《墨经》《庄子》 等著作涉及到测量、论题、抽 象的数学问题。
战国时期
《周髀算经》《九章 算术》等著作现世
三国时期
春秋时期
普遍使用算筹 这种计算工具
秦汉时期
《周易》讲述阴阳八卦, 并反映出二进制思想
魏晋时期
《周髀算经》做了详尽的注释, 在《勾股圆方图注》中用几何 方法严格证明了勾股定理
中国数学的起源和发展
《九章算术》是中国古代第一部数 学专著,是算经十书中最重要的一 种。该书内容十分丰富,系统总结 了战国、秦、汉时期的数学成就。 同时,《九章算术》在数学上还有 其独到的成就,不仅最早提到分数 问题,也首先记录了盈不足等问题。
公元1088—1095年间, 北宋沈括从“酒家积罂” 数与“层坛”体积等生 产实践问题提出了“隙 积术”,开始对高阶等 差级数的求和进行研究,
伍:中国数学对世界的影响
这里是您的文本
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化 (演绎化)数学文化传统,后者是由于接受了机械化(算法化)数 学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为 代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算 术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东 西辉映,共同促进了世界数学文化的发展。 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人 传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越 南等亚洲国家的数学发展。
数学史第十讲中国数学发展简史1

数学史第十讲中国数学发展简史1引言中国是世界上最早有完整数学体系的文明之一。
中国数学在古代取得了很大的成就,对世界数学的发展有着深远的影响。
本文将从大致概述的角度,简要介绍中国数学的发展历程。
古代数学的起源最早的数学文化可追溯到商代和周代。
商代的甲骨文中可以找到一些数学记录,例如使用简单的加法、减法和乘法记数。
随着周代开始公式化的农业和贸易,数学逐渐得到了发展。
先秦数学思想先秦时期,中国的数学开始形成自己的思想体系。
孔子提出了“五经之算”并将数学视为教育的基础。
《周髀算经》是当时最早的数学手册之一,其中包括了复杂的方程和几何问题。
刘徽的数学贡献刘徽是东晋时期的数学家,被誉为中国古代数学的奠基人之一。
他所撰写的《九章算术》是中国最早的数学专著之一。
这本书涵盖了代数、几何和三角学等多个领域,奠定了中国古代数学的基础。
南宋数学的繁荣南宋时期,中国数学达到了一个高峰。
数学家杨辉提出了杨辉三角形,并研究了它的各种性质。
他的贡献为组合数学的发展打下了基础。
同时,南宋还出现了一位著名的数学家秦九韶,他研究了无穷小量和几何中的切线问题,为微积分的发展做出了重要贡献。
明清时期的数学衰落明清时期,中国的数学逐渐衰落。
主要原因是中国的文化重心转向了文学和政治,数学的地位逐渐被忽视。
数学的教育和研究水平也大幅下降,数学家们的成就较少突出。
结论中国古代数学在世界数学发展史上有着重要的地位。
从最早的古代数学起源到南宋时期的繁荣,中国数学的成就对于后世产生了深远的影响。
然而,明清时期的数学衰落导致了中国数学在全球范围内的边缘化。
但是,我们应该认识到中国古代数学的重要性,并继续研究和传承这一宝贵的数学遗产。
参考文献: 1. 权质之书,中国非遗数字化项目 2. 史实何在?中国算筹起源的谜团 3. 《中国数学史》刘新民著。