燃料电池
燃料电池的概念

燃料电池的概念什么是燃料电池燃料电池是一种利用氢气和氧气等反应物直接生成电能的装置,其工作原理类似于常规电池,但是燃料电池具有可持续使用的特点。
燃料电池通过将化学能转化为电能,成为一种清洁、高效、环保的能源转换技术。
燃料电池的工作原理燃料电池由阳极、阴极和电解质组成。
阳极和阴极之间的电解质负责离子传递,而阳极和阴极上的催化剂则促进氧气和氢气等反应物的电化学反应。
当氢气进入阳极时,其中的氢离子(H+)通过电解质传递到阴极,而电子则在外部电路中流动,形成电流。
在阴极处,氧气与氢离子和电子发生反应,生成水和热量。
整个过程中,电化学能转化为电能,实现了能量的转换。
燃料电池的类型燃料电池可以分为多种类型,常见的有以下几种:1. 质子交换膜燃料电池(PEMFC)质子交换膜燃料电池是一种常用的燃料电池类型。
其特点是具有高效率、响应速度快以及体积轻巧等优点,适用于移动设备和汽车等领域。
2. 碱性燃料电池(AFC)碱性燃料电池在碱性条件下工作,其电解质为氢氧化钾(KOH)溶液。
碱性燃料电池具有较高的能量密度和效率,但耐腐蚀性较差,适用于航空航天和海洋等领域。
3. 磷酸燃料电池(PAFC)磷酸燃料电池采用磷酸作为电解质,具有较高的热效率和电效率。
它在稳定性和可靠性方面表现出色,适用于一些固定应用,如公共服务和工业领域。
4. 氧化铜燃料电池(SOFC)氧化铜燃料电池利用固体氧离子传递氧气,在高温下工作。
它具有高效率和高耐久性等优点,适用于大型电网和工业领域。
燃料电池的应用燃料电池在能源领域有着广泛的应用前景,以下是一些应用案例:1. 交通运输燃料电池在交通运输领域有着巨大的潜力。
燃料电池汽车可以使用氢气作为燃料,不产生尾气污染物,且续航里程长,充电速度快。
目前,一些汽车制造商已经推出了燃料电池汽车,并在一些城市实施了氢气加气站的建设。
2. 电力供应燃料电池可以作为电力供应的替代来源。
特别是在一些偏远地区或灾后重建中,燃料电池可以提供可靠的电力供应。
燃料电池简介

2007-2011全球燃料电池发电功率(根据地区划分)
单位:MW
资料来源:Fuel Cell Today
2010年全球各技术类型燃料电池发展状况
根据出货量划分
PEMFC:质子交换膜燃料电池 S O F C:固体氧化物燃料电池 A F C:碱性燃料电池
资料来源:Fuel Cell Today
根据发电功率划分
质子交换膜燃料电池PEMFC
• 质子交换膜燃料电池的关键材料与部件为:1)电催化剂;2)电 极(阴极与阳极);3)质子交换膜;4)双极板。 • 质子交换膜燃料电池的工作温度约为80℃。在这样的低温下, 电化学反应能正常地缓慢进行,通常用每个电极上的一层薄的 白金进行催化。 • 每个电池能产生约0.7伏的电,足够供一个照明灯泡使用。驱 动一辆汽车则需要约300伏的电力。为了得到更高的电压,将 多个单个的电池串联起来便可形成人们称做的燃料电池存储器。 • 质子交换膜燃料电池PEMFC 以其工作温度低、启动快、能量 密度高、寿命长、重量轻、无腐蚀性、不受二氧化碳的影响, 能量来源比较广泛等优点特别适宜作为便携式电源、机动车电 源和中、小型发电系统。可以考虑用来发展燃料电池汽车 (FCEV)。
……
燃料电池的发展现状
燃料电池可提供多样化的能源解决方案,将来极有可能替代传统的电 源供应装置,如电池、内燃机。燃料电池的应用及其广泛,从家庭供 电供热、移动电子设备供电到汽车动力推进系统。 根据燃料电池的应用方式,一般分为移动型(Portable)、固定型 (Stationary)、交通运输型(Transport); 2010年,全球燃料电池总出货量同比增长40%,达到了创历史记录 的23万套,其中,移动型燃料电池约占总出货量的95%。值得注意的 是,2010年全球销售的燃料电池中有超过97%使用的是PEMFC,即 质子交换膜燃料电池技术,该类型燃料电池被认为最适合应用于新能 源汽车。
燃料电池概念

燃料电池概念引言:- 燃料电池(FuelCell)被认为是一种清洁、高效、可持续的能源技术,被广泛应用于交通运输、能源供应和环境保护领域。
本文将介绍燃料电池的概念、原理、类型、应用以及未来发展方向。
一、燃料电池的概念:- 燃料电池是一种将化学能直接转化为电能的能量转换装置,通过氧化剂与还原剂间电化学反应来产生电力。
其核心原理是利用氢气或其他可燃气体与氧气相结合,通过电化学反应产生电能,并以水和热能为副产品。
二、燃料电池的工作原理:- 燃料电池的工作原理基于两个半反应:氧化半反应和还原半反应。
氧化半反应发生在氧化剂(通常是氧气)的一侧,其中氧分子分解成氧离子。
还原半反应发生在还原剂(如氢气)的一侧,其中氢离子经过反应产生电子和水。
通过将两个半反应结合在一起,燃料电池能够将化学能转化为电能。
三、燃料电池的类型:- 燃料电池根据不同的电解质和工作温度,可以分为不同类型:质子交换膜燃料电池(PEMFC)、固体氧化物燃料电池(SOFC)、碱性燃料电池(AFC)等。
每种类型的燃料电池都有其特定的优点和适用场景,例如PEMFC适合用于交通工具和移动设备,而SOFC适合用于电力供应和大型工业设备。
四、燃料电池的应用:- 燃料电池被广泛应用于各个领域,包括交通运输、能源供应和环境保护等。
在交通运输领域,燃料电池驱动的电动汽车可以提供零排放、长续航里程和快速加注等优势。
在能源供应领域,燃料电池可以作为替代传统燃料的可再生能源,提供可靠的电力供应。
在环境保护领域,燃料电池可以减少有害气体排放,降低温室气体的影响。
五、燃料电池的未来发展:- 随着技术的进步和成本的降低,燃料电池有望在未来得到更广泛的应用。
研究人员正在努力改进燃料电池的效率、稳定性和可靠性,以满足不同领域和应用的需求。
同时,开发更便捷、经济的氢气储存和分配系统也是未来发展的研究重点。
结论:- 燃料电池作为一种清洁、高效、可持续的能源技术,拥有广泛的应用前景。
燃料电池讲解:PPT课件

这艘212型潜艇是世界上最现代化的常规潜艇。潜艇采用的 燃料电池推进系统可使潜 艇保持更长的潜航时间,更不容 易被敌人探测到。
德 国 海 军 新 一 代 燃 料 电 池 潜 艇 服 役
甲 醇 燃 料 電 池 , 燃 料 電 池 的 层 狀 結 构
燃料电池其原理是一种电化学装置,其组成与一般电池相 同。其单体电池是由正负两个电极(负极即燃料电极和正 极即氧化剂电极)以及电解质组成。不同的是一般电池的 活性物质贮存在电池内部,因此,限制了电池容量。而燃 料电池的正、负极本身不包含活性物质,只是个催化转换 元件。因此燃料电池是名符其实的把化学能转化为电能的 能量转换机器。电池工作时,燃料和氧化剂由外部供给, 进行反应。原则上只要反应物不断输入,反应产物不断排 除,燃料电池就能连续地发电。这里以氢-氧燃料电池为 例来说明燃料电池 氢-氧燃料电池反应原理 这个反映是电觧水的逆过程。 电极应为: 负极:H2 +2OH-→2H2O +2e正极:1/2O2 +H2O+ 2e-→2OH电池反应:H2 +1/2O2==H2O
但是,由于多年来在燃料电池研究方面投入资金 数量很少,就燃料电池技术的总体水平来看,与 发达国家尚有较大差距。我国有关部门和专家对 燃料电池十分重视,1996年和1998年两次在香山 科学会议上对中国燃料电池技术的发展进行了专 题讨论,强调了自主研究与开发燃料电池系统的 重要性和必要性。近几年中国加强了在PEMFC方 面的研究力度
3,高效率的发电装置 4,分散型的发电装置 规模最大的可以替代火力发电或核能发电,用于 商业发电。不需要庞大的设备,不需要变送电系 统;与核能相比,发生事故的危险性较小。可以 建在大城市的近郊。规模稍小的可以建在住宅小 区、办公楼、厂区甚至城市的中心地带。可以减 少因长距离输送电力而产生的损耗。面向个人用 途的超小型燃料电池可以作为笔记本电脑和移动 便携电话的电源。
燃料电池

燃料电池科技名词定义中文名称:燃料电池英文名称:fuel cell定义:将燃料具有的化学能直接变为电能的发电装置。
所属学科:电力(一级学科);可再生能源(二级学科)本内容由全国科学技术名词审定委员会审定公布百科名片燃料电池(FuelCell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。
燃料和空气分别送进燃料电池,电就被奇妙地生产出来。
它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。
目录简介能量变化历史中国发展状况国际发展状况特点与原理分类发电系统评估经济性展望调峰能力增加节约配电网的建设费用提高电网的安全性电网管理编辑本段简介燃料电池燃料电池十分复杂,涉及化学热力学、电化学、电催化、材料科学、电力系统及自动控制等学科的有关理论,具有发电效率高、环境污染少等优点。
总的来说,燃料电池具有以下特点:(1)能量转化效率高他直接将燃料的化学能转化为电能,中间不经过燃烧过程,因而不受卡诺循环的限制。
目前燃料电池系统的燃料—电能转换效率在45%~60%,而火力发电和核电的效率大约在30%~40%。
(2)有害气体SOx、NOx及噪音排放都很低CO2排放因能量转换效率高而大幅度降低,无机械振动。
(3)燃料适用范围广。
(4)积木化强规模及安装地点灵活,燃料电池电站占地面积小,建设周期短,电站功率可根据需要由电池堆组装,十分方便。
燃料电池无论作为集中电站还是分布式电,或是作为小区、工厂、大型建筑的独立电站都非常合适。
(5)负荷响应快,运行质量高燃料电池在数秒钟内就可以从最低功率变换到额定功率,而且电厂离负荷可以很近,从而改善了地区频率偏移和电压波动,降低了现有变电设备和电流载波容量,减少了输变线路投资和线路损失。
编辑本段能量变化燃料电池为了利用煤或者石油这样的燃料来发电,必须先燃烧煤或者石油。
它们燃烧时产生的能量可以对水加热而使之变成蒸汽,蒸汽则可以用来使涡轮发电机在磁场中旋转。
简单的燃料电池

简单的燃料电池1、氢氧燃料电池在U形管中加入1mol/L的Na2SO4溶液,并滴入2滴酚酞溶液。
用导线将两根石墨棒与电流表相连,组装成如图所示的电路。
向两边的石墨棒上分别通入氢气和氧气。
电流表指针发生偏转,通入氧气的石墨棒附近的溶液变红色。
反应一段时间后,停止通入气体,振荡U形管,红色褪去。
负极:2H2-4e-===4H+正极:O2+4e-+2H2O===4OH-总反应式:2H2+O2===2H2O通氧气的一端是正极区,反应过程中生成OH-,酚酞变红色。
两极生成的OH-和H+的物质的量相等,所以振荡溶液,红色褪去。
2、乙醇燃料电池将上面装置中的氢气换成乙醇蒸气,电解质溶液换成KOH溶液,其它不变。
同样可以看到电流表的指针发生偏转,说明也形成了燃料电池。
乙醇在负极失电子,生成二氧化碳,但电解质是KOH,会与CO2反应生成K2CO3。
负极:C2H5OH-12e-+16OH-= 2CO32-+11H2O正极:O2+2H2O+4e-= 4OH-3、乙烯催化氧化成乙醛(CH3CHO)可设计成如图所示的燃料电池,请回答下列问题。
(1)请在装置图中标出正、负极和反应物。
(2)分析电池中电子的移动方向:_________,电解质溶液中H+的移动方向:________。
(3)写出此燃料电池的正极反应式:_____________,总反应式:_________。
(4)若有2 mol乙烯参与反应,理论上转移的电子数为________。
答案:(1)(2)电极a→导线→电极b从左向右(3)O2+4e-+4H+= 2H2O2C2H4+O2→2CH3CHO(4)4N A分析:结合原电池的工作原理和装置图,a是负极,b是正极,磷酸作电解质。
负极上乙烯失电子生成乙醛,从组成上看是得1个氧原子,相当于失去2个电子,电极反应式为:C2H4 + H2O -2e- = 2H+ + CH3CHO正极上氧气得电子:O2+4e-+4H+= 2H2O两式叠加得总反应式。
燃料电池

4燃料电池的现状
目前,使用燃料电池面临的主要问题: 1 燃料问题 氧气可以直接从空气中获得,比较省 力;氢气则需要消耗电能以电解水或在催化剂的作 用下重组碳氢化合物这两种方法获取。但也有人认 为氢可以从天然气中产生,其成本同生产汽油相当。 如将燃料电池高效率因素考虑进来,使用氢将比汽 油更加经济。 2 安全问题 氢气是易燃气体,使用时要防止泄露, 爆炸等危险情况的发生。 阻碍燃料电池推广应用的关键问题还有成本高、 寿命短、体积大等,归根结底还是技术问题。
2.4溶化的碳酸盐燃料电池 (molten carbonate fuel cell--MCFC)
溶化的碳酸盐燃料电池与上述讨论的燃料电池差异较 大,这种电池不是使用溶化的锂钾碳酸盐就是使用锂钠碳酸 盐作为电解质。当温度加热到650℃时,这种盐就会溶化, 产生碳酸根离子,从阴极流向阳极,与氢结合生成水,二氧 化碳和电子。电子然后通过外部回路返回到阴极,在这过程 中发电。 CO32 + H 2 → H 2O + CO 2 + 2e 阳极反应: 2CO 2 + O 2 + 4e → 2CO 3 2 阴极反应: 这种电池工作的高温能在内部重整诸如天然气和石油 的碳氢化合物,在燃料电池结构内生成氢。且白金催化剂可 用廉价的一类镍金属代替,其产生的多余热量还可被联合热 电厂利用。这种燃料电池的效率最高可达60%。 这种电池需要较长的时间方能达到工作温度,因此不能 用于交通运输。
直 接 燃 料 电 池 混 合 动 力 系 统 结 构
5.2燃料电池汽车的特点
1、效率高 燃料电池汽车路试时可以达到40~50%的效率而 普通汽车只有10~16%。燃料电池汽车总效率比 混合动力汽车也要高。 2、环保 燃料电池电动汽车仅排放热和水——高效、环境 友好的清洁汽车。 3、可持续发展 燃料电池可节省石油。目前令全世界对石油的依 存度,超过警戒线30%,预计2020年>60%。
《燃料电池》课件

这是《燃料电池》PPT课件,通过本课件,你将了解燃料电池的定义、工作原 理、构成、应用以及未来发展和趋势。让我们一起探索这个令人兴奋的领域 吧!
什么是燃料电池
燃料电池的定义
燃料电池是一种将化学能直接 转化为电能的装置,通过电化 学反应实现电能的产生。
燃料电池的工作原理
燃料电池通过氧化还原反应将 燃料(如氢气)和氧气在电解 质中进行电化学反应,产生电 能。
燃料电池的优缺点
燃料电池具有高效能源转化、环 保、低噪音等优点,但成本和氢 气供应等问题仍需解决。
燃料电池的应用
1
燃料电池在交通运输领域的应用
燃料电池汽车逐渐成为替代传统燃油汽车的绿色交通选择,减少尾气排放。
2
燃料电池在能源领域的应用
燃料电池可以作为一种清洁的能源来源,在无电网的地区提供电力供应。
3
燃料电池在军事领域的应用
燃料电池系统可以为军事设备提供可靠的能源支持,降低依赖传统燃油的风险。
燃料电池的未来发展与趋势
燃料电池技术的发展历程
燃料电池技术经过多年的研发和改 进,取得了巨大继续朝着高效、便携、 可再生能源和可持续发展的方向发 展。
燃料电池未来的应用前景
燃料电池有望在交通运输、能源供 应等领域发挥更大的作用,推动可 持续发展。
感谢阅读
通过本《燃料电池》PPT课件,希望您对燃料电池有了更深入的了解。谢谢!
燃料电池种类介绍
常见的燃料电池类型有聚合物 电解质燃料电池(PEMFC)、 固体氧化物燃料电池(SOFC) 等。
燃料电池的构成
燃料电池的主要组成 部分
燃料电池由氢气供应系统、氧气 供应系统、电解质、电极和电流 收集系统等组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2燃料电池的缺点燃料电池具有上述优点, 但并不是说它十全十美。
它还存在以下问题需要进一步解决和完善:1)减少损耗, 提高效率。
尽管燃料电池以高效率吸引人, 但降低其本身的损耗仍是重要课题。
燃料电池的损耗主要包括反应活化能损耗、浓度差损耗、内阻损耗和系统损耗, 这些损耗都降低了燃料电池效率, 为此需继续开发高效能、低成本催化剂和高导电性能的电解质和电极材料, 减少系统损耗, 从而提高电池效率。
2)开发新材料, 改进工艺。
燃料电池制造涉及高分子材料、贵重金属、陶瓷等广泛领域, 同时也涉及脱脂、氧化、烧成等制造工艺。
各种优质高效材料的开发和制造工艺的改进影响着燃料电池的性能, 决定着燃料电池的发展。
各种燃料电池由于反应过程及燃料、电介质的不同, 分别存在着中毒、腐蚀或高温老化问题, 因此需积极研制新设备, 提高电池的稳定性, 延长连续运行时间。
3)降低成本。
直接甲醇燃料电池目前广泛使用的质子交换膜大多为Nafition膜,不仅阻醇性能差,而且Pt催化剂价格昂贵、易中毒。
燃料电池要想更快的发展, 必须降低成本, 除提高功率密度外, 还需进一步简化电池结构, 减轻重量, 提高性价比, 降低与传统发电方式的成本差价。
3燃料电池的应用燃料电池的出现与发展,将会给便携电子设备带来一场深刻的革命,并且还会波及到汽车业、住宅,以及社会各方面的集中供电系统。
3.1便携电子产品上的应用直接甲醇燃料电池(DMFC)理论上的比能量比二次电池高,用于小型便携式电子产品可以明显提高待机时间,近年来受到国内外的高度关注。
目前日本、韩国、德国等研制成功了用于笔记本电脑、手机等用的直接甲醇燃料电池的演示样机。
伴随燃料电池的日益发展,它们正成为不断增加的移动电器的主要能源。
微型燃料电池因其具有使用寿命长,重量轻和充电方便等优点,比常规电池具有得天独厚的优势。
如果要使燃料电池能在膝上型电脑,移动电话和摄录影机等设备中应用,其工作温度,燃料的可用性,以及快速激活将成为人们考虑的主要参数,目前大多数研究工作均集中在对低温质子交换膜燃料电池和直接甲醇燃料电池的改进。
正如其名称所示,这些燃料电池以直接提供的甲醇-水混合物为基础工作,不需要预先重整。
使用甲醇,直接甲醇燃料电池要比固体电池具有极大的优越性。
其充电仅仅涉及重新添加液体燃料,不需要长时间地将电源插头插在外部的供电电源上。
当前,这种燃料电池的缺点是用来在低温下生成氢所需的白金催化剂的成本比较昂贵,其电力密度较低。
如果这二个问题能够解决,应该说没有什麽问题能阻挡它们的广泛应用了。
目前,美国正在试验以直接甲醇燃料电池为动力的移动电话,而德国则在实验以这种能源为动力的膝上型电脑。
3.2航天方面的应用在20世纪50年代后期和60年代初期,美国政府为了替其载人航天飞行寻找安全可靠的能源,对燃料电池的研究给于了极大的关心和资助,使燃料电池取得了长足的进步。
重量轻,供电供热可靠,噪声轻,无震动,并能生产饮用水,所有这些优点均是其它能源不可比拟的。
General Electric生产的Grubb-Niedrach燃料电池是NASA用来为其Gemini航天项目提供动力的第一个燃料电池,也是第一次商业化使用燃料电池。
从20世纪60年代起,飞机制造商Pratt & Whitney赢得了为阿波罗项目提供燃料电池的合同。
Pratt & Whitney生产的燃料电池是基于对Bacon专利的碱性燃料电池的改进,这种低温燃料电池是最有效的燃料电池。
在阿波罗飞船中,三组电池可产生1.5 kW或2.2 kW 电力,并行工作,可供飞船短期飞行。
每组电池重约114 kg,装填有低温氢和氧。
在18次飞行中,这种电池共工作10,000小时,未发生一次飞行故障。
在20世纪80年代航天飞机开始飞行时,Pratt & Whitney的姊妹公司国际燃料电池公司继续为NASA提供航天飞机使用的碱性燃料电池。
飞船上所有的电力需求由3组12 kW的燃料电池存储器提供,勿需备用电池。
国际燃料电池公司技术的进一步发展使每个飞船上使用的燃料电池存储器能提供约等于阿波罗飞船上同体积的燃料电池十倍的电力。
以低温氢和氧为燃料,这种电池的效率为70%左右,在截至现在的100多次飞行中,这种电池共工作了80,000多个小时。
3.3汽车上的应用世界上第一辆燃料电池动力ZEV汽车,所用的燃料电池为PEMFC。
据统计,2010年全球拥有的燃料汽车达60万台,占世界汽车产量的1%。
目前,世界化学品生产商拉尼斯公司、杜邦公司、Methanex公司,燃料电池开发商Ballard动力系统公司、国际燃料电池公司及汽车生产商戴姆勒—克莱斯勒公司、福特汽车公司、现代汽车公司、大众汽车公司都纷纷联手开发燃料电池和燃料电池汽车。
燃料电池的运输效能能极大地减少活动过程中所需的燃料用量,在进行下一次加油之前,车辆可以行驶得更远,或在遥远的地区活动更长的时间。
这样,战地所需的支持车辆、人员和装备的数量便可以显著的减少。
自20世纪80年代以来,美国海军就使用燃料电池为其深海探索的船只和无人潜艇提供动力。
当前,以内燃机提供动力的汽车已成为有害气体排放的主要排放源。
在世界各地,国家和地方机构都在立法强迫汽车制造商生产能极大限度地降低排放的车辆,燃料电池可为这种要求带来实质的机遇。
位于Alberta的Pembina适当设计研究所指出:当一辆小车使用以天然气重整的氢为燃料的燃料电池而不用汽油内燃机时,其二氧化碳的排放量可以减少高达72%。
然而,如果用燃料电池代替内燃机,燃料电池技术不仅要符合立法对车辆排放的严格要求,还要能对终端用户提供同样方便灵活的运输解决方案。
驱动车辆的燃料电池必须能迅速地达到工作温度,具有经济上的优势,并能提供稳定的性能。
应该说质子交换膜燃料电池最有条件满足这些要求,其工作温度交低,80℃左右,它们能很快地达到所需的温度。
由于能迅速地适应各种不同的需求,与内燃机的效率25%左右相比,它们的效率可高达60%。
Pembina研究所近来的研究表明,以甲醇为燃料的燃料电池,其燃料利用率是用汽油内燃机提供动力的车辆的1.76倍。
在现有的燃料电池中,质子交换膜燃料电池的电力密度最大。
当人们在车辆设计中重点考虑空间最大化时,这一因素则至关重要。
另外,固态聚合物电解质能有助于减少潜在的腐蚀和安全管理问题。
唯一的潜在问题是燃料的质量,为了避免在如此低温催化剂受到污染,质子交换膜燃料电池必须使用没污染的氢燃料。
现在,大多数车辆生产商视质子交换膜燃料电池为内燃机的后继者,General Motors, Ford, DaimlerChrysler, Toyota, Honda,以及其他许多公司都已生产出使用该技术的原型。
在这一进程中,运用不同车辆和使用不同地区的试验进展顺利,用质子交换膜燃料电池为公共汽车提供动力的试验已在温哥华和芝加哥取得成功。
德国的城市也进行了类似的试验,明后二年(2002-2003),还有另外十个欧洲城市也将在公共汽车上进行试验,伦敦和加利福尼亚也将计划在小型车辆上进行试验。
在生产商能够有效地,大规模地生产质子交换膜燃料电池之前,需要解决的主要问题包括生产成本,燃料质量,以及电池的体积。
但愿技术的进一步发展和扩大生产的共同作用将会运用经济的规模性而降低生产成本。
目前,人们也在对直接使用甲醇为燃料和从环境空气中取得氧的另一解决方案进行研究,它也可以避免燃料的重整过程。
3.4居民家庭的应用鉴于这种电池的工作温度可低达80℃,它们可安装在私人家庭,小型的商业活动场所,甚至满足大型企业活动的所有能源需求。
对于固定应用而言,设计燃料电池的技术困难就简化得多了。
尽管许多燃料电池能生产50 kW的电能,但绝大部分商业化的燃料电池目前都是用于固定的。
现在,许多迹象表明,燃料电池也可用语人们称做的居民应用(大都小于50 kW)。
低温质子交换膜燃料电池或磷酸燃料电池几乎可以满足私人居户和小型企业的所有热电需求。
目前,这些燃料电池还不能供小型的应用,美国,日本和德国仅有少量的家庭用质子交换膜燃料电池提供能源。
质子交换膜燃料电池的能源密度比磷酸燃料电池大,然而后者的效率比前者高,且目前的生产成本也比前者便宜。
这些燃料电池应该能够为单个私人居户或几家居户提供能源,通过设计可以满足居民对能源的所有要求,或者是他们的基本负载,高峰时的需求由电力网提供。
为了有利于该技术的应用,可以用天然气销售网作为氢燃料源。
当前,许多生产商预测在不久的将来便会出现其它燃料源泉,这有助于进一步降低排放,加速燃料电池进入新的理想市场。
新近进入固定燃料电池市场的厂家是汽车大亨General Motors,她于2001年8月成功地开发了一种产品。
3.1 移动电站燃料电池具有模块结构、积木性强、噪音小、维修方便等特点,是军事、野外作业、偏远无电地区等理想的移动电源。
80年代末期,西方发达国家就致力于PEMFC的军事应用研制开发。
军事应用应该是燃料电池最主要,也是最适合的市场。
高效,多面性,使用时间长,以及宁静的工作,这些特点极适合于军事工作对电力的需要。
燃料电池可以以多种形态为绝大多数军事装置,从战场上的移动手提装备到海陆运输提供动力。
在军事上,微型燃料电池要比普通的固体电池具有更大的优越性,其增长的使用时间就意味着在战场上勿需麻烦的备品供应。
此外,对于燃料电池而言,添加燃料也是轻而易举的事情。
同样,燃料电池的运输效能能极大地减少活动过程中所需的燃料用量,在进行下一次加油之前,车辆可以行驶得更远,或在遥远的地区活动更长的时间。
这样,战地所需的支持车辆、人员和装备的数量便可以显著的减少。
自20世纪80年代以来,美国海军就使用燃料电池为其深海探索的船只和无人潜艇提供动力。
PEMFC作为便携式电源,主要替代目前常用的普通一次电池和蓄电池,用于未来单兵系统电源,常温下使用的各类仪表和军事通信设备电源等,PEMFC的比能量远远大于普通电池。
即便是采用金属氢化物储氢的PEMFC,其系统的重量比能量也是Ni/Cd电池的7倍,Ni/MH电池的4 5倍,Li离子电池的2倍多。
中国富原公司目前也开发·系列PEMFC野外移动电源,功率范围为500—1000W 。
4燃料电池的发展现状4.1 车用质子交换膜燃料电池质子交换膜燃料电池是燃料电池电动汽车的首选技术, 它具有比功率高、启动快等特点, 自20个世纪90 年代以来, 燃料电池电动汽车研发在国际范围内蓬勃兴起。
目前, 影响燃料电池汽车商业化的主要技术难点来自于燃料电池的寿命与成本。
车用燃料电池耐久性欠佳, 主原因是车载工况对燃料电池的影响, 如频繁起停、快速变载等非稳态操作以及低温、杂质环境影响等, 都会导致燃料电池加速衰减, 引起寿命缩短。