高中数学人教A版必修三课时作业第3章概率3.3.2含答案
2021年高中数学课时作业16第三章概率3.1.3概率的基本性质新人教A版必修

2021年高中数学课时作业16第三章概率3.1.3概率的基本性质新人教A版必修P (A 1)=0.16,P (A 2)=0.3,P (A 3)=0.3,P (A 4)=0.1,P (B )=0.04.(1)至多2人排队等候的概率为P =P (A 0∪A 1∪A 2)=P (A 0)+P (A 1)+P (A 2)=0.1+0.16+0.3=0.56(2)至少3人排队等候的概率为P =1-P (A 0∪A 1∪A 2)=1-0.56=0.44.10.(衡水高三调研)某射手在一次射击中命中9环的概率是0.28,命中8环的概率是0.19,不够8环的概率是0.29,计算这个射手在一次射击中命中9环或10环的概率.解析:记这个射手在一次射击中命中10环或9环为事件A ,命中10环、9环、8环、不够8环分别为事件A 1,A 2,A 3,A 4,由题意知,A 2,A 3,A 4彼此互斥,所以P (A 2∪A 3∪A 4)=P (A 2)+P (A 3)+P (A 4)=0.28+0.19+0.29=0.76.又因为A 1与A 2∪A 3∪A 4互为对立事件,所以P (A 1)=1-P (A 2∪A 3∪A 4)=1-0.76=0.24.因为A 1与A 2互斥,且A =A 1∪A 2,所以P (A )=P (A 1∪A 2)=P (A 1)+P (A 2)=0.24+0.28=0.52.|能力提升|(20分钟,40分)11.如果事件A ,B 互斥,记A -,B -分别为事件A ,B 的对立事件,那么( )A .A ∪B 是必然事件B.A -∪B -是必然事件C.A -与B -一定互斥D.A -与B -一定不互斥解析:用Venn 图解决此类问题较为直观,如图所示,A -∪B -是必然事件,故选B.答案:B12.(太原高一检测)抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是16,记事件A 为“出现奇数”,事件B 为“向上的点数不超过3”,则P (A ∪B )=________.解析:记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为A 1,A 2,A 3,A 4,由题意知这四个事件彼此互斥.则A ∪B =A 1∪A 2∪A 3∪A 4故P (A ∪B )=P (A 1∪A 2∪A 3∪A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=16+16+16+16=23. 答案:2313.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求(1)P (A ),P (B ),P (C );(2)抽取1张奖券中奖概率;(3)抽取1张奖券不中特等奖或一等奖的概率.解析:(1)因为每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,所以P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120.。
高中数学第三章 3.3.3_3.3.4点到直线的距离两条平行直线间的距离课后篇巩固探究(含解析)新人教A版必修2

3.3.3~3.3.4点到直线的距离两条平行直线间的距离课后篇巩固提升1.已知两直线3x+y-3=0与6x+my+1=0平行,则它们之间的距离为()A.4B.2√1313C.5√1326D.7√1020直线3x+y-3=0与6x+my+1=0平行,∴63=m1≠1-3,解得m=2.∴两条直线方程分别为3x+y-3=0与6x+2y+1=0,即6x+2y-6=0与6x+2y+1=0.∴两条直线之间的距离为d==7√1020.2.已知点A(1+t,1+3t)到直线l:y=2x-1的距离为√55,则点A的坐标为()A.(0,-2)B.(2,4)C.(0,-2)或(2,4)D.(1,1)l:y=2x-1可化为2x-y-1=0,依题意得=√55,整理得|t|=1,所以t=1或t=-1.当t=1时,点A的坐标为(2,4);当t=-1时,点A的坐标为(0,-2).综上,点A的坐标为(0,-2)或(2,4),故选C.3.直线2x+3y-6=0关于点(1,-1)对称的直线方程是()A.3x-2y-6=0B.2x+3y+7=0C.3x-2y-12=0D.2x+3y+8=0法一)设所求直线的方程为2x+3y+C=0,由题意可知=,解得C=-6(舍去)或C=8.故所求直线的方程为2x+3y+8=0.(法二)令(x0,y0)为所求直线上任意一点,则点(x0,y0)关于(1,-1)的对称点为(2-x0,-2-y0),此点在直线2x+3y-6=0上,代入可得所求直线方程为2x+3y+8=0.4.当点P(3,2)到直线mx-y+1-2m=0的距离最大时,m的值为()A.√2B.0C.-1D.1mx-y+1-2m=0过定点Q(2,1),所以点P(3,2)到直线mx-y+1-2m=0的距离最大时PQ垂直于直线mx-y+1-2m=0,即m·2-13-2=-1,所以m=-1,故选C.5.过点(1,2),且与原点距离最大的直线方程为()A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.3x+y-5=0,所求直线过(1,2),且垂直于(0,0)与(1,2)两点的连线,∴所求直线的斜率k=-12,∴y-2=-12(x-1),即x+2y-5=0.6.过点(1,3)且与原点的距离为1的直线共有条.x=1过点(1,3)且与原点的距离为1;再设直线方程为y-3=k(x-1),由√=1得,k=43,所以直线方程为4x-3y+2=0,因此满足条件的直线有两条.7.已知直线l1:2x-y+a=0,l2:4x-2y-1=0,若直线l1,l2的距离等于7√510,且直线l1不经过第四象限,则a=.l1,l2的方程可知,直线l1∥l2.在直线l1上选取一点P(0,a),依题意得,l1与l2之间的距离为√42+(-2)2=7√510,整理得=7√510,解得a=3或a=-4.因为直线l1不经过第四象限,所以a≥0,所以a=3.8.已知两条平行直线l1:3x+4y+5=0,l2:6x+by+c=0间的距离为2,则b+c=.l1:3x+4y+5=0改写为6x+8y+10=0,因为两条直线平行,所以b=8.由=2,解得c=30,或c=-10,所以b+c=38或b+c=-2.或-29.已知直线l在x轴上的截距为1,又有两点A(-2,-1),B(4,5)到l的距离相等,则l的方程为.l ⊥x 轴时符合要求,此时l 的方程为x=1;当l 的斜率存在时,设l 的斜率为k ,则l 的方程为y=k (x-1),即kx-y-k=0.∵点A ,B 到l 的距离相等, ∴√=√,∴|1-3k|=|3k-5|,解得k=1,∴l 的方程为x-y-1=0. 综上,l 的方程为x=1或x-y-1=0.1或x-y-1=010.已知△ABC 三边所在直线方程:l AB :3x-2y+6=0,l AC :2x+3y-22=0,l BC :3x+4y-m=0(m ∈R ,m ≠30). (1)判断△ABC 的形状;(2)当BC 边上的高为1时,求m 的值.因为直线AB 的斜率为k AB =32,直线AC 的斜率为k AC =-23,所以k AB ·k AC =-1,所以直线AB 与AC 互相垂直,因此△ABC 为直角三角形. (2)解方程组{3m -2m +6=0,2m +3m -22=0,得{m =2,m =6,即A (2,6).由点到直线的距离公式得d=√=|30-m |5.当d=1时,|30-m |5=1,|30-m|=5,解得m=25或m=35.所以m 的值为25或35.11.已知直线l 1:x-y=0,l 2:2x+y-3=0,l 3:ax-2y+4=0.(1)若点P 在直线l 1上,且到直线l 2的距离为3√5,求点P 的坐标; (2)若l 2∥l 3,求l 2与l 3的距离.依题意可设P (t ,t ),由√5=3√5,得|t-1|=5,解得t=-4或t=6,所以点P 的坐标为(-4,-4)或(6,6). (2)由l 2∥l 3得a=-4,∴l 2:2x+y-3=0,l 3:-4x-2y+4=0,即2x+y-2=0. ∴l 2与l 3的距离d=√5=√55. 12.(选做题)已知平行四边形ABCD 的三个顶点的坐标为A (-1,5),B (-2,-1),C (2,3). (1)求平行四边形ABCD 的顶点D 的坐标; (2)在△ACD 中,求CD 边上的高所在直线方程; (3)求四边形ABCD 的面积. 解(1)依题意得,线段AC 中点为12,4,点12,4也为线段BD 中点,设D (x ,y ),因为B (-2,-1),则可得D (3,9).(2)因为k CD =6,所以CD 边上的高的斜率为-16,又CD 边上的高过点A ,所以CD 边上的高所在的直线方程为y-5=-16(x+1),即y=-m 6+296;(3)因为BC :x-y+1=0,所以点A (-1,5)到BC 的距离为√2=5√22,又因为BC=4√2,所以四边形ABCD 的面积为5√22×4√2=20.。
人教A高中数学必修二课时分层训练:第三章 直线与方程 33 331 332 含解析

第三章 3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离课时分层训练‖层级一‖……………………|学业水平达标|1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A .(4,1) B .(1,4) C.⎝ ⎛⎭⎪⎫43,13 D.⎝ ⎛⎭⎪⎫13,43 解析:选C 由方程组⎩⎪⎨⎪⎧x +2y -2=0,2x +y -3=0,得⎩⎪⎨⎪⎧x =43,y =13.即直线x +2y -2=0与直线2x +y -3=0的交点坐标是⎝ ⎛⎭⎪⎫43,13.2.过点A (4,a )和点B (5,b )的直线与y =x +m 平行,则|AB |的值为( ) A .6 B. 2 C .2D .不能确定解析:选B 由k AB =1,得b -a1=1, ∴b -a =1. ∴|AB |=(5-4)2+(b -a )2=1+1= 2.3.方程(a -1)x -y +2a +1=0(a ∈R )所表示的直线( ) A .恒过定点(-2,3) B .恒过定点(2,3) C .恒过点(-2,3)和点(2,3)D .都是平行直线解析:选A (a -1)x -y +2a +1=0可化为-x -y +1+a (x +2)=0, 由⎩⎪⎨⎪⎧ -x -y +1=0,x +2=0,得⎩⎪⎨⎪⎧x =-2,y =3.4.点P (a ,b )关于直线l :x +y +1=0的对称的点仍在l 上,则a +b 等于( ) A .1 B .-1 C .2D .0解析:选B ∵点P (a ,b )关于l :x +y +1=0对称的点仍在l 上,∴点P (a ,b )在直线l 上,∴a +b +1=0,即a +b =-1.5.到A (1,3),B (-5,1)两点的距离相等的动点P 的轨迹方程是( ) A .3x -y -8=0 B .3x +y +4=0 C .3x -y +6=0D .3x +y +2=0解析:选B 解法一:设P (x ,y ), 则(x -1)2+(y -3)2=(x +5)2+(y -1)2,即3x +y +4=0.解法二:到A 、B 两点距离相等的点P 的轨迹就是线段AB 的垂直平分线,AB 中点为M (-2,2),k AB =13,∴k l =-3,l :y -2=-3(x +2),即3x +y +4=0.6.点P (2,5)关于直线x +y =1的对称点的坐标是 . 解析:设对称点坐标是(a ,b ),则⎩⎪⎨⎪⎧b -5a -2·(-1)=-1,a +22+b +52=1.解得a =-4,b=-1,即所求对称点坐标是(-4,-1).答案:(-4,-1)7.经过两直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0垂直的直线l 的方程为 .解析:由方程组⎩⎪⎨⎪⎧2x -3y -3=0,x +y +2=0,得⎩⎪⎨⎪⎧x =-35,y =-75.又所求直线与直线3x +y -1=0垂直,故k =13, ∴直线方程为y +75=13⎝ ⎛⎭⎪⎫x +35,即5x -15y -18=0. 答案:5x -15y -18=08.在直线x -y +4=0上求一点P ,使它到点M (-2,-4),N (4,6)的距离相等,则点P 的坐标为 .解析:设P 点的坐标是(a ,a +4), 由题意可知|PM |=|PN |, 即(a +2)2+(a +4+4)2=(a -4)2+(a +4-6)2,解得a =-32,故P 点的坐标是⎝ ⎛⎭⎪⎫-32,52.答案:⎝ ⎛⎭⎪⎫-32,529.光线从A (-4,-2)点射出,到直线y =x 上的B 点后被直线y =x 反射到y 轴上C 点,又被y 轴反射,这时反射光线恰好过点D (-1,6),求BC 所在的直线方程.解:作出草图,如图所示,设A 关于直线y =x 的对称点为A ′,D 关于y 轴的对称点为D ′,则易得A ′(-2,-4),D ′(1,6).由入射角等于反射角可得A ′D ′所在直线经过点B 与C .故BC 所在的直线方程为y -66+4=x -11+2,即10x -3y +8=0.10.已知两条直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试分别确定m ,n 的值,满足下列条件:(1)l 1与l 2相交于一点P (m,1); (2)l 1∥l 2且l 1过点(3,-1); (3)l 1⊥l 2且l 1在y 轴上的截距为-1.解:(1)把P (m,1)的坐标分别代入l 1,l 2的方程得m 2+8+n =0,2m +m -1=0,解得m =13,n =-739.(2)显然m ≠0.∵l 1∥l 2且l 1过点(3,-1), ∴⎩⎪⎨⎪⎧-m 8=-2m ,3m -8+n =0,解得⎩⎨⎧ m =4,n =-4或⎩⎨⎧m =-4,n =20.(3)由l 1⊥l 2且l 1在y 轴上的截距为-1.当m =0时,l 1的方程为8y +n =0,l 2的方程为2x -1=0.∴-8+n =0,解得n =8.∴m =0,n =8.而m ≠0时,直线l 1与l 2不垂直. 综上可知,m =0,n =8.‖层级二‖………………|应试能力达标|1.直线l :x +2y -1=0关于点(1,-1)对称的直线l ′的方程为( ) A .2x -y -5=0 B .x +2y -3=0 C .x +2y +3=0D .2x -y -1=0解析:选C 由题意得l ′∥l ,故设l ′:x +2y +c =0,在l 上取点A (1,0),则点A (1,0)关于点(1,-1)的对称点是A ′(1,-2),所以1+2×(-2)+c =0,即c =3,故直线l ′的方程为x +2y +3=0,故选C.2.已知平面上两点A (x ,2-x ),B ⎝ ⎛⎭⎪⎫22,0,则|AB |的最小值为( )A .3 B.13 C .2D.12解析:选D ∵|AB |=⎝⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,当且仅当x =324时等号成立,∴|AB |min =12.3.无论k 为何值,直线(k +2)x +(1-k )y -4k -5=0都过一个定点,则该定点为( )A .(1,3)B .(-1,3)C .(3,1)D .(3,-1)解析:选D 直线方程可化为(2x +y -5)+k (x -y -4)=0,此直线过直线2x +y -5=0和直线x -y -4=0的交点.由⎩⎪⎨⎪⎧ 2x +y -5=0,x -y -4=0,解得⎩⎪⎨⎪⎧x =3,y =-1.因此所求定点为(3,-1).故选D.4.已知点A (3,-1),B (5,-2),点P 在直线x +y =0上,若使|P A |+|PB |取最小值,则P 点坐标是( )A .(1,-1)B .(-1,1) C.⎝ ⎛⎭⎪⎫135,-135 D .(-2,2)解析:选C 点A (3,-1)关于直线x +y =0的对称点为A ′(1,-3),直线A ′B 的方程为y =14x -134,与x +y =0联立方程组解得⎩⎪⎨⎪⎧x =135,y =-135,所以点P ⎝ ⎛⎭⎪⎫135,-135. 5.若两直线(m +2)x -y -m =0,x +y =0与x 轴围成三角形,则实数m 的取值范围是 .解析:当直线(m +2)x -y -m =0,x +y =0及x 轴两两不平行,且不共点时,必围成三角形.当m =-2时,(m +2)x -y -m =0与x 轴平行;当m =-3时,(m +2)x -y -m =0与x +y =0平行;当m =0时,三条直线都过原点,所以m 的取值范围为{m |m ≠-3,且m ≠-2,且m ≠0}.答案:{m |m ≠-3,且m ≠-2,且m ≠0}6.已知A (2,1),B (1,2),若直线y =ax 与线段AB 相交,则实数a 的取值范围是 .解析:如图,直线y =ax 的斜率为a 且经过原点O ,∵直线y =ax 与线段AB 相交,∴实数a 的最小值为OA 的斜率,最大值为OB 的斜率,OA 的斜率为12,OB 的斜率为2,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤12,2.答案:⎣⎢⎡⎦⎥⎤12,27.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则实数k 的取值范围是 .解析:解法一:由题意知直线l 过定点P (0,-3), 直线2x +3y -6=0与x ,y 轴的交点分别为A (3,0),B (0,2),如图所示,要使两直线的交点在第一象限, 则直线l 在直线AP 与BP 之间, 而k AP =-3-00-3=33,∴k >33. 解法二:解方程组⎩⎪⎨⎪⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+63k +2,y =6k -233k +2.由题意知x =33+63k +2>0且y =6k -233k +2>0.由33+63k +2>0可得3k +2>0,∴6k -23>0,解得k >33. 答案:⎝ ⎛⎭⎪⎫33,+∞8.已知△ABC 的一个顶点A (2,-4),且∠B ,∠C 的角平分线所在直线的方程依次是x +y -2=0,x -3y -6=0,求△ABC 的三边所在直线的方程.解:如图,BE ,CF 分别为∠ABC ,∠ACB 的角平分线,由角平分线的性质,知点A 关于直线BE ,CF 的对称点A ′,A ″均在直线BC 上.∵直线BE 的方程为x +y -2=0, ∴A ′(6,0).∵直线CF 的方程为x -3y -6=0,∴A ″⎝ ⎛⎭⎪⎫25,45.∴直线A ′A ″的方程是y =0-456-25(x -6),即x +7y -6=0,这也是BC 所在直线的方程. 由⎩⎨⎧ x +7y -6=0,x +y -2=0,得B ⎝ ⎛⎭⎪⎫43,23,由⎩⎨⎧x +7y -6=0,x -3y -6=0,得C (6,0), ∴AB 所在直线的方程是7x +y -10=0,AC 所在直线方程是x -y -6=0.。
新人教A版高中数学【必修3】 3.1 习题课课时作业练习含答案解析

§3.1习题课课时目标 1.进一步理解随机事件的有关概念;理解频率与概率的关系及概率的意义.2.会解决简单的有关概率的实际问题.1.下面的事件:①掷一枚硬币,出现反面;②对顶角相等;③3+5>10,是随机事件的有() A.②B.③C.①D.②③2.下面的事件:①袋中有2个红球,4个白球,从中任取3个球,至少取到1个白球;②某人买彩票中奖;③实系数一次方程必有一实根;④明天会下雨.其中是必然事件的有()A.①B.④C.①③D.①④3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175]之间的概率为0.5,那么该同学的身高超过175 cm的概率为()A.0.2 B.0.3 C.0.7 D.0.84.若P(A+B)=P(A)+P(B)=1,则事件A与B的关系是()A.互斥不对立B.对立不互斥C.对立且互斥D.以上均不对5.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只产品是正品(甲级品)的概率为________.6.某射击运动员进行双向飞蝶射击训练,七次训练的成绩记录如下:(1)(2)该射击运动员击中飞碟的概率约为多少?(保留3位小数)一、选择题1.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定 2.下列事件中,随机事件是( ) A .向区间(0,1)内投点,点落在(0,1)区间 B .向区间(0,1)内投点,点落在(1,2)区间 C .向区间(0,2)内投点,点落在(0,1)区间 D .向区间(0,2)内投点,点落在(-1,0)区间 3.给出下列三个命题,其中正确的有( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面向上,因此正面出现的概率是37; ③随机事件发生的频率就是这个随机事件发生的概率. A .0个 B .1个 C .2个 D .3个 4.如果事件A 、B 互斥,A 、B 分别为A 、B 的对立事件,则有( ) A .A +B 是必然事件 B .A +B 是必然事件 C .A 与B 一定互斥 D .A 与B 不互斥5.关于互斥事件的理解,错误的是( )A .若A 发生,则B 不发生;若B 发生,则A 不发生B .若A 发生,则B 不发生,若B 发生,则A 不发生,二者必具其一C .A 发生,B 不发生;B 发生,A 不发生;A 、B 都不发生D .若A 、B 又是对立事件,则A 、B 中有且只有一个发生6.考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A .1B .12C .13 D .07.下列说法:①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率mn 就是事件的概率;③频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值; ④频率是概率的近似值,概率是频率的稳定值. 其中正确的是________.8.某人在一次射击中,命中9环的概率为0.28,命中8环的概率为0.19,不够8环的概率为0.29,则这人在一次射击中命中9环或10环的概率为________.9.从一副混合后的扑克牌(52张)中随机抽取1张,事件A 为“抽得红桃K ”,事件B 为“抽得为黑桃”,则概率P(A ∪B)的值是________.(结果用最简分数表示) 三、解答题10.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、得到黄球、得到绿球的概率各是多少?11.我国已经正式加入WTO ,包括汽车在内的进口商品将最多五年内把关税全部降到世贸组织所要求的水平,其中有21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年达到要求,其余的进口商品将在3年或3年内达到要求,求进口汽车在不超过4年的时间内关税达到要求的概率.能力提升12.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,求(1)甲获胜的概率;(2)甲不输的概率.13.下表为某班英语及数学成绩的分布,学生共有50人,成绩分1~5五个档次,例如表中所示英语成绩为4分、数学成绩为2分的学生为5人,将全班学生的姓名卡片混在一起,任取一张,该张卡片对应学生的英语成绩为x,数学成绩为y,设x,y为随机变量.(注:没有重名学生)(1)x=1的概率为多少?x≥3且y=3的概率为多少?(2)a+b等于多少?1.随机事件在一次试验中发生与否是随机的,但随机中含有规律性,概率是大次数地重复试验中频率的稳定值.2.概率可看作频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地作为这个事件的概率.3.复杂事件求概率时常用的两种转化方法:一是转化为彼此互斥的事件的概率;二是转化为求其对立事件发生的概率.答案:§3.1习题课双基演练1.C 2.C3.B [该同学身高超过175 cm (事件A)与该同学身高不超过175 cm 是对立事件,而不超过175 cm 的事件为小于160 cm (事件B)和[160,175](事件C)两事件的和事件,即 P(A)=1-P(A ) =1-[P(B)+P(C)] =1-(0.2+0.5) =0.3.]4.C [∵P(A +B)=1,∴A +B 为必然事件.又∵P(A +B)=P(A)+P(B),∴A 与B 为互斥事件,因此有A ∩B 为不可能事件.A ∪B 为必然事件,所以A 与B 也是对立事件.] 5.92%解析 记抽验的产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,这三个事件彼此互斥,因而抽验产品是正品(甲级品)的概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%. 6.解 (1)计算n An 得各次击中飞碟的频率依次为0.810,0.792,0.820,0.820,0.793,0.794, 0.807.(2)由于这些频率非常接近0.810,在它附近摆动,所以运动员击中飞碟的概率约为0.810. 作业设计 1.C 2.C3.A [由频率和概率的定义及频率与概率的关系可知①②③都不正确.]4.B [A 、B 互斥,A 、B 可以不同时发生,即A ∩B =∅,所以A ∩B 的对立事件A ∩B =A ∪B 是必然事件,即A +B 是必然事件.]5.B [A 、B 互斥,A 、B 可以不同时发生,A 、B 也可以同时不发生,但只要一个发生,另一个一定不发生.对立事件是必定有一个发生的互斥事件,故只有B 错.]6.A [由正方体的对称性知其六个面的中心构成同底的两个四棱锥,且四棱锥的各个侧面是全等的三角形,底面四个顶点构成一个正方形,从这6个点中任选3个点构成的三角形可分为以下两类:第一类是选中相对面中心两点及被这两个平面所夹的四个面中的任意一个面的中心,构成的是等腰直角三角形,此时剩下的三个点也连成一个与其全等的三角形.第二类是所选三个点均为多面体的侧面三角形的三个点(即所选3个点所在的平面彼此相邻)此时构成的是正三角形,同时剩下的三个点也构成与其全等的三角形,故所求概率为1.] 7.①③④ 8.0.52解析 P =1-P(x ≤8)=1-P(x<8)-P(x =8) =1-0.29-0.19=0.52.9.726解析 一副扑克中有1张红桃K,13张黑桃,事件A 与事件B 为互斥事件,∴P(A ∪B)=P(A)+P(B)=152+1352=726.10.解 设事件A 、B 、C 、D 分别表示“任取一球,得到红球”,“任取一球,得到黑球”,“任取一球,得到黄球”,“任取一球,得到绿球”, 则由已知得P(A)=13, P(B ∪C)=P(B)+P(C)=512, P(C ∪D)=P(C)+P(D)=512,P(B ∪C ∪D)=1-P(A)=P(B)+P(C)+P(D) =1-13=23.解得P(B)=14,P(C)=16,P(D)=14.故得到黑球,得到黄球,得到绿球的概率分别为14,16,14.11.解 方法一 设“进口汽车恰好4年关税达到要求”为事件A ,“不到4年达到要求”为事件B ,则“进口汽车不超过4年的时间内关税达到要求”就是事件A +B ,显然A 与B 是互斥事件,所以P(A ∪B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.方法二 设“进口汽车在不超过4年的时间内关税达到要求”为事件M ,则N 为“进口汽车5年关税达到要求”,所以P(M)=1-P(N)=1-0.21=0.79.12.解 (1)“甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率为P =1-12-13=16. (2)方法一 设事件A 为“甲不输”,看作是“甲胜”“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23.方法二 设事件A 为“甲不输”,看作是“乙胜”的对立事件.所以P(A)=1-13=23. 所以甲不输的概率是23.13.解 (1)P(x =1)=1+1+350=110, P(x ≥3,y =3)=850=425. (2)P(x =2)=1-P(x =1)-P(x ≥3)=1-550-35 50=1050=a+b+750,∴a+b=3.。
高中数学必修3课后习题答案 精品优选公开课件

二是功利境界。有些人,会为了利己而主动去思考和做事,虽然未必不道德,却必定是功利的,而且很容易走向自私自利、损人利己。 三是道德境界。有的人,已经超越了自身,而开始考虑利人,譬如为了道义、公益、众生福祉而去做事。他们的眼界已经超越自身而投向了世间,胸中气象和站立高度已经抵达精神层次。 四是天地境界。当一个人的视野放到了整个天地宇宙,目光投向了万物根本,他就抵达了天人合一。这时他就已经不需要动脑子了,因为天地宇宙就是他的脑子,已经事事洞明,就像电脑连接到了互联网。这种境界,正是道家境界。这四重境界,境界越高就越想得开。想开到什么程度,则决定于人的视野放到多大,眼界拔到多高。人处平地,到处都会遮眼阻路;人登顶峰,世间便能一览通途。这就是想得开的秘密——眼界大了,心就宽了;站得高了,事就小了。想不开,往往都是画地为牢、作茧自缚。
眼光和思维所涉及的面,尽量往大了走、往高了去,则是人人可以努力靠近的。 综上:儒家拿得起、佛家放得下、道家想得开,合起来其实就是一句话:带着佛家的出世心态,凭着道家的超世眼界,去做儒家入世的事业。这也正是南怀瑾所说的人生最高境界:佛为心,道为骨,儒为表,大度看世界。车水马龙的闹市里,双眸里闪烁着都市的霓虹,衣服上沾满着汽车 曾经有一个人,她永远占据在你心最柔软的地方,你愿用自己的一生去爱她,这个人,叫“母亲”;有一种爱,它可以让你随意的索取、享用,却不要你任何的回报,不会向你抱怨,总是自己一个人默默地承受着这一切。这种爱,叫“母爱”!
高中数学必修2习题含答案第3章 3.3.2

3.3.2 两点间的距离一、选择题1.已知点A (-3,4)和B (0,b ),且|AB |=5,则b 等于 ( )A .0或8B .0或-8C .0或6D .0或-62.以点A (1,2),B (3,4),C (5,0)为顶点的三角形是 ( )A .等边三角形B .等腰三角形C .直角三角形D .无法确定3.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |等于 ( )A .5B .4 2C .2 5D .2104.已知点A (1,2),B (3,1),则到A ,B 两点距离相等的点的坐标满足的条件是 ( )A .4x +2y =5B .4x -2y =5C .x +2y =5D .x -2y =55.已知A (-3,8),B (2,2),在x 轴上有一点M ,使得|MA |+|MB |最短,则点M 的坐标是( )A .(-1,0)B .(1,0)C.⎝⎛⎭⎫225,0 D .⎝⎛⎭⎫0,225 6.设A ,B 是x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB的方程为 ( )A .x +y -5=0B .2x -y -1=0C .2y -x -4=0D .2x +y -7=0二、填空题7.已知点A (x,5)关于点C (1,y )的对称点是B (-2,-3),则点P (x ,y )到原点的距离是________.8.点M 到x 轴和到点N (-4,2)的距离都等于10,则点M 的坐标为______________.9.等腰△ABC 的顶点是A (3,0),底边长|BC |=4,BC 边的中点是D (5,4),则此三角形的腰长为______________.三、解答题10.已知直线l :y =-2x +6和点A (1,-1),过点A 作直线l 1与直线l 相交于B 点,且|AB |=5,求直线l 1的方程.11.求证:三角形的中位线长度等于底边长度的一半.12.用坐标法证明:如果四边形ABCD 是长方形,而对任一点M ,等式|AM |2+|CM |2=|BM |2+|DM |2成立.四、探究与拓展13.求证:x 2+y 2+x 2+(1-y )2+(1-x )2+y 2+(1-x )2+(1-y )2≥2 2.答案1.A 2.B 3.C 4.B 5.B 6.A7.178.(2,10)或(-10,10)9.2610.x =1或3x +4y +1=011.证明 如图所示,D ,E 分别为边AC 和BC 的中点,以A 为原点,边AB 所在直线为x 轴建立平面直角坐标系.设A (0,0),B (c,0),C (m ,n ),则|AB |=c ,又由中点坐标公式,可得D ⎝⎛⎭⎫m 2,n 2,E ⎝⎛⎭⎫c +m 2,n 2,所以|DE |=c +m 2-m 2=c 2, 所以|DE |=12|AB |. 即三角形的中位线长度等于底边长度的一半.12.证明 取长方形ABCD 的两条边AB ,AD 所在的直线分别为x ,y 轴,建立平面直角坐标系,如图所示.设长方形ABCD 的四个顶点为A (0,0),B (a,0),C (a ,b ),D (0,b ),在平面上任取一点M (m ,n ),则|AM |2+|CM |2=m 2+n 2+(m -a )2+(n -b )2,|BM |2+|DM |2=(m -a )2+n 2+m 2+(n -b )2,所以|AM |2+|CM |2=|BM |2+|DM |2.13.证明 如图所示,设点O (0,0),A (x ,y ),B (1,0),C (1,1),D (0,1),则原不等式左边=|OA |+|AD |+|AB |+|AC |,∵|OA |+|AC |≥|OC |=2,|AB |+|AD |≥|BD |=2,∴|OA |+|AD |+|AB |+|AC |≥22(当且仅当A 是OC 与BD 的交点时 等号成立),故原不等式成立.。
第三章-3.3-幂函数高中数学必修第一册人教A版

<<
3
或
2
< −1.
故实数的取值范围为 −∞, −1 ∪
2 3
,
3 2
.
题型4 幂函数的奇偶性
例15 (2024·江苏省镇江市期末)幂函数 满足下列性质:(1)对定义域中任意的,
有 = − ;(2)对 0, +∞ 中任意的1 ,2 1 ≠ 2 ,都有
(2 − 1 )[ 2 − 1 ] < 0,请写出满足这两个性质的一个幂函数的表达式
例11 比较下列各题中两个数的大小:
3
4
3
4
(1)2.3 ,2.4 ;
3
4
【解析】∵ = 为[0, +∞)上的增函数,且2.3 < 2.4,
3
4
3
4
∴ 2.3 < 2.4 .
(2)
2
3
2
−
,
3
−2
3
3
2
−
;
【解析】∵ = 为 0, +∞ 上的减函数,且 2 < 3,
3
∴
2
−2
3
>
3
= − (答案不唯一)
__________________________.
【解析】由题意知幂函数 满足性质:对定义域中任意的,有 = − ,则
为偶函数, 又函数 满足对 0, +∞ 中任意的1 ,2 1 ≠ 2 ,
都有 2 − 1 [ 2 − 1 ] < 0,
D.1 ,4 ,2 ,3
)
图3.3-5
【解析】由于在第一象限内直线 = 1的右侧,幂函数 = 的图
高中数学 第3章 导数及其应用 3.3.3 习题(含解析)新人教A版高二选修1-1数学试题

选修1-1第三章3.3一、选择题1.函数y=2x3-3x2-12x+5在[-2,1]上的最大值、最小值分别是导学号 92600712 ( )A.12;-8 B.1;-8C.12;-15 D.5;-16[答案] A[解析]y′=6x2-6x-12,由y′=0⇒x=-1或x=2(舍去).x=-2时y=1,x=-1时y=12,x=1时y=-8.∴y max=12,y min=-8.故选A.2.函数f(x)=x3-3x(|x|<1)导学号 92600713( )A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,但有最小值D.既无最大值,也无最小值[答案] D[解析]f′(x)=3x2-3=3(x+1)(x-1),∵x∈(-1,1),∴f′(x)<0,即函数在(-1,1)上是减少的,∴既无最大值,也无最小值.3.函数f(x)=3x-x3(-3≤x≤3)的最大值为导学号 92600714( )A.18 B.2C.0 D.-18[答案] B[解析]f′(x)=3-3x2,令f′(x)=0,得x=±1,-3≤x<-1时,f′(x)<0,-1<x<1时,f′(x)>0,1<x≤3时,f′(x)<0,故函数在x=-1处取极小值,在x=1处取极大值.∵f(1)=2,f(-1)=-2,又f(-3)=0,f(3)=-18,∴[f(x)]max=2,[f(x)]min=-18.4.若函数f(x)=x3-3x-a在区间[0,3]上的最大值、最小值分别为M、N,则M-N的值为导学号 92600715( )A .2B .4C .18D .20[答案] D[解析]f ′(x )=3x 2-3=3(x +1)(x -1), 令f ′(x )=0,得x 1=-1,x 2=1.f (0)=-a, f (1)=-2-a, f (3)=18-a ,∴f (x )max =18-a ,f (x )min =-2-a , ∴18-a -(-2-a )=20.5.下列说法正确的是导学号 92600716( ) A .函数的极大值就是函数的最大值 B .函数的极小值就是函数的最小值 C .函数的最值一定是极值D .在闭区间上的连续函数一定存在最值 [答案] D[解析] 根据最大值、最小值的概念可知选项D 正确.6.函数f (x )=ln x -x 在区间[0,e]上的最大值为导学号 92600717( ) A .-1 B .1-e C .-e D .0[答案] A[解析]f ′(x )=1x -1=1-xx,令f ′(x )>0,得0<x <1, 令f ′(x )<0,得1<x <e ,∴f (x )在(0,1)上递增,在(1,e)上递减,∴当x =1时,f (x )取极大值,这个极大值也是最大值.∴f (x )max =f (1)=-1.二、填空题7.当x ∈[-1,1]时,函数f (x )=x 2e x 的值域是________.导学号 92600718[答案] [0,e][解析]f ′(x )=2x ·e x -x 2·e x e x 2=2x -x2e x , 令f ′(x )=0得x 1=0,x 2=2.f (-1)=e, f (0)=0, f (1)=1e,∴f (x )max =e, f (x )min =0, 故函数f (x )的值域为[0,e]. 8.若函数f (x )=3x -x 3+a ,-3≤x ≤3的最小值为8,则a 的值是________.导学号 92600719[答案] 26[解析]f ′(x )=3-3x 2,令f ′(x )=0,得x =±1.f (1)=2+a ,f (-1)=-2+a .又f (-3)=a ,f (3)=-18+a .∴f (x )min =-18+a .由-18+a =8.得a =26. 三、解答题9.(2016·某某某某市高二检测)已知函数f (x )=x 3-2ax 2+3ax 在x =1时取得极值.导学号 92600720(1)求a 的值;(2)若关于x 的不等式f (x )-k ≤0在区间[0,4]上恒成立,某某数k 的取值X 围. [解析] (1)f ′(x )=3x 2-4ax +3a , 由题意得f ′(1)=3-4a +3a =0,∴a =3. 经检验可知,当a =3时f (x )在x =1时取得极值. (2)由(1)知, f (x )=x 3-6x 2+9x , ∵f (x )-k ≤0在区间[0,4]上恒成立, ∴k ≥f (x )max 即可.f ′(x )=3x 2-12x +9=3(x 2-4x +3)=3(x -1)(x -3),令f ′(x )>0,得3<x <4或0<x <1, 令f ′(x )<0,得1<x <3.∴f (x )在(0,1)上递增,(1,3)上递减,(3,4)上递增,∴当x =1时, f (x )取极大值f (1)=4,当x =3时, f (x )取极小值f (3)=0. 又f (0)=0,f (4)=4, ∴f (x )max =4,∴k ≥4.一、选择题1.函数f (x )=x (1-x 2)在[0,1]上的最大值为导学号 92600721( ) A .239B .229C .329D .38[答案] A[解析]f ′(x )=1-3x 2=0,得x =33∈[0,1], ∵f ⎝⎛⎭⎪⎫33=239,f (0)=f (1)=0. ∴f (x )max =239.2.已知函数f (x ),g (x )均为[a ,b ]上的可导函数,在[a ,b ]上图象连续不断且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为导学号 92600722( )A .f (a )-g (a )B .f (b )-g (b )C .f (a )-g (b )D .f (b )-g (a )[答案] A[解析] 令u (x )=f (x )-g (x ), 则u ′(x )=f ′(x )-g ′(x )<0, ∴u (x )在[a ,b ]上为单调减少的, ∴u (x )的最大值为u (a )=f (a )-g (a ).3.设在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,且在区间[a ,b ]上存在导数,有下列三个命题:①若f (x )在[a ,b ]上有最大值,则这个最大值必是[a ,b ]上的极大值; ②若f (x )在[a ,b ]上有最小值,则这个最小值必是[a ,b ]上的极小值; ③若f (x )在[a ,b ]上有最值,则最值必在x =a 或x =b 处取得. 其中正确的命题个数是导学号 92600723( )A .0B .1C .2D .3[答案] A[解析] 由于函数的最值可能在区间[a ,b ]的端点处取得,也可能在区间[a ,b ]内取得,而当最值在区间端点处取得时,其最值必不是极值,因此3个命题都是假命题.4.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为导学号 92600724( ) A .[f (0),f (5)] B .[f (0),f (23)]C .[f (23),f (5)]D .[c ,f (5)][答案] C[解析]f ′(x )=6x -4,令f ′(x )=0,则x =23,0<x <23时,f ′(x )<0,x >23时,f ′(x )>0,得f (23)为极小值,再比较f (0)和f (5)与f (23)的大小即可.二、填空题5.函数f (x )=2x 3-3x 2-12x +5在[0,3]上的最大值和最小值的和是________.导学号 92600725[答案] -10[解析]f ′(x )=6x 2-6x -12,令f ′(x )=0,解得x =-1或x =2.但x ∈[0,3],∴x =-1舍去,∴x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表,知f (x )max =5,f (x )min =-15, 所以f (x )max +f (x )min =-10.6.函数f (x )=ax 4-4ax 3+b (a >0),x ∈[1,4],f (x )的最大值为3,最小值为-6,则a +b =________.导学号 92600726[答案]103[解析]f ′(x )=4ax 3-12ax 2.令f ′(x )=0,得x =0(舍去),或x =3.1<x <3时,f ′(x )<0,3<x <4时,f ′(x )>0,故x =3为极小值点. ∵f (3)=b -27a ,f (1)=b -3a ,f (4)=b ,∴f (x )的最小值为f (3)=b -27a ,最大值为f (4)=b .∴⎩⎪⎨⎪⎧b =3,b -27a =-6,解得⎩⎪⎨⎪⎧a =13,b =3,∴a +b =103.三、解答题7.已知函数f (x )=x 3+ax 2+bx +5,曲线y =f (x )在点P (1,f (1))处的切线方程为y =3x +1.导学号 92600727(1)求a 、b 的值;(2)求y =f (x )在[-3,1]上的最大值.[解析] (1)依题意可知点P (1,f (1))为切点,代入切线方程y =3x +1可得,f (1)=3×1+1=4,∴f (1)=1+a +b +5=4,即a +b =-2,又由f (x )=x 3+ax 2+bx +5得,f ′(x )=3x 2+2ax +b , 而由切线方程y =3x +1的斜率可知f ′(1)=3, ∴3+2a +b =3,即2a +b =0,由⎩⎪⎨⎪⎧a +b =-22a +b =0,解得⎩⎪⎨⎪⎧a =2b =-4.∴a =2,b =-4.(2)由(1)知f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4=(3x -2)(x +2),令f ′(x )=0,得x =23或x =-2.当x 变化时,f (x )、 f ′(x )的变化情况如下表:∴f (x )的极大值为f (-2)=13,极小值为f (23)=9527,又f (-3)=8,f (1)=4, ∴f (x )在[-3,1]上的最大值为13.8.设f (x )=x 3-12x 2-2x +5.导学号 92600728(1)求函数f (x )的单调递增、递减区间;(2)当x ∈[-1,2]时, f (x )<m 恒成立,某某数m 的取值X 围. [解析] (1)f ′(x )=3x 2-x -2.令f ′(x )=0,即3x 2-x -2=0⇒x =1或x =-23.所以当x ∈(-∞,-23)时f ′(x )>0, f (x )为增函数;当x ∈(-23,1)时, f ′(x )<0, f (x )为减函数.当x ∈(1,+∞)时, f ′(x )>0, f (x )为增函数.所以f (x )的递增区间为(-∞,-23)和(1,+∞),f (x )的递减区间为(-23,1).(2)当x ∈[-1,2]时, f ′(x )<m 恒成立,只需使f (x )在[-1,2]上的最大值小于m 即可.由(1)知f (x )极大值=f (-23)=5+2227,f (x )极小值=f (1)=72.又f (-1)=112, f (2)=7,所以f (x )在[-1,2]上的最大值为f (2)=7. 所以m >7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时目标
在正方形围栏内均匀撒米粒,食,此刻小鸡正在正方形的内切圆中的概率是
.如图所示,在一个边长为3 cm的正方形内部画一个边长为的正方形,向大正方形内随机投点,用随机模拟的方法求所投的点落入小正方形内的概率.
所投点落入小正方形内}.
[0,1]上的均匀随机数,
经过平移和伸缩平移变换,a=3a1-1.5
计用随机模拟的方法估计他能赶上车的概率的步骤?
解:能赶上车的条件是到达乙地时汽车没有出发,我们可以用两组均匀随机数x 和y 来表示到达乙地的时间和汽车从乙地出发的时间,当x ≤y 时能赶上车.
设事件A :“他能赶上车”.
①利用计算器或计算机产生两组[0,1]上的均匀随机数,x 1=RAND ,y 1=RAND.
②经过变换x =0.5x 1+9.5,y =0.5y 1+9.75.
③统计出试验总次数N 和满足条件x ≤y 的点(x ,y )的个数N 1.
④计算频率f n (A )=N 1N ,则N 1N 即为概率P (A )的近似值.
能力提升
12.将[0,1]内的均匀随机数转化为[-3,4]内的均匀随机数,需实施的变换为( )
答案:C
解析:根据伸缩平移变换
13.利用模拟的方法计算如图,由y =1和y =x 2所围成的部分M
的面积.
解:(1)用计算机产生两组[0,1]内均匀随机数a 1=RAND( ),b
=RAND( ).
(2)经过平移和伸缩变换,a =(a 1-0.5)*2.
(3)数落在区域内(即满足0<b <1,且b -a 2>0)的样本点数N 1计算S 阴影=2N 1N (N 代表落在矩形中的点(a ,b )的个数).。