新北师大版八年级上数学期末试题
北师大版数学八年级上学期《期末考试题》附答案

甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
A.甲B.乙C.丙D.丁
[答案]B
[解析]
分析]
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
[详解]解:∵s2丁>s2丙>s2甲>s2乙,
方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
(1)求点 的坐标;
(2)点 在直线 上,且位于 轴的上方,将 沿直线 翻折得到 ,若点 恰好落在直线 上,求点 的坐标和直线 的解析式;
(3)设点 在直线 上,点 在直线 上,当 为等边三角形时,求点 坐标.
答案与解析
A卷(100分)
一、选择题.(每小题3分,共30分)
1.下列各数中,是无理数的是()
(1)求证: ;
(2)如图2,若 , ,折叠纸片,使点 与点 重合,折痕为 ,且 .
①求证: ;
②点 是线段 上一点,连接 ,一动点 从点 出发,沿线段 以每秒1个单位的速度运动到点 ,再沿线段 以每秒 个单位的速度运动到 后停止,点 在整个运动过程中用时最少多少秒?
28.如图,点 ,过点 做直线 平行于 轴,点 关于直线 对称点 .
[分析]
平移时k的值不变,只有b发生变化.
[详解]解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.
∴新直线的解析式为y=-3x+5.
故答案为y=-3x+5.
[点睛]求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题12 )A B C D 2.下列各组数中不能作为直角三角形三边长的是( ) A .1,2,3 B .3,4,5 C .5,12,13 D .8,15,173.下列四个命题中,真命题是( )A .如果a b ,b c ≠,那么a c ≠B .平面内点(1,2)A -与点(1,2)B --关于y 轴对称C .三角形的一个外角大于这个三角形中的任何一个内角D .三角形的任意两边之和一定大于第三边4.在一次数学测验中,甲、乙、丙、丁四位同学的成绩(单位:分)分别是80,x ,80,70,若这四位同学成绩的众数与平均数恰好相等,则他们成绩的中位数是( )A .90分B .85分C .80分D .75分5.如图,将直角三角板的锐角顶点A ,B 分别放置在两条平行直线1l ,2l 上,若165∠=︒,则2∠的度数是( )A .65︒B .45︒C .35︒D .25︒ 6.如图,七个相同的小长方形组成一个大长方形ABCD ,若21CD =,则长方形ABCD 的周长为( )A .100B .102C .104D .106 7.如图,直线2y x =-+与x 轴交于点A ,与y 轴交于点B ,以点A 为圆心,AB 为半径画弧,交x 轴于点C ,则点C 坐标为( )A .(2-,0)B .2,0)C .(-,0)D .(2,0)-8.已知第一象限内的点(,)P x y 在直线6y x =-的图象上,x 轴上的点A 横坐标为4.设AOP的面积为S ,则下列图象中,能正确反映S 与x 之间函数关系的是( )A .B .C .D .9.如图,直线a∥b ,将含有45°的三角板ABC 的直角顶点C 放在直线b 上,若∥1=27°,则∥2的度数是( )A .10°B .15°C .18°D .20°10.甲骑摩托车从A 地去B 地.乙开汽车从B 地去A 地.同时出发,匀速行驶.各自到达终点后停止.设甲、乙两人间的距离为s(单位:千米),甲行驶的时间为t(单位:小时),s 与t 之间的函数关系如图所示,下列结论中,错误的是( )A .出发1小时时,甲、乙在途中相遇B .出发1.5小时时,乙比甲多行驶了60千米C .出发3小时时,甲、乙同时到达终点D .甲的速度是乙速度的一半二、填空题11.8-的立方根是__________.12.如表记录了甲、乙、丙、丁四名同学最近五次数学考试成绩的平均分(单位:分)与方差:要推荐一名成绩好且发挥稳定的同学参加数学竞赛,应该选择 __(填甲、乙、丙、丁中一个即可).13.若将函数2y x =-的图象向上平移3个单位,得到一个一次函数的图象,则这个一次函数的表达式为 __.14.某工厂去年的利润(总收入-总支出)为200万元.今年总收入比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元.设去年的总收入为x 万元、总支出为y 万元,根据题意可列方程组___.15.如图,一次函数1y x =+与5y ax =+的图象相交于点P ,点P 的横坐标为2,那么关于x ,y 的方程组15x y ax y -=-⎧⎨-=-⎩的解为 __.16.已知长方形纸片ABCD ,5AB =,12BC =,将ABC 沿着AC 按如图方式折叠,点B 的对应点为点F ,CF 与AD 相交于点E ,则AE 的长为 __.17.平面直角坐标系xOy 中,点1A ,2A ,3A ,⋯和1B ,2B ,3B ,⋯分别在直线1233y x =+和x 轴上,∥11OA B ,∥122B A B ,∥233B A B ,⋯都是等腰直角三角形,如果1(1,1)A ,则点2021A 的纵坐标是 __.18.如图,y =k 1x+b 1与y =k 2x+b 2交于点A ,则方程组1122y k x b y k x b =+⎧⎨=+⎩的解为______.三、解答题19.如图,在ABC ∆中,40B ∠=︒,∥C=54°,AD 和AE 分别是高和角平分线,求DAE ∠的度数.20.(1(2)计算:221)1)-;(3)用适当的方法解方程组:32143x y x y +=⎧⎨-=⎩. 21.某校组织八年级全体200名学生参加“强国有我”读书活动,要求每人必读1~4本书,活动结束后从八年级学生中随机抽查了若干名学生了解读书数量情况,并根据:1A 本;:2B 本;:3C 本;:4D 本四种类型的人数绘制了不完整的条形统计图(图1)和扇形统计图(图2).请根据统计图解答下列问题:(1)在这次调查中D 类型有多少名学生?(2)直接写出被调查学生读书数量的众数和中位数;(3)求被调查学生读书数量的平均数,并估计八年级200名学生共读书多少本?22.如图,直线2:43l y x =-+与x 轴,y 轴分别交于A ,B 两点.(1)求AOB 的面积;(2)在y 轴上有一定点(0,8)P ,在x 轴上有一动点Q ,若POQ △与AOB 面积相等,请直接写出点Q 的坐标.23.请将下列题目中横线上的证明过程和依据补充完整:如图,点B 在AG 上,AG CD ,CF 平分BCD ∠,ABE BCF ∠=∠,BE AF ⊥于点E .求证:90F ∠=︒. 证明:AG ∥CD ,ABC BCD ∴∠=∠( )ABE BCF ∠=∠,ABC ABE BCD BCF ∴∠-∠=∠-∠,即CBE DCF ∠=∠, CF 平分BCD ∠,BCF DCF ∴∠=∠( )∴ BCF =∠.∥BC ∥CF ( )∴ F =∠.BE AF ⊥,∴ 90=︒( ).90F ∴∠=︒.24.某景区门票分为两种:A 种门票600元/张,B 种门票120元/张.某旅行社为一个旅行团代购部分门票,若旅行社购买A ,B 两种门票共15张,总费用5160元,求旅行社为这个旅行团代购的A 种门票和B 种门票各多少张?(要求列方程组解答)25.已知A ,B 两地间某道路全程为240km ,甲、乙两车沿此道路分别从A ,B 两地同时出发匀速相向而行,甲车从A 地出发行驶2h 后因有事按原路原速返回A 地,结果两车同时到达A 地.已知甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系如图所示,请结合图象信息解答下列问题:(1)甲车的速度为 km/h ,乙车的速度为 km/h ;(2)求甲车出发多长时间两车途中首次相遇?(3)直接写出甲车出发多长时间两车相距40km .26.概念认识:如图∥,在ABC ∠中,若ABD DBE EBC ∠=∠=∠,则BD ,BE 叫做ABC ∠的“三分线”.其中,BD 是“邻BA 三分线”,BE 是“邻BC 三分线”.(1)问题解决:如图∥,在ABC 中,70A ∠=︒,=45ABC ∠︒,若ABC ∠的邻BA 三分线BD 交AC 于点D ,则BDC ∠的度数为 ;(2)如图∥,在ABC 中,BP ,CP 分别是ABC ∠邻BC 三分线和ACB ∠邻CB 三分线,且135BPC ∠=︒,求A ∠的度数;(3)延伸推广:在ABC 中,ACD ∠是ABC 的外角,B ∠的邻BC 三分线所在的直线与ACD ∠的三分线所在的直线交于点P .若A m ∠=︒,=60B ∠︒,直接写出BPC ∠的度数.(用含m 的代数式表示)27.如图,在平面直角坐标系中有ABO ,90AOB ∠=︒,AO BO =,作AC x ⊥轴于点C ,BD x ⊥轴于点D ,点B 的坐标为(1,3).(1)请直接写出点A 的坐标;(2)求直线AB 的表达式;(3)若M 为AB 的中点,连接CM ,动点P 从点C 出发,沿射线CM 方向运动,当||BP OP -最大时,求点P 的坐标.参考答案1.B【分析】根据最简二次根式的定义判断即可.【详解】解:A =A 不符合题意;B B 符合题意;C =,故C 不符合题意;D =,故D 不符合题意; 故选:B .【点睛】此题考查了最简二次根式的定义:被开方数中不含分母,不含能开得尽方的因数或因式,熟记定义是解题的关键.2.A【分析】利用勾股定理的逆定理判断三边长能否构成直角三角形,满足最长边的平方与另两边的平方和相等的即可构成直角三角形.【详解】解:先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. A 、222123+≠,故不是直角三角形,符合题意;B 、222345+=,故是直角三角形,不符合题意;C 、22251213+=,故是直角三角形,不符合题意;D 、22281517+=,故是直角三角形,不符合题意;故选:A .【点睛】本题考查勾股定理的逆定理,利用勾股定理逆定理判断三边长能否构成直角三角形,若满足最长边的平方与另两边的平方和相等即可构成直角三角形.3.D【分析】利用不等式的性质、关于坐标轴对称的点的坐标特点、三角形的外角的性质及三角形的三边关系分别判断后即可确定正确的选项.【详解】解:A 、如果a b ,b c ≠,那么可能a c =,故原命题错误,是假命题,不符合题意;B 、平面内点(1,2)A -与点(1,2)B --关于x 轴对称,故原命题错误,是假命题,不符合题意;C 、三角形的一个外角大于任何一个不相邻的内角,故原命题错误,是假命题,不符合题意;D 、三角形的任意两边之和一定大于第三边,正确,是真命题,符合题意.故选:D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质、关于坐标轴对称的点的坐标特点、三角形的外角的性质及三角形的三边关系,难度不大.4.C【分析】因为x 的值不确定,所以众数也不能直接确定,需分类讨论:∥80x =;∥70x =;∥80x ≠且70x ≠,再分别进行解答即可.【详解】解:∥80x =时,众数是80,平均数(80808070)480=+++÷≠,则此情况不成立, ∥70x =时,众数是80和70,而平均数是一个数,则此情况不成立,∥70x ≠且80x ≠时,众数是80,根据题意得:(808070)480x +++÷=,解得90x =,则中位数是(8080)280+÷=.故选:C .【点睛】此题考查了众数的定义,中位数的定义,平均数的计算公式,正确掌握各定义并分类讨论是解题的关键.5.D【分析】延长AC 交直线2l 于点D ,由平行线的性质可得165ADB ∠=∠=︒,则可求2∠的度数.【详解】解:延长AC 交直线2l 于点D ,如图,12//l l ,165∠=︒,165ADB ∴∠=∠=︒,90ACB ∠=︒,225ADB ADB ∴∠=∠-∠=︒.故选:D .【点睛】此题考查了平行线的性质,三角形外角的性质,熟记平行线的性质是解题的关键.6.B【分析】由图可看出本题的等量关系:小长方形的长2⨯=小长方形的宽5⨯;小长方形的长+宽21=,据此可以列出方程组求解.【详解】解:设小长方形的长为x ,宽为y .由图可知:5221y x x y =⎧⎨+=⎩ 解得.156x y =⎧⎨=⎩, ∥长方形ABCD 的长为55630y =⨯=,宽为21,∴长方形ABCD 的周长为2(3021)102⨯+=,故选:B .【点睛】本题主要考查了二元一次方程组在几何图形中的应用,解题的关键在于能够根据题意列出方程求解.7.A【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,利用勾股定理求出AB 的长度,再结合点A 的坐标即可找出点C 的坐标.【详解】解:当0x =时,22y x =-+=,∴点B 的坐标为(0,2),2OB =;当0y =时,20x -+=,解得:2x =,∴点A 的坐标为(2,0),2OA =.AB ∴,∴点C 的坐标为(2-,0).故选:A .【点睛】本题主要考查了一次函数与坐标轴的交点问题,勾股定理,熟知求一次函数与坐标轴交点的方法是解题的关键.8.C【分析】根据第一象限内的点(,)P x y 在直线6y x =-的图象上,x 轴上的点A 横坐标为4,从而可以得到S 关于x 的函数关系式,从而可以解答本题.【详解】解:∥第一象限内的点(,)P x y 在直线6y x =-的图象上,x 轴上的点A 横坐标为4, ∥1422(6)2x 122S y y x =⨯==-=-+,06x <<, ∥021212x <-+<∥012S <<,故选:C .【点睛】本题考查函数图象、三角形的面积,解答本题的关键是明确题意,列出相应的函数关系,利用数形结合的思想解答.9.C【分析】过B 作BE∥直线a ,推出a∥b∥BE ,根据平行线性质得出∥2=∥ABE ,∥1=∥CBE=27°,根据∥ABC=45求出∥ABE ,即可得出答案.【详解】解:过B作BE∥直线a,∥直线a∥b,∥∥2=∥ABE,∥1=∥CBE=27°,∥∥ABC=45°,∥∥2=∥ABE=45°﹣27°=18°,故选C.【点睛】本题考查了平行线性质的应用,解此题的关键是正确作出辅助线.10.C【分析】根据函数图象和图象中的数据可以计算出各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可得,出发1小时时,甲乙在途中相遇,故选项A正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,∥出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故选项B正确,在1.5小时时,乙到达终点,甲在3小时时到达终点,故选项C错误,∥甲的速度是:120÷3=40千米/时,乙的速度是:120÷1﹣40=80千米/h,∥甲的速度是乙速度的一半,故选项D正确,故选C.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和数形结合的思想解答.11.-2【分析】根据立方根的定义进行求解即可得.【详解】解:∥(﹣2)3 =﹣8,∥﹣8的立方根是﹣2,故答案为﹣2.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.12.丙【分析】首先根据平均分判断成绩好坏,平均分越高,成绩越好;再根据方差来判断数据的稳定性,方差越小,稳定性越好.【详解】解:首先比较平均数,平均数相同时选择方差较小的参加竞赛.甲和丁的平均数较小,∴从乙和丙中选择一人参加竞赛,丙的方差较小,∴选择丙竞赛.故答案为:丙.【点睛】本题考查平均数和方差,利用平均数和方差做决策,关键是理解平均数和方差代表的意义.13.23y x =-+【分析】根据函数图象平移的法则“上加下减”,就可以求出平移以后函数的解析式,【详解】解:将正比例函数2y x =-的图象向上平移3个单位长度,得到一次函数的表达式为:23y x =-+.故答案为:23y x =-+.【点睛】本题考查一次函数的平移.掌握图象平移的法则“上加下减”是解题关键.14.200(120%)(110%)780x y x y -=⎧⎨+--=⎩ 【分析】设去年的总收入为x 万元、总支出为y 万元,根据去年的利润(总收入-总支出)为200万元,今年的利润为780万元,列方程组即可.【详解】解:设去年的总收入为x 万元、总支出为y 万元,由题意得,()()200120%110%780x y x y -=⎧⎨+--=⎩. 故答案为:()()200120%110%780x y x y -=⎧⎨+--=⎩. 【点睛】本题主要考查了列二元一次方程组,解题的关键在于能够正确理解题意.15.23x y =⎧⎨=⎩【分析】先把x =2代入y =x+1,得出y =3,则两个一次函数的交点P 的坐标为(2,3);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把2x =代入1y x =+得,213y =+=,一次函数1y x =+与5y ax =+的图象相交于点(2,3)P ,则关于x ,y 的方程组15x y ax y -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩, 故答案为:23x y =⎧⎨=⎩. 【点睛】本题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标,解决问题的关键是正确的求出点P 的坐标.16.16924【分析】由矩形的性质可得5AB CD ==,12AD BC ==,//AD BC ,根据平行线的性质和折叠的性质可得EAC ACE ACB ∠=∠=∠,即AE EC =,根据勾股定理列方程可求AE 的长. 【详解】解:四边形ABCD 是矩形,5AB CD ∴==,12AD BC ==,//AD BC ,EAC ACB ∴∠=∠,由折叠可得ACE ACB ∠=∠,EAC ACE ∴∠=∠,AE CE ∴=,在Rt∥DEC 中,222CE DE CD =+,即22(12)25AE AE =-+, 解得16924AE =, 故答案为:16924. 【点睛】此题考查了矩形与折叠问题,勾股定理,正确掌握矩形的性质及折叠的性质是解题的关键.17.20202【分析】利用待定系数法可得1A 、2A 、3A 的坐标,进而得出各点的坐标的规律.【详解】解:如图所示,过点1A 作1AC x ⊥轴于C ,过点2A 作2A D x ⊥轴于D , ∥()11,1A ,∥OA 1B 1是等腰直角三角形,∥1OC B C =即点C 是1OB 的中点,∥111222A OB AC y ===, 同理可得21212222A B B B D A D y ===,∥12112A A OD OB B D y y =+=+,∴可设2(2,)A a a + ∥12(2)33a a =++,解得2a =,2(4,2)A ∴, 同理可设3(6,)A b b +,则有12(6)33b b =++,解得4b =, 3(10,4)A ∴,由此发现点n A 的纵坐标为12n -,即点2021A 的纵坐标是20202,故答案为:20202.【点睛】本题主要考查了一次函数的规律型问题,等腰直角三角形的性质,直角三角形斜边上的中线,解题的关键在于能够根据题意得到点的坐标规律.18.23x y =-⎧⎨=-⎩ 【详解】试题解析:∥11y k x b =+与22y k x b =+交于点()2,3--,∥二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23.x y =-⎧⎨=-⎩ 故答案为23.x y =-⎧⎨=-⎩19.7°【分析】根据三角形内角和定理,得到∥BAC 的度数,然后根据角平分线和高的定义,分别求出∥EAC 和∥CAD 的度数,最后计算出结果即可.【详解】解:∥∥B=40°,∥C=54°∥∥BAC=180°-∥B -∥C=86°∥AE 是∥BAC 的角平分线∥∥EAC=43°∥AD 是ABC ∆的高∥∥ADC=90°∥∥CAD=90°-∥C=36°∥∥DAE=∥EAC -∥CAD=43°-36°=7°【点睛】本题考查了三角形的高线和角平分线的定义,熟练掌握相关知识,精准识图,准确计算是本题的解题关键.20.(1);(2)(3)41x y =⎧⎨=⎩【分析】(1)原式各自化简后,合并同类二次根式即可得到结果;(2)原式利用完全平方公式化简,去括号合并即可得到结果;(3)方程组利用加减消元法求出解即可.【详解】解:(1)原式== (2)原式(21)(21)=+--2121=+-+=(3)32143x y x y +=⎧⎨-=⎩①②, ∥+∥2⨯得:520x =,解得:4x =,把4x =代入∥得:43y -=,解得:1y =,则方程组的解为41x y =⎧⎨=⎩. 【点睛】本题考查了二次根式的混合运算,解二元一次方程组,熟练掌握各知识点是解答本题的关键.21.(1)2名(2)众数为2本,中位数为2本(3)平均数:2.3本;460本【分析】(1)由两个统计图可知,B 类人数为8人,占40%可得抽查总人数,进而求出D 类的学生人数;(2)根据中位数、众数的意义求解即可;(3)先求出样本的平均数,再乘以总人数即可.(1)解:这次调查一共抽查的学生人数为840%20÷=(人),D 类人数2010%2=⨯=(人);(2)解:从条形统计图来看,阅读2本的人数最多,故被调查学生读书数量的众数为2本, 20个数据中,第10个数是2,第11个数是2,故被调查学生读书数量的中位数为2本;(3) 解:被调查学生读书数量的平均数为:1(14283642) 2.320⨯⨯+⨯+⨯+⨯=(本), 2.3200460⨯=(本),估计八年级200名学生共读书460本.【点睛】本题考查的是条形统计图和扇形统计图,读懂统计图,会计算部分的数量,根据部分的百分比求总体的数量,平均数的计算公式,从统计图中得到必要的信息是解决问题的关键.22.(1)12(2)Q 点坐标为(3,0)或(3,0)-【分析】(1)由直线2:43l y x =-+求得A 、B 的坐标,然后根据三角形面积公式即可求得AOB ∆的面积;(2)利用三角形面积求得OQ ,进而即可求得Q 的坐标.(1) 解:函数243y x =-+,当0x =时,4y =, ∥B (0,4);当0y =时,6x =,(6,0)A ∴,6OA ∴=,4OB =,11641222AOB S OA OB ∆∴=⨯⋅=⨯⨯=; (2) 解:点(0,8)P ,8OP ∴=,POQ ∆与AOB ∆面积相等, ∴1122OQ OP ⨯=,即18122OQ ⨯=,3OQ ∴=,Q ∴点坐标为(3,0)或(3,0)-. 23.两直线平行,内错角相等;角平分线的定义;CBE ∠;内错角相等,两直线平行;BEF ∠;BEF ∠;垂直的定义【分析】根据平行线性质与判定、角平分线定义、垂直的定义填空即可.【详解】证明://AG CD ,(ABC BCD ∴∠=∠ 两直线平行,内错角相等),ABE BCF∠=∠,ABC ABE BCD BCF∴∠-∠=∠-∠,即CBE DCF∠=∠,CF平分BCD∠,(BCF DCF∴∠=∠角平分线的定义),//(BE CF∴内错角相等,两直线平行),BEF F∴∠=∠.BE AF⊥,90(BEF∴∠=︒垂直的定义).90F∴∠=︒.故答案为:两直线平行,内错角相等;角平分线的定义;CBE∠;内错角相等,两直线平行;BEF∠;BEF∠;垂直的定义.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟知相关知识是解题的关键.24.旅行社为这个旅行团代购A种门票7张,B种门票8张【分析】设旅行社为这个旅行团代购A种门票x张,B种门票y张,利用总价=单价⨯数量,结合“旅行社购买A,B两种门票共15张,总费用5160元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设旅行社为这个旅行团代购A种门票x张,B种门票y张,依题意得:15 6001205160x yx y+=⎧⎨+=⎩,解得:78xy=⎧⎨=⎩.答:旅行社为这个旅行团代购A种门票7张,B种门票8张.【点睛】本题主要考查了二元一次方程组的实际应用,解题的关键在于能够根据题意列出方程求解.25.(1)80;60(2)12h7(3)10h7或2h【分析】(1)直接利用图象求出速度和时间即可;(2)分别求出甲、乙两车距A 地的路程(km)y 与甲车出发所用的时间(h)x 的函数关系式,再列方程解答即可;(3)分相遇前和相遇后两种情况进行讨论即可.(1)解:由题意可知,甲车的速度为:160280km/h ÷=,乙车的速度为:240(22)60km/h ÷+=; 故答案为:80;60;(2)解:设1(02)y k x x =<<甲,将(2,160)代入得180k =,()8002y x x ∴=<<甲,设2y k x b =+乙,将(0,240),(4,0)代入得:224040b k b =⎧⎨+=⎩, 解得:260240k b =-⎧⎨=⎩, 60240y x ∴=-+乙,8060240x x ∴=-+, 解得:127x =, ∴甲车出发127h 两车途中首次相遇; (3)解:∥相遇前,设甲车出发m 小时两车相距40千米,则806024040m m +=-,, 解得107m =; ∥相遇后,由图象可知:甲车行驶2h 时,甲车与乙车的距离最大,此时乙行驶的路程为602120⨯=(千米),甲乙两车的最大距离为16012024040+-=(千米),∴甲车出发2h 两车相距40千米, 综上所述,甲车出发10h 7或2h 两车相距40千米. 【点睛】本题主要考查了一次函数的应用,从函数图像获取信息,解题的关键在于能够准确读懂函数图像.26.(1)85°(2)45° (3)13m ︒或2203m ︒+︒【分析】(1)根据题意可BD 是“邻BC 三分线”可求得ABD ∠的度数,再利用三角形外角的性质可求解;(2)结合(1)根据BP 、CP 分别是ABC ∠邻BC 三分线和ACB ∠邻BC 三分线,且135BPC ∠=︒,即可求A ∠的度数; (3)分2种情况进行画图计算:情况一:如图,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,可得13BPC A ∠=∠,可求解;情况二:如图,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,可得2133BPC A ABC ∠=∠+∠可求解.(1)解:ABC ∠的邻BA 三分线BD 交AC 于点D ,=45ABC ∠︒, 1153ABD ABC ∴∠=∠=︒, 70A ∠=︒,701585BDC ∴∠=︒+︒=︒,故答案为:85︒;(2)解:在BPC ∆中,135BPC ∠=︒,45PBC PCB ∴∠+∠=︒,又BP 、CP 分别是ABC ∠邻BC 三分线和ACB ∠邻BC 三分线,13PBC ABC ∴∠=∠,13PCB ACB ∠=∠,∴111801354533ABC ACB ∠+∠=︒-︒=︒, 在ABC ∆中,180A ABC ACB ∠+∠+∠=︒(3)解:如图3-1所示,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,13CBP ABC ∠=∠,13PCD ACD ∠=∠,PCD P CBP ∠=∠+∠, ∴1133ACD P ABC ∠=∠+=∠, 即3ACD P ABC ∠=∠+∠,ACD A ABC ∠=∠+∠,A m ∠=︒,1133BPC A m ∴∠=∠=︒; 如图3-2所示,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,13CBP ABC ∠=∠,23PCD ACD ∠=∠,PCD P CBP ∠=∠+∠, ∴2133ACD P ABC ∠=∠+=∠, 即23ACD P ABC ∠=∠+∠,ACD A ABC ∠=∠+∠,A m ∠=︒,21220333BPC A ABC m ∴∠=∠+∠=︒+︒. 综上所述:BPC ∠的度数为:13m ︒或2203m ︒+︒. 【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,角三等分线的定义,正确理解题意是解题的关键.27.(1)(3,1)A - (2)1522y x =+ (3)39,22P ⎛⎫ ⎪⎝⎭【分析】(1)证明()ACO ODB AAS ∆≅∆,即可求点的坐标;(2)由待定系数法求解析式即可;(3)延长OB 交射线CM 于点F ,延长DB 交射线CM 于点E ,连接OP ,PB ,可证()ACM BEM AAS ∆≅∆,由全等得到(1,4)E ,求出直线CE 的直线解析式为3y x ,直线OB 的解析式为3y x =,两直线的交点即为P .(1)解:AC x ⊥轴,BD x ⊥轴,90ACO BDO ∴∠=∠=︒,90AOB ∠=︒,90AOC BOD ∴∠+∠=︒,90AOC OAC ∠+∠=︒,BOD OAC ∴∠=∠,AO BO =,()ACO ODB AAS ∴∆≅∆,点B 的坐标为(1,3),1AC ∴=,3CO =,(3,1)A ∴-;(2)解:设直线AB 的解析式为y kx b =+,∴331k b k b +=⎧⎨-+=⎩, ∴1252k b ⎧=⎪⎪⎨⎪=⎪⎩,1522y x ∴=+;(3)解:延长OB 交射线CM 于点F , 延长DB 交射线CM 于点E ,连接OP ,PB//AC BE ∴,MAC MBE ∴∠=∠,MCA MEB ∠=∠, 点M 为AB 中点,AM BM ∴=,()ACM BEM AAS ∴∆≅∆,1BE AC ∴==,(1,4)E ∴,(1,3)B ,(3,0)C -,设直线CE 的解析式为11y k x b =+, ∴1111403k b k b =+⎧⎨=-+⎩,∴1113k b =⎧⎨=⎩,∴直线CE 的直线解析式为3y x , 设直线OB 的解析式为2y k x =,23k ∴=,∴直线OB 的解析式为3y x =,∴33 y xy x=⎧⎨=+⎩,解得3292xy⎧=⎪⎪⎨⎪=⎪⎩,∥BP OP OB-≤,∥当点P与点F重合时,BP OP OB-=有最大值,∥P点坐标为(32,92)。
北师大版数学八年级上学期《期末测试卷》及答案

(1)求B,C两点坐标;
(2)①求△OPD的面积S关于t的函数关系式;
A 2.5mB.2mC.1.5mD.1m
[答案]C
[解析]
[分析]
根据图形分别求得二人的速度,相减后即可确定正确的选项.
[详解]观察图象知:甲跑64米用时8秒,速度为8m/s,
①把 向上平移5个单位后得到对应的 ,画出 ,并写出 的坐标;
②以原点 为对称中心,再画出与 关于原点 对称的 ,并写出点 的坐标.
五、本大题共2小题,每小题10分,满分20分.
19.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200千克,全部售出后卖了30400元.已知“妃子笑”荔枝每千克售价8元,“无核Ⅰ号”荔枝每千克售价12元,问该种植场今年这两种荔枝各收获多少千克?
=4,故B符合题意,
故选B.
[点睛]本题考查了算术平方根,利用乘方求一个正数的算术平方根,注意一个正数只有一个算术平方根.
2.下列实数中是无理数的是()
A. B.πC.0.141414D.﹣
[答案]B
[解析]
[分析]
根据无理数是无限不循环小数,可得答案.
[详解]A、 =2是有理数,故A错误;
B、π是无理数,故B正确;
七、本题满分12分.
22.直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B 坐标.
北师大版数学八年级上学期《期末检测试题》含答案解析

故选D.
[点睛]此题主要考查三角形的角度求解,解题的关键是熟知三角形的外角定理与等腰三角形的性质.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
故选:C.
[点睛]本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,题目是一道比较好的题目,难度不大.
2.下列实数是无理数的是()
A. B. C. D.0.1010010001
[答案]C
[解析]
[分析]
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
9.下列命题是真命题的是()
A.如果 ,那么
B.0的平方根是0
C.如果 与 是内错角,那么
D.三角形 一个外角等于它的两个内角之和
10.如图,在△ 中, 为 边上一点,以点 为圆心, 为半径画弧,交 的延长线于点 ,连接 .若 , ,则 的度数为()
A. B. C. D.
11.我国明代数学家程大位所著的《算法统宗》中记载了一道有趣的题目:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”题目大意是:100个和尚分100个馒头,刚好分完,大和尚1人分3个馒头,小和尚3人分一个馒头,问大、小和尚各有多少人?若大和尚有 人,小和尚有 人,则下列方程或方程组中:① ② ③ ④ 正确的是()
新北师大版八年级数学上册期末试卷及答案【完美版】

新北师大版八年级数学上册期末试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( )A .-6B .6C .16-D .162.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠110.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.如果不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,那么m 的取值范围是________. 4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图,已知点E 在正方形ABCD 的边AB 上,以BE 为边向正方形ABCD 外部作正方形BEFG ,连接DF ,M 、N 分别是DC 、DF 的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知2a ﹣1的平方根为±3,3a +b ﹣1的算术平方根为4,求a +2b 的平方根.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=12x+b过点P.(1)求点P坐标和b的值;(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒.①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;②求出t为多少时,△APQ的面积小于3;③是否存在t的值,使△APQ为等腰三角形?若存在,请求出t的值;若不存在,请说明理由.6.某开发公司生产的 960 件新产品需要精加工后,才能投放市场,现甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用 20 天,而甲工厂每天加工的数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费用为每天 80 元,乙工厂加工费用为每天120 元.(1)甲、乙两个工厂每天各能加工多少件新产品?(2)公司制定产品加工方案如下:可以由每个厂家单独完成,也可以由两个厂家合作完成.在加工过程中,公司派一名工程师每天到厂进行技术指导,并负担每天 15 元的午餐补助费,请你帮公司选择一种既省时又省钱的加工方案,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、B6、A7、D8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、72、30°或150°.3、3m≤.4、(-4,2)或(-4,3)5、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、22mm-+1.3、±34、略5、(1)b=72;(2)①△APQ的面积S与t的函数关系式为S=﹣32t+272或S=32t﹣272;②7<t<9或9<t<11,③存在,当t的值为3或或9﹣或6时,△APQ为等腰三角形.6、(1)甲工厂每天加工 16 件产品,乙工厂每天加工 24 件产品. (2)甲、乙两工厂合作完成此项任务既省时又省钱.见解析.。
北师大版八年级上册数学期末考试试卷及答案

北师大版八年级上册数学期末考试试题一、单选题1.下列实数中是无理数的是( )A.π B C .0 D .27- 2.如图,在Rt ABC 中,90C ∠=︒,边BC 的长是( )A.5 B .6 C .8 D .3.下列选项中,最简二次根式是( )A B C D 4.如图,在ABC 中,85B ∠=︒,40ACD ∠=︒,AB ∥CD ,则ACB ∠的度数为( )A .90°B .85°C .60°D .55° 5.若点(1,2)P 在正比例函数的图象上,则这个正比例函数的解析式是( ) A .2y x =- B .2y x = C .4y x =- D .4y x = 6.函数1y kx =-中,y 随x 的增大而增大,则它的图象可能是下图中的( )A .B .C .D .7.古代数学问题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺.设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是( )A . 4.5112y x y x =-⎧⎪⎨=-⎪⎩B . 4.5112y x y x =-⎧⎪⎨=+⎪⎩C . 4.5112y x y x =+⎧⎪⎨=-⎪⎩D . 4.521y x y x =+⎧⎨=-⎩ 8.如图,ABC 是一个三角形的纸片,点D 、E 分别是ABC 边上的两点,将ABC 沿直线DE 折叠,点A 落在点A '处,则BDA '∠,CEA '∠和A ∠的关系是( )A .BDA CEA A ''∠-∠=∠B .180BDA CEA A ''∠+∠+∠=︒C .2BDA A CEA ''∠+∠=∠D .2BDA CEA A ''∠+∠=∠9.下列运算结果正确的是( )AB.2+= C3= D.)213=-10.已知直线12//l l ,将一块直角三角板ABC (其中∠A 是30°,∠C 是60°)按如图所示方式放置,若∠1=84°,则∠2等于( )A .56°B .64°C .66°D .76°二、填空题11.正数a 的平方根是5和m ,则m =__________. 12.已知41x y =⎧⎨=⎩是关于x ,y 的二元一次方程3x ay -=的一个解,则a 的值是__________. 13.计算的结果是________. 14.解方程组5()3()22()4()6x y x y x y x y +--=⎧⎨++-=⎩,若设()x y A +=,()x y B -=,则原方程组可变形为______.15.如图,已知函数y ax b =+和y cx d =+图象交于点M ,则根据图象可知,关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为____________.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.17.如图,已知∠1=∠2,∠B =35°,则∠3=________°.18.如图,已知直线y =ax+b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b=⎧⎨=+⎩的解是_____.三、解答题19.计算(2)1)20.为了搞好课外活动,王老师还需购买一定数量的足球和篮球.经调查发现:6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元,请问篮球和足球的单价分别是多少?21.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P到x轴、y轴的距离相等.22.已知:如图,在∠ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∠BC.23.如图,∠ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.24.如图,在平面直角坐标系中,∠ABC 的顶点坐标分别为()3,2A -,()4,3B --,()2,2C --. (1)∠ABC 的面积是 ;(2)画出∠ABC 关于y 轴对称的∠A 1B 1C 1,并写出点B 1的坐标.25.在∠ABC 中,(1)如图1,AC =15,AD =9,CD =12,BC =20,求∠ABC 的面积;(2)如图2,AC =13,BC =20,AB =11,求∠ABC 的面积.26.如图,在平面直角坐标系xOy 中,一次函数的图象经过点()30A -,与点()0,4B .(1)求这个一次函数的表达式;(2)若点M 为此一次函数图象上一点,且∠MOB 的面积为12,求点M 的坐标;(3)点P 为x 轴上一动点,且∠ABP 是等腰三角形,请直接写出点P 的坐标.27.某校在八年级开展环保知识问卷调查活动,问卷一共10道题,八年级(三)班的问卷得分情况统计图如下图所示:a______________;(1)扇形统计图中,(2)根据以上统计图中的信息,∠问卷得分的极差是_____________分;∠问卷得分的众数是____________分;∠问卷得分的中位数是______________分;(3)请你求出该班同学的平均分.参考答案1.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、π是无理数,故此选项符合题意;B2=,属于有理数,故此选项不符合题意;C、0属于有理数,故此选项不符合题意;D、27-是分数,属于有理数,故此选项不符合题意;故选:A.【点睛】此题主要考查了无理数的定义,掌握实数的分类是解答本题的关键.2.B【分析】利用勾股定理计算即可.【详解】解:由题意可得:6=,故选:B.【点睛】本题考查了勾股定理,解题的关键是掌握直角三角形中直角边的平方和等于斜边的平方.3.C【分析】根据最简二次根式的定义判断即可.【详解】解:A=,不是最简二次根式,故不符合题意;B=CD=,不是最简二次根式,故不符合题意;故选:C.【点睛】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.4.D【分析】根据平行线的性质和三角形的内角和定理即可得到结论.【详解】解:∠AB∠CD,∠ACD=40°,∠∠A=∠ACD=40°,∠∠ACB=180°-∠A-∠B=180°-40°-85°=55°,故选:D.【点睛】本题考查的是三角形内角和定理和平行线的性质,掌握三角形内角和定理等于180°是解题的关键.5.B【分析】将P坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式.【详解】解:设正比例函数的解析式为y=kx,将x=1,y=2代入y=kx中,得:2=k,则正比例解析式为y=2x;故选:B.【点睛】此题考查了待定系数法求正比例函数解析式,灵活运用待定系数法是解本题的关键.6.D【分析】y随x的增大而增大,则k>0,图象经过一、三象限;常数项-1<0,则直线与y 轴的交点在负半轴上,图象还经过第四象限.【详解】解:∠函数y=kx-1,y随x的增大而增大,∠k>0,图象经过一、三象限;又∠-1<0,∠图象还经过第四象限.即图象经过一、三、四象限.故选:D.【点睛】本题考查了一次函数的图象特征,函数的增减性,解题的关键是掌握一次函数的各个系数的作用.7.C【分析】根据用一根绳子去量一根长木,绳子还剩余4.5尺,可得x+4.5=y;根据将绳子对y,然后即可写出相应的方程组.折再量长木,长木还剩余1尺,可得x-1=12【详解】解:由题意可得,4.5112y x y x =+⎧⎪⎨=-⎪⎩, 故选:C .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.D【分析】由∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,得∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,再利用四边形内角和定理可得答案.【详解】解:∠∠BDA'+∠ADA'=180°,∠CEA'+∠A'EA=180°,∠∠BDA'+∠CEA'=360°-∠ADA'-∠A'EA ,∠∠BDA'+∠CEA'=∠A+∠DA'E ,∠∠A'DE 是由∠ADE 沿直线DE 折叠而得,∠∠A=∠DA'E ,∠∠BDA'+∠CEA'=2∠A ;故选D .【点睛】本题主要考查了折叠的性质,三角形内角和定理等知识,遇到折叠的问题,一定要找准相等的量,结合题目所给出的条件在图形上找出之间的联系则可.9.D【分析】根据二次根式的运算性质,以及完全平方公式进行计算即可.【详解】A与B .2与CD.)22212113=-+=-故选:D .【点睛】本题考查了二次根式加减乘除计算,熟知二次根式加减乘除运算性质以及运用完全平方公式进行计算是解题的关键.10.C【分析】如图,由题意易得∠ABC=90°,则有∠3=∠1-∠C=24°,进而可得∠4=66°,然后根据平行线的性质可求解.【详解】解:如图所示:∠∠C=60°,∠1=84°,∠∠3=24°,∠∠ABC 是直角三角形,∠∠ABC=90°,∠∠4=66°,∠12//l l ,∠∠2=∠4=66°;故选C .【点睛】本题主要考查三角形外角的性质及平行线的性质,熟练掌握三角形外角的性质及平行线的性质是解题的关键.11.-5【分析】根据一个正数的平方根互为相反数,从而可以求得m 的值.【详解】解:∠正数a 的平方根是5和m ,∠5+m=0,∠m=-5,故答案为:-5.【点睛】本题考查了平方根,解答本题的关键是明确一个正数的平方根有两个,它们互为相反数.12.1【分析】把41x y =⎧⎨=⎩代入二元一次方程x -ay=3中,得到关于a 的方程,解方程就可以求出a .【详解】解:把41x y =⎧⎨=⎩代入二元一次方程x -ay=3,得 4-a=3,解得a=1.故答案为:1.【点睛】本题考查了二元一次方程的解,解题关键是把方程的解代入原方程,使原方程转化为以系数a 为未知数的方程.13.【详解】分析:先计算分子,然后进行二次根式的除法运算.详解:原式点睛:本题考查了二次根式的计算:一般情况下,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.532246A B A B -=⎧⎨+=⎩ 【分析】根据题意,将()x y A +=,()x y B -=代入方程组中即可得出结论.【详解】解:由题意可得原方程组可变形为532246A B A B -=⎧⎨+=⎩故答案为:532246A B A B -=⎧⎨+=⎩. 【点睛】此题考查的是换元法,根据题意换元是解题关键.15.57x y =-⎧⎨=⎩ 【分析】一次函数y=ax+b 和y=cx+d 交于点(-5,7);因此点(-5,7)必为两函数解析式所组方程组的解.【详解】解:由图可知:直线y=ax+b 和直线y=cx+d 的交点坐标为(-5,7);因此关于x 、y 的二元一次方程组y ax b y cx d =+⎧⎨=+⎩的解为:57x y =-⎧⎨=⎩,故答案为:57xy=-⎧⎨=⎩.【点睛】考查了一次函数与二元一次方程(组)方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.30°【分析】根据矩形的性质得到AD∠BC,∠DCB=90°,根据平行线的性质得到∠F=∠ECB =20°,根据三角形的外角的性质得到∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,于是得到结论.【详解】解:∠四边形ABCD是矩形,∠AD∠BC,∠DCB=90°,∠∠F=∠ECB∠∠ECB=20°,∠∠F=∠ECB=20°,∠∠GAF=∠F,∠∠GAF=∠F=20°,∠∠ACG=∠AGC=∠GAF+∠F=2∠F=40°,∠∠ACB=∠ACG+∠ECB=60°,∠∠ACD=90°﹣∠ACB=90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.35【分析】根据“平行线的判定和性质”结合“已知条件”分析解答即可.【详解】∠∠1=∠2,∠AB∠CE,∠∠3=∠B=35°.故答案为35.【点睛】熟记“平行线的判定方法和性质”是解答本题的关键.18.12 xy=⎧⎨=⎩.【分析】直接根据函数图象交点坐标为两函数解析式组成的方程组的解得到答案.【详解】解:∠直线y=ax+b和直线y=kx交点P的坐标为(1,2),∠关于x,y的二元一次方程组y kxy ax b=⎧⎨=+⎩的解为12xy=⎧⎨=⎩.故答案为12xy=⎧⎨=⎩.【点睛】此题考查一次函数与二元一次方程(组),解题关键在于利用图象求解.19.(1)3 2(2)12【分析】(1)利用二次根式的乘法法则计算,再化简;(2)利用平方差公式计算即可.(1)=32;(2))11=221-=131-=12【点睛】本题考查了二次根式的混合运算,解题的关键是掌握运算法则.20.篮球单价为80元,足球单价为60元【分析】设篮球单价为x元,足球单价为y元,根据“6个价格相同的篮球和4个价格相同的足球共需720元,1个篮球和3个足球共需260元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设篮球单价为x元,足球单价为y元,依题意,得:647203260x yx y+=⎧⎨+=⎩,解得:8060xy=⎧⎨=⎩,答:篮球单价为80元,足球单价为60元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)P(-6,0);(2)P(-12,-12)或(-4,4)【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:(1)∠点P(a-2,2a+8)在x轴上,∠2a+8=0,解得:a=-4,故a-2=-4-2=-6,则P(-6,0);(2)∠点P到x轴、y轴的距离相等,∠a-2=2a+8或a-2+2a+8=0,解得:a=-10,或a=-2,故当a=-10时,a-2=-12,2a+8=-12,则P(-12,-12);故当a=-2时,a-2=-4,2a+8=4,则P(-4,4).综上所述:P(-12,-12)或(-4,4).【点睛】此题主要考查了点的坐标特征,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及点在坐标轴上的点的性质.22.证明见解析【分析】由角平分线的定义可知:∠EAD=12∠EAC,再由三角形的外角的性质可得∠EAD=∠B,然后利用平行线的判定定理可证明出结论.【详解】解:∠AD 平分∠EAC , ∠∠EAD=12∠EAC ,又∠∠B=∠C ,∠EAC=∠B+∠C , ∠∠B=12∠EAC , ∠∠EAD=∠B ,∠AD∠BC .【点睛】本题主要考查了平行线的判定,三角形的外角性质,熟练掌握平行线的判定,三角形的外角性质是解题的关键.23.(1)∠1与∠B 相等,理由见解析;(2)若BC =BD ,AB 与FB 相等,理由见解析【分析】(1)∠ACB=90°,∠1+∠F=90°,又由于DF∠AB ,∠B+∠F=90°,继而可得出∠1=∠B ;(2)通过判定∠ABC∠∠FBD (AAS ),可得出AB=FB .【详解】解:(1)∠1与∠B 相等,理由:∠,∠ABC 中,∠ACB =90°,∠∠1+∠F =90°,∠FD∠AB ,∠∠B+∠F =90°,∠∠1=∠B ;(2)若BC =BD ,AB 与FB 相等,理由:∠∠ABC 中,∠ACB =90°,DF∠AB ,∠∠ACB =∠FDB =90°,在∠ACB 和∠FDB 中, B B ACB FDB BC BD ∠=∠⎧⎪∠∠⎨⎪=⎩=,∠∠ACB∠∠FDB (AAS ),∠AB =FB .【点睛】本题考查全等三角形的判定(AAS )与性质、三角形内角和,解题的关键是掌握全等三角形的判定(AAS )与性质、三角形内角和.24.(1)4.5;(2)见解析,()14,3B -【分析】(1)依据割补法进行计算,即可得到∠ABC 的面积;(2)依据轴对称的性质进行作图,即可得到∠A 1B 1C 1.【详解】解:(1)∠ABC 的面积为:2×5−12×1×4−12×1×5−12×1×2=4.5;故答案为:4.5;(2)如图,111A B C △为所求;()14,3B -;【点睛】本题考查了作图——轴对称变换,解决本题的关键是掌握轴对称的性质.25.(1)150;(2)66【分析】(1)根据勾股定理的逆定理判断∠ADC=90°,再用勾股定理求出DB ,然后求面积即可;(2)过点C 作CD AB ⊥,交BA 的延长线于点D ,设AD x =,则11BD x =+,根据勾股定理列出方程,解出x ,再求出高CD 即可.【详解】解:(1)如答题1图,∠15AC =,9AD =,12CD =∠2222129225CD AD +=+=,2215225AC == ∠222CD AD AC +=∠90ADC ∠=︒,∠=90BDC ∠︒,∠16BD =∠91625AB AD BD =+=+=.∠11251215022ABC S AB CD =⋅=⨯⨯=△(2)如答题2图,过点C 作CD AB ⊥,交BA 的延长线于点D ,则90ADC BDC ∠=∠=︒.设AD x =,则11BD x =+在Rt ACD △,2222213CD AC AD x =-=-在Rt BCD ,()222222011CD BC BD x =-=-+∠()2222132011x x -=-+解得:5x =∠222135144CD =-=∠12CD = ∠1111126622ABC S AB CD =⋅=⨯⨯=△【点睛】本题考查了勾股定理和勾股定理逆定理,解题关键是恰当作垂线,构建直角三角形,依据勾股定理建立方程.26.(1)443y x =+;(2)()6,12或()6,4--;(3)点Р()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭【分析】(1)设一次函数的表达式为y=kx+b ,把点A 和点B 的坐标代入求出k ,b 的值即可;(2)点M 的坐标为(a ,443a +),根据∠MOB 的面积为12,列出关于a 的等式,解之即可;(3)分三种情形讨论即可∠当AB=AP 时,∠当BA=BP 时,∠当PA=PB 时.【详解】解:(1)设这个一次函数的表达式为y kx b =+,依题意得:304k b b -+=⎧⎨=⎩, 解得:434k b ⎧=⎪⎨⎪=⎩, ∠443y x =+.(2)如图:设点M 的坐标为4,43a a ⎛⎫+ ⎪⎝⎭,∠()0,4B ,∠4OB =,∠MOB △的面积为12,14122a ⨯⨯=, ∠6a =,∠6a =±,当6a =时,44123a +=; 当6a =-时,4443a +=-; ∠点M 的坐标为:()6,12或()6,4--.(3)∠点A (-3,0),点B (0,4).∠OA=3,OB=4,5=,当PA=AB 时,P 的坐标为(-8,0)或(2,0);当PB=AB 时,P 的坐标为(3,0);当PA=PB 时,设P 为(m ,0),则(m+3)2=m 2+42, 解得:7m 6=,∠P 的坐标为(76,0); 综上,点Р的坐标是:()3,0或()8,0-或()2,0或7,06⎛⎫ ⎪⎝⎭. 【点睛】本题考查一次函数综合题、待定系数法、等腰三角形的判定和性质、三角形面积等知识,解题的关键是灵活运用所学知识,学会用转化的思想思考问题,属于中考常考题型. 27.(1)14%;(2)∠40,∠90,∠85;(3)82.6.【分析】(1)依据扇形统计图中各项目的百分比,即可得到a 的值;(2)依据极差、众数和中位数的定义进行计算,即可得到答案;(3)依据加权平均数的算法进行计算,即可得到该班同学的平均分.【详解】(1)120%30%20%16%14%a =----=;(2)∠问卷得分的极差是100-60=40(分),∠90分所占的比例最大,故问卷得分的众数是90分,∠7÷14=50(人),70分的人数为:50×16%=8(人)80分的人数为:50×20%=10(人)90分的人数为:50×30%=15(人)100分的人数为:50×20%=10(人)所以,问卷得分的中位数是从低分到高分排列第25,26个学生分数的平均数,即908085 2+=(分);(3)该班同学的平均分为:6014%7016%8020%9030%10020%82.6⨯+⨯+⨯+⨯+⨯=(分)。
北师大版八年级上册数学期末考试试题及答案

北师大版八年级上册数学期末考试试卷一、单选题1.在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,,则下列式子成立的是 A .222+=a b c B .222a c b += C .222a c b -= D .222b c a +=2.如图,在ABC 中,90ACB ∠=︒,CD AB ⊥,垂足为D .若3AC =,4BC =,则CD 的长为( )A .2.4B .2.5C .4.8D .53.估计3 )A .在6和7之间B .在7和8之间C .在8和9之间D .在9和10之间 4.下列各组二次根式中,属于同类二次根式的是( )A .B C .D5.在平面直角坐标系中,若点()P m m n -,与点()21Q ,关于原点对称,则点()M m n ,在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.已知点A 的坐标为()23,,直线AB y ∥轴,且5AB =,则点B 的坐标为( ) A .()28,B .()28,或()22-,C .()73,D .()73,或()33-, 7.一次函数1y ax b 与正比例函数2y bx =-在同一坐标系中的图象大致是( )A .B .C .D .8.如图,某电信公司手机的收费标准有A B ,两类,已知每月应缴费用S (元)与通话时间t (分)之间的关系如图所示,当通话时间为50分钟时,按这两类收费标准缴费的差为( )A .30元B .20元C .15元D .10元9.八(1)班同学参加社会实践活动,在王伯伯的指导下,要围一个如图所示的长方形菜园ABCD ,莱园的一边利用足够长的墙,用篱笆围成的另外三边的总长恰好为12m ,设边BC的长为x m ,边AB 的长为y m ()x y >.则y 与x 之间的函数表达式为( )A .212(012)y x x =-+<<B .()164122y x x =-+<< C .212(012)y x x =-<< D .16(412)2y x x =-<< 10.下列方程组中是二元一次方程组的是( )A .23124x y x y ⎧+=⎨-=⎩ B .225xy x y =⎧⎨+=⎩ C .63a b b c -=⎧⎨+=⎩ D .310521m n m n +=⎧⎨-=⎩11.古代数学问题:“今有木,不知长短,引绳度之,余绳五尺四寸:屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 5.412y x x y -=⎧⎪⎨-=⎪⎩B . 5.412x y y x -=⎧⎪⎨-=⎪⎩C . 5.412y x y x -=⎧⎪⎨-=⎪⎩D . 5.412x y xy -=⎧⎪⎨-=⎪⎩12.若324432a ba b x y ++--=是关于x ,y 的二元一次方程,则2a b +的值为( )A .0B .-3C .3D .413.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75,成绩最稳定的是() A .甲.B .乙C .丙D .丁14.如图,在ABC 中,1268AD BC C ⊥∠=∠∠=︒,,.则BAC ∠的度数为( )A .68°B .67°C .77°D .78°15.如图,AB CD ∥,EF BD ⊥于点E ,50ABM ∠=︒,则CFE ∠的度数为( )A .130︒B .140︒C .145︒D .150︒二、填空题16______,338的算术平方根是______.17.已知Rt△ABC 中,AB =8,BC =10,△BAC =90°,则图中阴影部分面积为 _____.18.已知()115P a -,和()221P b -,关于x 轴对称,则()2022a b +的值为______.19.若点()()1232A y B y -,,,都在一次函数1yx =-+的图象上,则1y ______2y .(填“>”或“<”)20.一个三位数,十位数字比个位数字大1,百位数字是个位数字的2倍,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,则原三位数为______.三、解答题21.用适当的方法解下列方程组:(1)524x yx y+=⎧⎨-=⎩;(2)12343314312 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩22.学校运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:(1)甲组的平均成绩是____分;(2)计算乙组的平均成绩和方差;(3)已知甲组成绩的方差是1.4,如果你是老师,你将选择哪组代表八(5)班参加学校比赛?说说你的理由.23.如图,在四边形ABCD中,20AB=,15AD=,7CD=,24BC=,90A∠=︒,求证:△C=90°.24.某移动公司设了两类通讯业务,A类收费标准为不管通话时间多长使用者都应缴50元月租费,然后每通话1分钟,付0.4元,B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式费用分别是A y,B y元.(1)分别写出A y ,B y 与x 之间的函数关系式.(2)某人估计一个月通话时间为300分钟,应选哪种通讯方式合算些,请书写计算过程. (3)小明用的A 卡,他计算了一下,若是B 卡,他本月话费将会比现在多100元,请你算一下小明实际话费是多少元?25.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:|P|表示点P 到x 、y 轴的距离中的最大值,|Q|表示点Q 到x 、y 轴的距离中的最大值,若P Q =,则称P ,Q 两点为“等距点”.例如:如图中的P (3,3),Q (﹣3,﹣2)两点,有|P|=|Q|=3,所以P 、Q 两点为“等距点”.(1)已知点A 的坐标为(﹣3,1),△则点A 到x 、y 轴的距离中的最大值|A|= ;△在点E (0,3),F (3,﹣3),G (2,﹣5)中,为点A 的“等距点”的是 ; △若点B 的坐标为B (m ,m+6),且A ,B 两点为“等距点”,则点B 的坐标为 ;(2)若()113T k --,-,()2443T k -,且|4k ﹣3|≤4,两点为“等距点”,求k 的值.261==;==2==.请解决下列问题: (1)=______; (2)=______;(3)....27.如图,已知12AB CD ∠=∠∥,.(1)求证:EF NP ∥;(2)若FH 平分EFG ∠,交CD 于点H ,交NP 于点O ,且14010FHG ∠=︒∠=︒,,求FGD ∠的度数.参考答案1.A【分析】根据题意,可得c 为斜边,,a b 为直角边,根据勾股定理即可求解. 【详解】解:△在ABC 中,90C A B C ∠=︒∠∠∠,,,的对应边分别是a b c ,,, △c 为斜边,,a b 为直角边, △222+=a b c ,故选:A .【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键. 2.A【分析】先由勾股定理求出AB 的长,再运用等面积法求得CD 的长即可. 【详解】解:△在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,△AB 5==,CD AB ⊥△1122AB CD AC BC ⋅=⋅,即342.45AC BC CD AB ⋅⨯===. 故选A .【点睛】本题主要考查了勾股定理、等面积法等知识点,掌握运用等面积法求三角形的高是解题的关键. 3.B3 【详解】解:△161725<<,△45<,△738<+,△37和8之间, 故选:B .【点睛】此题考查了无理数的估算,正确掌握各平方数及无理数估算的方法是解题的关键. 4.B【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A. ,不是同类二次根式,故该选项不符合题意;B. =C. =D.=故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键. 5.C【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,求得,m n 的值,即可求解.【详解】解:△点()P m m n -,与点()21Q ,关于原点对称, △2,1m m n =--=-,△()2,1M --在第三象限, 故选:C .【点睛】本题考查了关于原点对称的两个点,横坐标、纵坐标分别互为相反数,判断点所在的象限,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键. 6.B【分析】根据平行于y 轴的直线上的点的横坐标相等求出点B 的纵坐标,再分点B 在点A 的上面与下面两种情况求出点B 的纵坐标,即可得解.【详解】解:△AB y ∥轴,点A 的坐标为()23,, △点B 的横坐标为2, △5AB =,△点B 在点A 的下面时,纵坐标为352-=-, 点B 在点A 的上面时,纵坐标为358+=,△点B 的坐标为()28,或()22-,. 故选:B .【点睛】本题考查了平面直角坐标系中点的坐标特点,利用了平行于y 轴的直线是上的点的横坐标相等的性质,难点在于要分情况讨论. 7.C【分析】根据一次函数和正比例函数的性质逐一判断即可得答案. 【详解】A.△一次函数经过一、二、三象限, △a >0,b >0, △-b <0,△正比例函数应经过二、四象限,故本选项不符合题意, B.△一次函数经过一、三、四象限, △a >0,b <0, △-b >0,△正比例函数应经过一、三象限,故本选项不符合题意, C.△一次函数经过二、三、四象限, △a <0,b <0,△正比例函数应经过一、三象限,故本选项符合题意, D.△一次函数经过二、三、四象限, △a <0,b <0, △-b >0,△正比例函数经过一、三象限,故本选项不符合题意, 故选:C .【点睛】本题考查一次函数和正比例函数的性质,对于一次函数y=kx+b ,当k >0时,图象经过一、三象限,当k <0时,图象经过二、四象限;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴;熟练掌握相关性质是解题关键. 8.D【分析】根据题意,待定系数法求得解析式,分别令50x =,求得S 是的值,进而即可求解. 【详解】解:设A 类收费的解析式为AS ax b =+,代入()0,20 ,()100,30,得2010030b a b =⎧⎨+=⎩, 解得11020a b ⎧=⎪⎨⎪=⎩, △12010A S x =+, B 类收费的解析式为BS kx =,代入()100,30,得30100k =, 解得310k =, △310B S x =, △当50x =时,150202510A S =⨯+=,3501510B S =⨯=, △251510-=(元), 故选:D .【点睛】本题考查了一次函数的应用,待定系数法求解析式,求得解析式是解题的关键.9.B【分析】根据菜园的三边的和为12m ,即可得出一个x 与y 的关系式. 【详解】解:根据题意得,菜园三边长度的和为12m ,212y x ∴+=,162y x ∴=-+,0y >,x y >,∴1602162x x x ⎧-+>⎪⎪⎨⎪>-+⎪⎩,解得412x <<,16(412)2y x x ∴=-+<<,故选:B .【点睛】本题考查一次函数的应用,理解题目中的数量关系,即菜园三边的长度和为12m ,列出关于x ,y 的方程是解决问题的关键. 10.D【分析】二元一次方程组是指含有两个未知数,且未知数的次数都是1的一次整式方程组成的方程组,据此求解即可.【详解】解:A 、23124x y x y ⎧+=⎨-=⎩未知数的最高次不是1,不是二元一次方程组,不符合题意;B 、225xy x y =⎧⎨+=⎩xy 的次数不是1,不是二元一次方程组,不符合题意; C 、63a b b c -=⎧⎨+=⎩含有3个未知数,不是二元一次方程组,不符合题意;D 、310521m n m n +=⎧⎨-=⎩是二元一次方程组,符合题意;故选D .【点睛】本题主要考查了二元一次方程组的定义,熟知二元一次方程组的定义是解题的关键. 11.C【分析】设木条长x 尺,绳子长y 尺,根据用一根绳子去量一根木条,绳子剩余5.4尺;将绳子对折再量木条,木条剩余1尺,列出二元一次方程组,即可求解.【详解】设木条长x 尺,绳子长y 尺,可列方程组为5.412y x y x -=⎧⎪⎨-=⎪⎩, 故选:C .【点睛】本题考查了列二元一次方程组,根据题意列出方程组是解题的关键.12.D【分析】根据二元一次方程的定义,得出1a b +=,3241a b +-=,解出a b 、的值,然后把a b 、的值代入2a b +,计算即可得出结果.【详解】解:△324432a b a b x y ++--=是关于x ,y 的二元一次方程,△可得:13241a b a b +=⎧⎨+-=⎩, 解得:32a b =⎧⎨=-⎩, 把32a b =⎧⎨=-⎩代入2a b +, 可得:22324a b +=⨯-=.故选:D【点睛】本题考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.13.A【分析】根据方差的意义,即可求解.【详解】解:△S 甲2=0.24,S 乙2=0.42,S 丙2=0.56,S 丁2=0.75△2222甲乙丁丙<<<S S S S△成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据越稳定,理解方差的意义是解题的关键.14.B【分析】根据垂直的定义,直角三角形的两个锐角互余,可得145,22DAC ∠=︒∠=︒,即可求解.【详解】解:△1268AD BC C ⊥∠=∠∠=︒,,,△90ADB ADC ∠=∠=︒,△1245∠=∠=°,90906822DAC C ∠=︒-∠=︒-︒=︒,△1452267BAC DAC ∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了直角三角形的两个锐角互余,求得145,22DAC ∠=︒∠=︒是解题的关键.15.B【分析】根据题意和平行线的性质得=50D ABM ∠∠=︒,根据垂直得=90DEF ∠︒,运用三角形内角和定理求出=40EFD ∠︒,即可得.【详解】解:△AB CD ∥,50ABM ∠=︒,△=50D ABM ∠∠=︒,△EF BD ⊥,△=90DEF ∠︒,△=180=1805090=40EFD D DEF ∠︒∠∠︒︒︒︒----,△180=18040=140CFE EFD ∠=︒-∠︒-︒︒,故选:B .【点睛】本题考查了平行线的性质,三角形内角和定理,解题的关键是掌握这些知识点.16. 2± 【分析】根据平方根和算术平方根的定义求解即可.【详解】4,△4的平方根是2±,,即338故答案为:2± 【点睛】本题考查的是平方根、算术平方根的计算,如果一个数的平方等于a ,这个数就叫a 的平方根,如果一个正数的平方等于a ,这个数就叫a 的算术平方根,0的算术平方根是0.掌握定义是解题的关键.17.24【分析】根据阴影部分面积等于以,AB AC 为直径的半圆的面积与ABC 的面积的和减去以BC 为直径的半圆面积即可求解.【详解】解:Rt△ABC 中,AB =8,BC =10,△BAC =90°,6AC ∴==,222111111=+222222ABC S AB AC BC S πππ⎛⎫⎛⎫⎛⎫∴+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭△阴影部分 ABC S =△1862=⨯⨯ =24.故答案为:24.【点睛】本题考查了勾股定理,掌握勾股定理是解题的关键.18.1【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,求得,a b 的值,进而代入代数式即可求解.【详解】解:△()115P a -,和()221P b -,关于x 轴对称, △12,510a b -=+-=,解得3,4a b ==-,△()2022a b +()2022341=-=,故答案为:1.【点睛】本题考查了关于x 轴对称的两个点的坐标特征,掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.19.>【分析】根据解析式中10k =-<,可得y 随x 的增大而减小,即可求解.【详解】解:△在1y x =-+中,10k =-<,△y 随x 的增大而减小,△32-<,点()()1232A y B y -,,,都在一次函数1yx =-+的图象上, △12y y >,故答案为:>.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.20.643【分析】设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意:十位数字比个位数字大1,把百位数字与个位数字对调,得到的三位数比原来的三位数小297,列出二元一次方程组,解方程组即可.【详解】解:设原三位数的个位数字为x ,十位数字为y ,则百位数字为2x ,由题意得:1100210(100102)297y x x y x x y x =+⎧⎨⨯++-++=⎩, 解得:34x y =⎧⎨=⎩, △26x =,即原三位数为643,故答案为:643.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.(1)32x y =⎧⎨=⎩(2)22x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】(1)解:524x y x y +=⎧⎨-=⎩①②△+△得: 3x=9,解得: x=3,把x=3代入△得:3+y=5得 y=2,则方程组的解为32x y =⎧⎨=⎩ ; (2)12343314312x y x y ++⎧=⎪⎪⎨--⎪-=⎪⎩ 方程组整理得:432342x y x y -=⎧⎨-=-⎩①② 由△×4-△×3得: 7x=14,解得: x=2,把x=2代入△得:4×2-3y=2得 y=2,则方程组的解为22x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)9(2)乙组的平均成绩为9,方差为1(3)选择乙组,理由见解析【分析】(1)根据平均数的计算公式求得平均数即可求解;(2)一组数据:123n x x x x ⋯,,,,,则它们的平均数1232n x x x x x ++++=,方差是()()()()2222212312n s x x x x x x x x ⎡⎤=-+-+-+++-⎣⎦; (3)根据一组数据的方差越大,则数据的波动就越大,进行判断即可.【详解】(1)甲组的平均成绩是:()1789710109101010910+++++++++=, (2)乙组的平均成绩是:()110879810109109910+++++++++=, 方差是:()()()()22221109897999110⎡⎤-+-+-++-=⎣⎦; (3)选择乙组,理由如下,△1.41>,且平均成绩都为9,△乙组的方差较小,应该选择乙组.【点睛】本题考查了求平均数,求方程,以及根据方差做决策,掌握平均数,方差是解题的关键.23.见解析【分析】连接BD ,勾股定理求得BD 的值,进而根据222CD BC BD +=,即可得证.【详解】解:如图,连接BD ,△20AB =,15AD =,90A ∠=︒,△25BD =,△7CD =,24BC =,△22224957662525CD BC BD +=+===,△CDB △是直角三角形,且90C ∠=︒.【点睛】本题考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解题的关键. 24.(1)500.4A y x =+,0.6B y x =(2)选择A 类(3)350元【分析】(1)A 类应缴50元月租费,每通话1分钟,付0.4元,则费用是月租费加上通话费;B 类不缴月租费,每通话1分钟,付话费0.6元,则费用是通话费与时间的乘积,通讯x 分钟,由此即可求解;(2)由(1)的结论可知,当300x =时,170A y =元,180B y =元,由此即可求解; (3)由题意可知选择A 卡的费用比选择B 卡的费用少100元,由此可列出等量关系100A B y y +=,由此即可求解.【详解】(1)解:根据题意得,A 类的费用是月租费加上通话费,即500.4Ay x =+; B 类的费用是通话费与时间的乘积,即0.6B y x =,△500.4A y x =+,0.6B y x =.(2)解:通话时间为300分钟,根据(1)中的结论得,500.4500.4300170A y x =+=+⨯=(元),0.60.6300180B y x ==⨯=(元) △A B y y <,△选择A 类.(3)解:根据题意得,100A B y y +=,△500.41000.6x x ++=,解方程得,750x =,即小明打电话的时间为750分钟, △500.4500.4750350A y x =+=+⨯=(元),△小明实际话费是350元.【点睛】本题主要考查一次函数在实际中的运用,解题的关键是理解两类缴费的方式,A 类的费用是月租费加上通话费,B 类的费用是通话费与时间的乘积.25.(1)△3;△E ;F ;△(−3,3)(2)k 的值是1【分析】(1)△找到x 、y 轴距离最大为3的点即可;△先分析出直线上的点到x 、y 轴距离中有3的点,再根据“等距点”概念进行解答即可; △根据A ,B 两点为“等距点”得出点B 的坐标即可;(2)根据“等距点”概念对4k−3分类讨论,进行解答即可.【详解】(1)解:△点A (−3,1)到x 、y 轴的距离中最大值为|A|=3,故答案为:3.△△点A (−3,1)到x 、y 轴的距离中最大值为3,△与点A 的“等距点”的是E ,F ,故答案为:E ;F .△当点B 坐标中到x 、y 轴距离其中至少有一个为3的点有(3,9)、(−3,3)、(−9,−3),这些点中与A 符合“等距点”的是(−3,3).故答案为:(−3,3).(2)解:()113T k --,-,()2443T k -,两点为“等距点”, △4=−k−3或−4=−k−3,解得:k =−7或k =1,△当k =−7时,43314k -=>,△k =−7不符合题意舍去,根据“等距点”的定义知,k =1符合题意,△k 的值是1.【点睛】:本题主要考查了平面直角坐标系的知识,此题属于阅读理解类型题目,解题的关键是读懂“等距点”的定义,而后根据概念解决问题.26.(1)21【分析】(1)先找出有理化因式2,根据平方差公式求出即可;(2(3)先分母有理化,再合并即可.【详解】(1-故答案为:2;(2(3...+⋅⋅⋅1.【点睛】本题考查了分母有理化,能正确分母有理化是解此题的关键.27.(1)见解析(2)60︒【分析】(1)根据平行线的性质及等量代换得出1BNP ∠=∠,即可判定EF NP ∥; (2)过点F 作FM AB ∥,根据平行公理得出AB FM CD ∥∥,根据平行线的性质及角平分线定义得到50GFH EFH ∠=∠=︒,根据三角形外角性质求解即可.【详解】(1)证明:△AB CD ∥,50GFH EFH ∠=∠=︒△2BNP ∠=∠,△12∠=∠,△1BNP ∠=∠,△EF NP ∥;(2)解:如图,过点F 作FM AB ∥,△AB CD ∥,△AB FM CD ∥∥,△14010EFM HFM FHG ∠=∠=︒∠=∠=︒,,△50EFH EFM HFM ∠=∠+∠=︒,△FH 平分EFG ∠,△50GFH EFH ∠=∠=︒,△60FGD GHF HFG ∠=∠+∠=︒.。
北师大版八年级(上)数学期末测试试题及答案一

北师大版八年级(上)数学期末测试试题及答案一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)若取1.442,计算﹣3﹣98的结果是()A.﹣100B.﹣144.2C.144.2D.﹣0.014422.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(0,4),以点A为圆心,以AB长为半径画弧交x轴上点C,则点C的坐标为()A.(5,0)B.(2,0)C.(﹣8,0)D.(2,0)或(﹣8,0)3.(3分)商店准备确定一种包装袋来包装大米,经市场调查后,做出如下统计图,请问选择什么样的包装最合适()A.2kg/包B.3kg/包C.4kg/包D.5kg/包4.(3分)某品牌鞋子的长度ycm与鞋子的“码”数x之间满足一次函数关系.若22码鞋子的长度为16cm,44码鞋子的长度为27cm,则38码鞋子的长度为()A.23cm B.24cm C.25cm D.26cm5.(3分)解方程组的下列解法中,不正确的是()A.代入法消去a,由②得a=b+2B.代入法消去b,由①得b=7﹣2aC .加减法消去a ,①﹣②×2得2b =3D .加减法消去b ,①+②得3a =96.(3分)葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其常绕着附近的树干沿最短路线盘旋而上.现有一段葛藤绕树干盘旋2圈升高为2.4m ,如果把树干看成圆柱体,其底面周长是0.5m ,如图是葛藤盘旋1圈的示意图,则这段葛藤的长是( )m .A .1.3B .2.5C .2.6D .2.87.(3分)对于一次函数y =﹣x +5,下列结论正确的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是(2,0)C .函数的图象向下平移4个单位长度得y =﹣2x 的图象D .若两点A (1,y 1),B (3,y 2)在该函数图象上,则y 1<y 2 8.(3分)已知,都是关于x ,y 的方程y =﹣3x +c 的一个解,则下列对于a ,b 的关系判断正确的是( ) A .a ﹣b =3B .a ﹣b =﹣3.C .a +b =3D .a +b =﹣39.(3分)定理:三角形的一个外角等于和它不相邻的两个内角的和.下面给出该定理的两种证法. 已知:如图,∠ACD 是△ABC 的外角.求证:∠ACD =∠A +∠B . 证法1:如图,∵∠A +∠B +∠ACB =180(三角形内角和定理), 又∵∠ACD +∠ACB =180°(平角定义),∴∠ACD +∠ACB =∠A +∠B +∠ACB (等量代换).∴∠ACD =∠A +∠B (等式性质). 证法2:如图,∵∠A =76°,∠B =59°,且∠ACD =135°(量角器测量所得),又∵135°=76°+59°(计算所得), ∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法2只要测量够一百个三角形进行验证,就能证明该定理C.证法2用特殊到一般法证明了该定理D.证法1用严谨的推理证明了该定理10.(3分)描述一组数据的离散程度,我们还可以用“平均差”.在一组数x1、x2、x3、…、x n中,各数据与它们的平均数x的差的绝对值的平均数,即T=(|x1﹣x|+|x2﹣x|+…+|x n﹣x|)叫做这组数据的“平均差”.“平均差”也能描述一组数据的离散程度,“平均差”越大说明数据的离散程度越大,稳定性越小.现有甲、乙两组数据,如表所示,则下列说法错误的是()甲121311151314乙10161018177A.甲、乙两组数据的平均数相同B.乙组数据的平均差为4C.甲组数据的平均差是2D.甲组数据更加稳定二、填空题(每小题3分,共15分)11.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是cm.12.(3分)在我国新冠疫情虽然得到了有效的控制,但防范意识仍不能松懈,小丽去药店购买口罩和酒精消毒湿巾,若买150只一次性口罩和10包酒精消毒湿巾,需付75元;若买200只一次性口罩和12包酒精消毒湿巾,需付96元.设一只一次性医用口罩x元,一包酒精消毒湿巾y元,根据题意可列二元一次方程组:.13.(3分)一次考试中,某题的得分情况如下表所示,则该题的平均分是.得分01234百分率15%10%25%40%10%14.(3分)某人购进一批苹果到集贸市场零售,已经卖出的苹果数量与售价之间的关系如图所示,成本为5元/千克,现以8元/千克卖出,赚得元.15.(3分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应减少度.三、解答题(本大题共8个小题,满分75分)16.(10分)(1)计算与化简:()()+6﹣(﹣2)2.(2)解方程组:.17.(9分)“欲穷千里目,更上一层楼”,说的是登得高看得远,如图,若观测点的高度为h(单位km),观测者能看到的最远距离为d(单位km),则d≈,其中R是地球半径,通常取6400km.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度h为20m,她观测到远处一艘船刚露出海平面,求此时d的值.(2)判断下面说法是否正确,并说明理由;泰山海拔约为1500m,泰山到海边的最小距离约230km,天气晴朗时站在泰山之巅可以看到大海.18.(9分)“三等分一个任意角”是数学史上一个著名问题,经过无数人探索,现在已经确信,仅用圆规和直尺是不可能作出的.在探索过程中,我们发现,可以利用一些特殊的图形,把一个角三等分.如图:在∠MAN的边上任取一点B,过点B作BC⊥AN于点C,并作BC的垂线BF,连接AF,E是AF上一点,并且∠BAE=∠BEA,∠EBF=∠EFB,请你证明∠F AN=∠MAN.19.(9分)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).20.(9分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求出点A、点B的坐标;(2)求△COB的面积;(3)在x轴上是否存在一点P,使得△POC为等腰三角形?若存在,请直接写出点P坐标,若不存在,请说明理由.21.(9分)张氏包装厂承接了一批纸盒加工任务,用如图1所示的长方形和正方形纸板作侧面和底面,做成如图2所示的竖式与横式两种无盖的长方体纸盒(加工时接缝材料不计).(1)做1个竖式纸盒和2个横式纸盒,需要正方形纸板张,长方形纸板张.(2)若该厂购进正方形纸板162张,长方形纸板338张,问竖式纸盒、横式纸盒各加工多少个,恰好能将购进的纸板全部用完?(3)该厂某一天使用的材料清单上显示,这天一共使用正方形纸板162张,长方形纸板a张,全部加工成上述两种纸盒,且290<a<310.试求在这一天加工两种纸盒时,a的所有可能值.22.(10分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C (10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]23.(10分)已知AB∥CD,点P在直线AB、CD之间,连接AP、CP.(1)探究发现:(填空)填空:如图1,过P作PQ∥AB,∴∠A+∠1=°()∵AB∥CD(已知)∴PQ∥CD()∴∠C+∠2=180°结论:∠A+∠C+∠APC=°;(2)解决问题:①如图2,延长PC至点E,AF、CF分别平分∠P AB、∠DCE,试判断∠P与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=100°,分别作BN∥AP,DN∥PC,AM、DM分别平分∠P AB,∠CDN,则∠M的度数为(直接写出结果).参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学期末测试卷
一、选择题)
1.4的算术平方根是( )
A .4
B .2
C .2
D .2±
2.在给出的一组数0,π,5,3.14,39,7
22中,无理数有( ) A .1个 B .2个 C .3个 D .5个
3. 某一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的表达式可能是( )
A .42+=x y
B .13-=x y
C . 13+-=x y
D .42+-=x y
4.为了让人们感受丢弃废旧电池对环境造成的影响,某班环保小组的6名同学记录了自己家中一个月内丢弃废电池的数量,结果如下(单位:个):7,5,6,4,8,6,如果该班有45名学生,那么根据提供的数据估计该月全班同学各家总共丢弃废旧电池的数量约为( )
A .180
B .225
C .270
D .315
5.下列各式中,正确的是
A .16=±4
B .±16=4
C .327-= -3
D .2(4)-= - 4
6.对于一次函数y = x +6,下列结论错误的是
A . 函数值随自变量增大而增大
B .函数图象与x 轴正方向成45°角
C . 函数图象不经过第四象限
D .函数图象与x 轴交点坐标是(0,6)
7.如图,点O 是矩形ABCD 的对称中心,E 是AB 边上的点,沿CE 折叠后,
点B 恰好与点O 重合,若BC =3,则折痕CE =
A .2 3
B .332
C . 3
D .6
二、填空题
1. 在ABC ∆中,,13,15==AC AB 高,12=AD 则ABC ∆的周长为 .
2、已知a 的平方根是8±,则它的立方根是 .
3、如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的
A B C D E O (第7题图)
(第3题图)
二元一次方程组,.
y ax b y kx =+⎧⎨=⎩的解是________.
4.已知O (0, 0),A (-3, 0),B (-1, -2),则△AOB 的面积为______.
5.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8
人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有_____种.
6.若一次函数()0≠+=k b kx y 与函数12
1+=x y 的图象关于
X 轴对称,且交点在X 轴上,则这个函数的表达式
为: .
7.如图,已知b ax y +=和kx y =的图象交于点P ,根据图象
可得关于X 、Y 的二元一次方程组⎩⎨
⎧=-=+-00y kx b y ax 的解是 .
三、解答题
. 化简(本题10分每题5分)
1、① ()2
1631526-⨯- ② (2+3 )(23- )+ 212
2.解下列方程组(本题10分每题5分)
① ⎩
⎨⎧=-=1553y x y x ② ⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x
3. (本题10分) 折叠矩形ABCD 的一边AD ,使点D 落在BC 边的F 点处,若AB=8cm ,
BC=10cm ,求EC 的长.
4.(本题12分) 如图,直线PA 是一次函数1y x =+的图象,直线PB 是一次函数
22y x =-+的图象.
(1)求A 、B 、P 三点的坐标;(6分) (2)求四边形PQOB 的面积;(6分)
5.(本题9分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50
℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按
标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?
6.(本题10分)某工厂要把一批产品从A地运往B地,若通过铁路运输,则每千米需交运费15元,还要交装卸费400元及手续费200元,若通过公路运输,则每千米需要交运费25元,还需交手续费100元(由于本厂职工装卸,不需交装卸费).设A地到B地的路程为x km,通过铁路运输和通过公路运输需交总运费y1元和y2元,
(1)求y1和y2关于x的表达式.(6分)
(2)若A地到B地的路程为120km,哪种运输可以节省总运费?(4分)
7.(本题12分)某大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在“十一黄金周”期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.
普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50 100 500
双人间70 150 800
单人间100 200 1500
(1)三人间、双人间普通客房各住了多少间?(5分)
(2)设三人间共住了x人,则双人间住了人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(5分)
(3)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?。