Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications
中国地质大学(北京)考博专业英复习材料

晶) is said to have a porphyritic texture(斑状结构). The classification of fine-grained rocks, then, is based on the proportion of minerals which form phenocrysts and these phenocrysts (斑晶)reflect the general composition of the remainder(残留) of the rock. The fine-grained portion of a porphyritic(斑岩) rock is generally referred to as the groundmass(基质) of the phenocrysts. The terms "porphyritic" and "phenocrysts" are not restricted to fine-grained rocks but may also apply to coarse-grained rocks which contain a few crystals distinctly larger than the remainder. The term obsidian(黑曜岩) refers to a glassy rock of rhyolitic(流纹岩) composition. In general, fine-grained rocks consisting of small crystals cannot readily be distinguished from③ glassy rocks in which no crystalline material is present at all. The obsidians, however, are generally easily recognized by their black and highly glossy appearanceass of the same composition as obsidian. Apparently the difference between the modes of formation of obsidian and pumice is that in pumice the entrapped water vapors have been able to escape by a frothing(起泡) process which leaves a network of interconnected pore(气孔) spaces, thus giving the rock a highly porous (多孔的)and open appearance(外观较为松散). ④ Pegmatite(结晶花岗岩) is a rock which is texturally(构造上地) the exact opposite of obsidian. ⑤ Pegmatites are generally formed as dikes associated with major bodies of granite (花岗岩) . They are characterized by extremely large individual crystals (单个晶体) ; in some pegmatites crystals up to several tens of feet in length(宽达几十英尺)have been identified, but the average size is measured in inches (英寸) . Most mineralogical museums contain a large number of spectacular(壮观的) crystals from pegmatites. Peridotite(橄榄岩) is a rock consisting primarily of olivine, though some varieties contain pyroxene(辉石) in addition. It occurs only as coarse-grained intrusives(侵入), and no extrusive(喷出的) rocks of equivalent chemical composition have ever been found. Tuff (凝灰岩)is a rock which is igneous in one sense (在某种意义上) and sedimentary in another⑥. A tuff is a rock formed from pyroclastic (火成碎 屑的)material which has been blown out of a volcano and accumulated on the ground as individual fragments called ash. Two terms(igneous and sedimentary) are useful to refer solely to the composition of igneous rocks regardless of their textures. The term silicic (硅质 的)signifies an abundance of silica-rich(富硅) and light-colored minerals(浅 色矿物), such as quartz, potassium feldspar(钾长石), and sodic plagioclase (钠长石) . The term basic (基性) signifies (意味着) an abundance of dark colored minerals relatively low in silica and high in calcium, iron, and
国外超微粉碎技术发展介绍

国外超微粉碎技术发展介绍英文回答:Ultrafine Grinding Technology Development Abroad.Ultrafine grinding technology has been rapidly developing in recent years, and has become an important field in the field of materials science. It has been widely used in various industries such as electronics, ceramics, metallurgy, and pharmaceuticals.The development of ultrafine grinding technology has been driven by the increasing demand for high-performance materials. For example, in the electronics industry, ultra-fine powders are used to produce high-performanceelectronic devices such as transistors and capacitors. In the ceramics industry, ultra-fine powders are used to produce high-strength and high-toughness ceramics. In the metallurgy industry, ultra-fine powders are used to produce high-strength and high-toughness metal materials. In thepharmaceutical industry, ultra-fine powders are used to produce high-efficiency and low-toxicity drugs.There are many different methods for ultrafine grinding. The most common methods include mechanical grinding, chemical grinding, and thermal grinding. Mechanicalgrinding is a method of grinding materials by using mechanical forces. Chemical grinding is a method ofgrinding materials by using chemical reactions. Thermal grinding is a method of grinding materials by using heat.The choice of ultrafine grinding method depends on the specific requirements of the application. For example, if the required particle size is very small, then chemical grinding or thermal grinding may be used. If the required particle size is not very small, then mechanical grinding may be used.In addition to the above-mentioned methods, there are also many other methods for ultrafine grinding. These methods are still in the research and development stage,but they have great potential for application.The development of ultrafine grinding technology hasled to the development of many new materials. These new materials have excellent properties and are widely used in various industries. The development of ultrafine grinding technology has also promoted the progress of science and technology.中文回答:国外超微粉碎技术发展。
矿物加工技术双语翻译

PartI words Chapter1 Introductionalluvial mining---冲积矿床开采aluminium—铝an optimum grind size—最佳磨矿粒度barytes—重晶石comminution—粉碎degree of liberation—解离度diamond ores—金刚石矿石Electrical conductivity properties—导电性fluorite—萤石fundamental operations—基本选别流程release/liberation—解离Galena—leadsulphide—方铅矿sphalerite-zincsulphide—闪锌矿cassiterite-tin oxide—锡石grinding—磨矿Laboratory and pilot scale test-work—试验室和半工业实验Line flowsheet—线流程locking of mineral and gangue—连生体Middlings—中矿mill(concentrator)--- 选矿厂milling costs—磨矿消耗Minerals definition(p.1)metallic ore processing –金属矿石加工gangue—脉石Mineral—矿物ore—矿石crust of the earth—地壳sea-bed—河床non-metallic ores—非金属矿石bauxite—氧化铝optical properties—光学性质Ore bodies—矿体part per million(ppm)Primary grind—粗磨product handling—产品处理pyrite –黄铁矿Recovery—回收率Refractory bricks—耐火砖abrasives—磨料Separation—分离Smelter—熔炼sorting—拣选subsequent concentration process—后续选别流程Tailings retreatment—尾矿再处理as-mined(run of mine)—原矿mineral processing(ore dressing/mineral dressing/milling(磨选))—矿物加工portion/concentrate—精矿discard/tailing—尾矿the flowsheet—工艺流程The minimum metal content(grade)—最低金属含量The valuable mineral—有用矿物complex ores—复合矿The waste minerals—脉石enrichment process—富集工艺metal losses—金属损失the enrichment ratio—富集比efficiency of mineral processing operations—矿物加工作业效率The ratio of concentration –选别比the grade/assay—品位ultra-fine particles—超细颗粒unit concentration processes—单元选别流程Chapter2Ore handingopen-pit ore(露天开采的矿石p30,左下)run-of-mine ore(原矿)Typical washing plant flowsheet(洗矿车间典型流程figure 2.2) tipper (卸料器p33 右上)Shuttle belt (梭式胶带p33 右中)Gravity bucket elevator (斗式重力提升机p33 右下)Ore storage(矿物储存p35 右上)包括:stockpile (矿场)bin(矿仓)tank (贮槽)Front-end loader (前段式装载机p35 右上)Bucket-wheel reclaimer(斗轮式装载机p35 右上)Reclaim tunnel system(隧道装运系统p35 右上)The amount of reclaimable material/the live storage(有效贮量p35 右中figure 2.7) Conditioning tank (调和槽p36 左上)Chain-feeder (罗斯链式给矿机figure 2.9)Cross-section of elliptical bar feeder (椭圆形棒条给矿机figure 2.10)Vibrating grizzly feeder (振动格筛给矿机p37 左上)Apron feeder (板式给矿机figure 2.11)Belt feeder (胶带给矿机p37 右下)Chapter 4 particle size analysisacicular(针状);adverse(相反的);algorithm(算法);angular(多角状);aperture(孔径);apex (顶点);apparatus(仪器);arithmetic(运算器,算术); assaying(化验);attenuation(衰减);beaker decantation(烧杯倾析); blinding(阻塞);calibration(校正);charge(负荷);congest(充满);consecutive(连续的);contract(压缩);convection current(对流); conversion factor(转化因子); crystalline(晶体状);cyclosizer(旋流分析仪);de-aerated(脱气);derive:(得出);dilute(稀释);dimensionless quantity(无量纲量); dispersing agent(分散剂);distort(变形);duplicate(重复); electrical impedence(电阻); electroetching(电蚀刻); electroform(电铸);elutriation(淘析);epidote(绿帘石);equilateral triangle(等边三角形); flaky(薄片状);flask(烧瓶);fractionated sample(分级产品); gauze(筛网);geometric(几何学的);granular(粒状的);graticule(坐标网);gray scale(灰度);ground glass(毛玻璃);hand sieve(手动筛);histogram(直方图);immersion(浸没);inter-conversion(相互转变); interpolate(插值);intervals(区间);laminar flow(粘性流体);laser diffraction(激光衍射);light scattering method(光散射法); line of slope(斜率);logarithmic(对数的);machine sieve(机械筛); mechanical constraint(机械阻力);mesh(目);modular(系数的,制成有标准组件的);near size(临界筛孔尺寸);nominal aperture();nylon(尼龙);opening(开口);ordinate(纵坐标);perforated(多孔的);pipette(吸管);plotting cumulative undersize(累积筛下曲线); median size(中间粒度d50);polyhedron(多面体); reflection(反射); procure(获得);projected area diameter(投影面直径);ratio of the aperture width(筛比);refractive index(折射率);regression(回归) ;reproducible(可再生的);sedimentation balance(沉降天平); sedimentation(沉降) ;segment(片);sensor section(传感器); sieve shaker(振动筛,振筛器); spreadsheet(电子表格);simultaneously(同时地);size distribution(粒度分布);spectrometer(摄谱仪);stokes diameter(斯托克斯直径);subdivide(细分);sub-sieve(微粒);suction(吸入);syphon tube(虹吸管);tabulate(列表);tangential entry(切向入口);terminal velocity(沉降末速);truncate(截断);twill(斜纹图);two way cock(双通塞);ultra sonic(超声波);underside(下侧);vertex(顶点);vortex outlet (涡流出口);wetting agent(润湿剂);Chapter 5 comminutionattrition----- 研磨batch-type grindability test—小型开路可磨性实验bond’s third theory—邦德第三理论work index----功指数breakage—破碎converyor--- 运输机crack propagation—裂隙扩展crushing and grinding processes—破碎磨矿过程crushing----压扎crystalline material—晶状构体physical and chemical bond –物理化学键diameter—直径elastic—弹性fine-grained rocks—细粒岩石coarse-grained rocks—粗粒岩石chemical additives—化学添加剂fracture----碎裂free surface energy—自由表面能potential energy of atoms—原子势能graphical methods---图解法grindability test—可磨性实验crushing and grinding efficiency--- 破碎磨矿效率grinding media—磨矿介质gyratory crusher---旋回破碎机tumbling mill --- 筒形磨矿机impact crusher—冲击式破碎机high pressure griding roll--高压辊磨impact breaking-冲击破碎impact—冲击jaw—颚式破碎机material index-材料指数grindability—可磨性mill----选矿厂non-linear regression methods--- 非线性回归法ore carry--- 矿车Parameter estimation techniques—参数估计技术reduction ratio—破碎比roll crusher—辊式破碎机operating work indices—操作功指数Scraper—电铲slurry feed—矿浆SPI(SAG Power Index)—SAG 功指数simulation of comminution processes and circuits—粉碎工艺流程模拟stirred mill—搅拌磨stram energy---应变能the breakage characteristics—碎裂特性the crystalline lattice—晶格the reference ore---参比矿石product size distribution--- 产品粒度分布theory of comminution—粉碎理论brittle—脆性的tough material--- 韧性材料platstic flow—塑性流动Tracer methods—示踪法vibration mill-- 振动磨矿机Chapter 6CrushersAG/SAG mills(autogenousgrinding/semiautogenous grinding) 自磨、半自磨Alternating working stresses交替工作应力Amplitude of swing 摆幅Arrested or free crushing 夹压碎矿、自由碎矿Bell-shaped 钟形Belt scales 皮带秤Binding agents 粘结剂Bitumen 沥青Blending and rehandling 混合再处理Breaker plate 反击板Capital costs 基建费用Capstan and chain 铰杆铰链Cast iron or steel 铸铁铸钢Chalk 白垩Cheek plates 夹板Choke fed 阻塞给矿(挤满给矿)Choked crushing 阻塞碎矿Chromium carbide 碳铬合金Clay 粘土Concave 凹的Convex 凸的Corrugated 波纹状的Cross-sectional area 截面积Cross-section剖面图Crusher gape 排矿口Crusher throat 破碎腔Crushing chamber 破碎腔Crushing rolls 辊式碎矿机Crushing 破碎Discharge aperture 排矿口Double toggle 双肘板Drilling and blasting 打钻和爆破Drive shaft 驱动轴Eccentric sleeve 偏心轴套Eccentric 偏心轮Elliptical 椭圆的Epoxy resin 环氧树脂垫片Filler material 填料Fixed hammer impact mill 固定锤冲击破碎机Flakes 薄片Flaky 薄而易剥落的Floating roll 可动辊Flywheel 飞轮Fragmentation chamber 破碎腔Grizzlies 格条筛Gypsum 石膏Gyratory crushers 旋回破碎机Hammer mills 锤碎机Hydraulic jacking 液压顶Idle 闲置Impact crushers 冲击式破碎机Interparticle comminution 粒间粉碎Jaw crushers 颚式破碎机Limestone 石灰岩Lump 成块Maintenance costs 维修费Manganese steel mantle 锰钢罩Manganese steel 锰钢Mechanical delays 机械检修Metalliferous ores 有色金属矿Nip 挤压Nodular cast iron 球墨铸铁Nut 螺母Pack 填充Pebble mills 砾磨Pillow 垫板Pitman 连杆Pivot 轴Plates 颚板Primary crushing 初碎Receiving areas 受矿面积Reduction ratio 破碎比Residual stresses 残余应力Ribbon 流量Rivets 铆钉Rod mills 棒磨Roll crushers 辊式碎矿机Rotary coal breakers 滚筒碎煤机Rotating head 旋回锥体Scalp 扫除Secondary crushing 中碎Sectionalized concaves分段锥面Set 排矿口Shales 页岩Silica 二氧化硅Single toggle 单肘板Skips or lorries 箕斗和矿车Spider 壁架Spindle 竖轴Springs 弹簧Staves 环板Steel forgings 锻件Stroke 冲程Stroke 冲程Surge bin 缓冲箱Suspended bearing 悬吊轴承Swell 膨胀Swinging jaw 动颚Taconite ores 铁燧岩矿石Tertiary crushing 细碎The (kinetic) coefficient of friction (动)摩擦系数The angle of nip啮角The angle of repose 安息角The cone crusher 圆锥破碎机The cone lining 圆锥衬里The gyradisc crusher 盘式旋回碎矿机Thread 螺距Throughput 处理量Throw 冲程Tripout 停机Trommel screen 滚筒筛Valve 阀Vibrating screens 振动筛Wear 磨损Wedge-shaped 锥形Chapter 7 grinding millsAbrasion 磨蚀Alignment Amalgamation 融合/汞剂化Asbestos 石棉Aspect ratio 纵横比/高宽比Attrition 磨蚀Autogenous mill 自磨机Ball mill 棒磨Barite 重晶石Bearing 轴承Bellow 吼叫Belly 腹部Best-fit 最优化Bolt 螺栓Brittle 易碎的Build-up 增强Butt-weld 焊接Capacitance 电容量Cascade 泻落Cataract 抛落Central shaft 中心轴Centrifugal force 离心力Centrifugal mill 离心磨Chipping 碎屑Churning 搅拌器Circulating load 循环负荷Circumferential 圆周Clinker 渣块Cobbing 人工敲碎Coiled spring 盘簧Comminution 粉碎Compression 压缩Contraction 收缩Corrosion 腐蚀Corrugated 起褶皱的Crack 裂缝Critical speed 临界速度Crystal lattice 晶格Cushion 垫子Cyanide 氰化物Diagnose 诊断Dilute 稀释Discharge 放电Drill coreElastic 有弹性的Electronic belt weigher 电子皮带秤Elongation 延长率Emery 金刚砂Energy-intensive 能量密度Entangle 缠绕Expert system 专家系统Explosives 易爆炸的Flange 破碎Fracture 折断、破碎Front-end loader 前段装备Gear 齿轮传动装置Girth 周长Granulate 颗粒状的Grate discharge 磨碎排矿GreenfieldGrindability 可磨性Grinding media 磨矿介质Groove 沟槽Helical 螺旋状的High carbon steel 高碳钢High pressure grinding roll 高压滚磨Hopper 加料斗Housing 外壳Impact 冲击Impeller 叶轮IntegralInternal stress 内部压力Kinetic energy 运动能Least-square 最小平方Limestone 石灰岩Liner 衬板Lock 锁Lubricant 润滑剂Magnetic metal liner 磁性衬板Malleable 有延展性的Manhole 检修孔Material index 材料指数Matrix 矿脉Muffle 覆盖Multivariable control 多元控制Newtonian 牛顿学的Nodular cast iron 小块铸铁Non-Newtonian 非牛顿的Normally 通常Nuclear density gauge 核密度计Nullify废弃Oblique间接地,斜的Operating 操作Orifice 孔Output shaft 产量轴Overgrinding 过磨Parabolic 像抛物线似地Pebble 砾石Pebble mill 砾磨PendulumPilot scale 规模试验Pinion 小齿轮Pitting 使留下疤痕Plane 水平面PloughPotential energy 潜力Pressure transducer 压力传感器Prime moverPrismatic 棱柱形的Probability 可能性/概率Propagation 增值Pulp density 矿浆密度Pulverize 粉碎Quartzite 石英岩Radiused 半径Rake 耙子Reducer还原剂Reduction ratio 缩小比Retention screenRetrofit 改进Rheological 流变学的Rib骨架Rod 棒Roller-bearing 滚动轴承Rotor 旋转器Rubber liner 橡胶衬板Rupture 裂开ScatsScoop铲起Scraper 刮取器Screw flight 螺旋飞行Seasoned 干燥的SegregationSet-point 选点Shaft 轴Shear 剪Shell 外壳Simulation 模拟SlasticitySpalling 击碎Spigot 龙头Spill 溢出/跌落Spin 使什么旋转Spiral classifier 螺旋分级机Spout 喷出Stationary 静止的Stator 固定片Steady-state 不变的Steel plate 钢盘Steel-capped 钢帽Stirred mill搅拌磨Stress concentration 应力集中Sump 水池Taconite 铁燧岩Tensile stress 拉伸力Thicken 浓缩Throughput 生产量Thyristor 半导体闸流管Time lag 时间间隔Tower mill塔磨Trajectory 轨迹Trial and error 反复试验Trunnion 耳轴Tube millTumbling mill 滚磨Undergrinding 欠磨Underrun 低于估计产量Unlock 开启Vibratory mill 振动磨Viscometer 黏度计Viscosity 黏性Warp 弯曲Wearing linerWedged 楔形物Work index 功指数Chapter 8Industrial screeningBauxite 铝土矿Classification 分级Diagonal 斜的Dry screening 干筛Efficiency or partition curve 效率曲线、分离曲线Electrical solenoids 电磁场Elongated and slabby particles 细长、成板层状颗粒Granular 粒状Grizzly screens 格筛Hexagons 六边形Hydraulic classifiers 水力旋流器Linear screen 线性筛Mesh 网眼Mica 云母Near-mesh particles 近筛孔尺寸颗粒Octagons 八边形Open area 有效筛分面积Oscillating 振荡的Perpendicular 垂直的Polyurethane 聚氨酯Probabilistic 概率性的Resonance screens 共振筛Rhomboids 菱形Rinse 漂洗Rubber 橡胶Screen angle 颗粒逼近筛孔的角度Shallow 浅的Static screens 固定筛Tangential 切线的The cut point(The separation size)分离尺寸Trommels 滚筒筛Vibrating screens 振动筛Water sprays 喷射流Chapter9 classification added increment(增益)aggregate(聚集)alluvial(沉积)apex(顶点) deleterious(有害) approximation(概算,近似值)apron(挡板)buoyant force(浮力)correspond(符合,相符)critical dilution(临界稀释度)cut point(分离点)descent(降落)dilute(稀释的)drag force(拖拽力)duplex(双)effective density(有效比重)emergent(分离出的)equilibrium(平衡)exponent(指数)feed-pressure gauge(给矿压力表)free-settling ratio(自由沉降比)full teeter(完全摇摆流态化)geometry(几何尺寸)helical screw(螺旋沿斜槽)hindered settling(干涉沉降)hollow cone spray(中空锥体喷流)Hydraulic classifier(水力分级机)imperfection(不完整度)incorporated(合并的)infinite(任意的)involute(渐开线式)Mechanical classifier(机械分级机)minimize(最小限度的)multi-spigot hydro-sizer(多室水力分级机)pressure-sensitive valve(压敏阀)Newton’s law(牛顿定律)orifice(孔)overflow(溢流)parallel(平行的,并联的)performance or partition curve(应用特性曲线)predominate(主导)pulp density(矿浆比重)quadruple(四倍)quicksand(流砂体)Reynolds number(雷诺数)scouring(擦洗)Settling cones(圆锥分级机)shear force(剪切力)simplex(单)simulation(模拟)slurry(矿浆)sorting column(分级柱)spherical(球形的)spigot(沉砂)Spiral classifiers(螺旋分级机)Stokes’ law(斯托克斯定律)surging(起伏波动)suspension(悬浮液)tangential(切线式)Teeter chamber(干涉沉降室)teeter(摇摆)terminal velocity(末速)The rake classifier(耙式分级机) turbulent resistance(紊流阻力)underflow (底流)vertical axis(垂直轴)vessel(分级柱)viscosity(粘度)viscous resistance(粘滞阻力) vortex finder(螺旋溢流管)well-dispersed(分散良好的)Chapter 10gravity concentrationactive fluidised bed(流化床); amplitude(振幅);annular(环状的); asbestos(石棉); asymmetrical (非对称的); baddeleyite (斜锆石); barytes (重晶石); cassiterite (锡石); chromite(铬铁矿);circular (循环的); circumference (圆周); closed-circuit (闭路);coefficient of friction (摩擦系数); compartment (隔箱);concentration criterion (分选判据); conduit(管);contaminated(污染);counteract (抵消);degradation (降解);density medium separation (重介质分选); detrimental(有害的);diaphragm (隔膜);dilate (使膨胀);displacement (置换);divert (转移);dredge (挖掘船);eccentric drive(偏心轮驱动); encapsulate (密封);equal settling rate(等沉降比);evenly(均匀的);excavation (采掘);exhaust (废气);feed size range (给矿粒度范围); fiberglass (玻璃纤维);flash floatation (闪浮);flattened(变平);float (浮子);flowing film (流膜);fluid resistance (流体阻力);gate mechanism (开启机制);halt(停止);hand jig (手动跳汰机);harmonic waveform (简谐波);helical(螺旋状的);hindered settling (干涉沉降);hutch(底箱);immobile (稳定);interlock (连结);interstice (间隙);jerk(急拉);kyanite (蓝晶石);lateral (侧向的,横向的);linoleum (漆布);mica(云母);momentum (动量) ;mount(安装);multiple (多重的);multi-spigot hydrosizer (多室水力分级机); natural gravity flower (自流); neutralization (中和作用);nucleonic density gauge (核密度计); obscure (黑暗的,含糊不清的); obsolete (报废的);onsolidation trickling (固结滴沉);open-circuit (开路);pebble stone/gravels(砾石); periphery(周边的);pinched (尖缩的) ;platelet(片晶);platinum(铂金);plunger (活塞);pneumatic table(风力摇床); pneumatically (靠压缩空气); porus(孔);preset(预设置);pressure sensing(压力传感的); pressurize (加压);pulsating (脉动的);pulsion/suction stroke (推/吸冲程); quotient (商);radial(径向的);ragging (重物料残铺层);rate of withdraw (引出速率);raw feed (新进料);reciprocate(往复);refuse (垃圾);render (使得);residual (残留的);retard(延迟);riffle (床条);rinse(冲洗);rod mill (棒磨);rotary water vale (旋转水阀); rubber(橡胶);saw tooth (锯齿形的);scraper(刮板);sectors(扇形区);semiempirical(半经验的); settling cone (沉降椎);shaft (轴);side-wall (侧壁);sinterfeed (烧结料);sinusoidal (正弦曲线);slime table(矿泥摇床);sluice (溜槽);specular hematite (镜铁矿); spinning (自转;离心分离); splitters (分离机);starolite (星石英);staurolite (十字石);stratification (分层); stratum (地层); submerge (浸没);sump (池); superimposed (附加的); surge capacity (缓冲容量); synchronization (同步的); throughput(生产能力); tilting frames (翻筛); timing belt (同步带); trapezoidal shaped (梯形的); tray (浅盘) ;trough(槽);tungsten (钨);uneven (不均匀的);uniformity(均匀性);uranolite (陨石);validate(有效);vicinity (附近);water (筛下水);wolframite (黑钨矿,钨锰铁矿);Chapter 11 dense medium separation(DMS) barite(重晶石)Bromoform(溴仿)bucket(桶)carbon tetrachloride(四氯化碳)centrifugal(离心的)chute(陡槽)Clerici solution(克莱利西溶液)corrosion(腐蚀)dependent criterion(因变判据)discard(尾渣)disseminate(分散,浸染)DMS(重介质分选)dominant(主导)Drewboy bath(德鲁博洗煤机)drum separator(双室圆筒选矿机)Drum separator(圆筒选矿机)Dyna Whirlpool()effective density of separation(有效分选比重)envisage(设想)feasibility(可行性)ferrosilicon(硅铁)flexible sink hose(沉砂软管)fluctuation(波动)fluorite(萤石)furnace(炉)grease-tabling(涂脂摇床)hemisphere(半球)incombustible(不可燃烧的)incremental(递增的)initially(最早地)installation(设备)LARCODEMS(large coal dense medium separator)lead-zinc ore(铅锌矿)longitudinal(纵向)magneto-hydrostatic(磁流体静力)mathematical model(数学模型)metalliferous ore(金属矿)nitrite(亚硝酸盐)Norwalt washer(诺沃特洗煤机)olfram(钨)operating yield(生产回收率)optimum(最佳)organic efficiency(有机效率)paddle(搅拌叶轮)Partition coefficient or partition number(分配率)Partition or Tromp curve(分配或特劳伯曲线)porous(多孔的)probable error of separation;Ecart probable (EP)(分选可能误差)raw coal(原煤)recoverable(可回收的)residue(残渣)revolving lifter(旋转提升器)two-compartmentrigidity(稳定性)sand-stone(砂岩)shale(页岩)siliceous(硅质的)sink-discharge(排卸沉砂)sodium(钠)sulphur reduction(降硫)tabulate(制表)tangential(切线)tedious (乏味)Teska Bash()Tetrabromoethane(TBE,四溴乙烷)theoretical yield(理论回收率)toxic fume(有毒烟雾)tracer(示踪剂)typical washability curves(典型可选性曲线)Vorsyl separator(沃尔西尔选矿机)weir(堰板)well-ventilated(通风良好的)Wemco cone separator(维姆科圆锥选矿机)yield stress(屈服应力)yield(回收率)Chapter 12 Froth flotationActivator(活化剂)adherence (附着,坚持)adhesion(附着)adhesion(粘附)adjoining(毗邻,邻接的)adsorption(吸附)aeration(充气)aeration(充气量)aerophilic(亲气疏水的)aerophilic(亲气性)Aggregation(聚集体)agitation(搅动)agitator(搅拌机)allegedly(据称)Amine(胺)baffle(析流板)Bank(浮选机组)barite(重晶石)Barren(贫瘠的)batch(开路)Borne(承担)Bubble(泡沫)bubble(气泡)bubble-particle(泡沫颗粒)bulk flotation (混合浮选)capillary tube(毛细管)cassiterite (锡石)cerussite(白铅矿) chalcopyrite(黄铜矿)circulating load(循环负荷)cleaner(精选)clearance(间隙)Collector(捕收剂)collide(碰撞,抵触)compensate(补偿,抵偿)component(组成)concave(凹)concentrate trade(精矿品位)Conditioning period(调整期)conditioning tank(调和槽)cone crusher(圆锥破碎机)configuration(表面配置,格局) Conjunction(关联,合流)contact angle measurement(接触角测量)contact angle(接触角)copper sulphate(硫酸铜)copper-molybdenum(铜钼矿)core(核心)correspondingly(相关的)cylindrical(圆柱)Davcra cell(page305)decantation(倾析)depressant(抑制剂)deteriorating(恶化)Dilute(稀释)Direct flotation(正浮选)disengage(脱离,解开)dissemination(传播)dissolution(解散)distilled water(蒸馏水)diverter(转向器)drill core(岩心)drill(钻头,打眼)duplication(复制)dynamic(动态,能动)economic recovery(经济回收率)Elapse(过去,推移)electrolyte(电解质)electrowinning(电积)Eliminating(消除)enhance(提高、增加)Entail(意味着)entrainment(夹带)erosion(腐蚀)Fatty acid(脂肪酸)fatty acids(脂肪酸)faulting(断层)FCTRfiltration(过滤)fine particle(较细颗粒)floatability(可浮性)flotation rate constant(浮选速率常数)flowsheet(工艺流程)fluctuation(波动)fluorite(萤石)frother(起泡剂)Frother(起泡剂)Gangue(脉石)grease(润滑脂)grindability(可磨性)gross(毛的,)Hallimond tube technique(哈利蒙管)hollow(凹,空心的)hydrophilic(亲水性)Hydrophobic(疏水)Impeller(叶轮)in situ(原位)Incorporate(合并)indicator(指标,迹象)inert(惰性的)intergrowth(连生)intermediate-size fraction(中等粒度的含量)ionising collector(离子型捕收剂)amphoteric(两性)irrespective(不论)jaw crusher(颚式破碎机)jet(喷射,喷出物)laborious(费力的)layout(布局,安排)layout(布局,设计)liable(负责)magnitude(幅度)maintenance(维修)malachite(孔雀石)manganese(锰)mathematically (数学地) mechanism(进程)metallurgical performance(选矿指标)metallurgical(冶金的)MIBC(methyl isobutyl carbinol)(甲基异丁甲醇)Microflotation(微粒浮选)Mineralized(矿化的)mineralogical composition(矿物组成) mineralogy(矿物学)mineralogy(岩相学)MLA(mineral liberation analyser)modify(改变)molybdenite(辉钼矿)multiple(复合的)multiple-step(多步)Natural floatability(天然可浮性)hydrophobic(疏水性的)neutral(中性的)non-metallic(非金属)non-technical(非技术)nozzle(喷嘴)optimum(最佳)organic solvent(有机溶剂)oxidation(氧化)oxyhydryl collector(羟基捕收剂)xanthate(黄药)Oxyhydryl collector(羟基捕收剂)palladium(钯)parallel(平行)penalty(惩罚,危害)penetrate(穿透)peripheral(周边)peripheral(周边的)permeable base(透气板)personnel(人员)pH modifier(pH调整剂)pinch(钉)platinum(铂)pneumatic(充气式)polishing(抛光)portion(比例)postulate(假设)predetermined value(预定值)prior(优先)Pulp potential(矿浆电位)pyramidal tank(锥体罐)pyrite(黄铁矿)QEMSCAN(p288)reagent(药剂)rectangular(长方形)regulator(调整剂)reluctant(惰性的)residual(残留物)reverse flotation(反浮选)rod mill(棒磨机)rougher concentrate(粗选精矿)rougher-scavenger split(粗扫选分界)scale-up(扩大)scavenger(少选精矿)scheme(计划,构想)SE(separation efficienty)sealed drum(密封桶)severity(严重性)Sinter(烧结)sleeve(滚轴)slipstream(汇集)smelter(熔炼)sparger(分布器)sphalerite(闪锌矿)sphalerite(闪锌矿)Standardize(标定,规范)stationary(静止的)stator(定子,静片)storage agitator(储存搅拌器) Straightforward(直接的)Subprocess(子过程)subsequent(随后)Sulphide(硫化物)summation(合计)sustain(保留)swirling(纷飞)tangible(有形,明确的)tensile force(张力)texture(纹理)theoretical(原理的)thickener (浓密机)titanium(钛)TOF-SIMStonnage(吨位)Tube(管,筒)turbine(涡轮)ultra-fine(极细的)undesirable(不可取) uniformity(统一性)unliberated(未解离的)utilize(使用)Vigorous(有力,旺盛)weir-type(堰式)whereby(据此)withdrawal(撤回)Work of adhesion(粘着功)XPSAgglomeration-skin flotation(凝聚-表层浮选p316 左中)Associated mineral (共生矿物)by-product (副产品)Chalcopyrite (黄铜矿)Coking coal (焦煤p344 左下)Control of collector addition rate(p322 last pa right 捕收剂添加率的控制) Control of pulp level(矿浆液位控制p321 last pa on the right )Control of slurry pH(矿浆pH控制p322 2ed pa on the left)DCS--distributed control system(分布式控制系统p320 右中)Denver conditioning tank(丹佛型调和槽figure 12.56)Electroflotation (电浮选p315 右中)feed-forward control(前馈控制p323 figure 12.60)Galena(方铅矿)Molybdenum (钼)Nickel ore (镍矿的浮选p343 左)PGMs--platinum group metals(铂族金属)PLC--programmable logic controller(可编程序逻辑控制器p320 右中)porphyry copper(斑岩铜矿)Table flotation (摇床浮选俗称“台选”p316 左中)Thermal coal (热能煤p344 左下)Ultra-fine particle(超细矿粒p315 右中)Wet grinding(湿式磨矿)Chapter 13 Magnetic and electrical separationCassiterite(锡石矿) wolframite(黑钨矿) Diamagnetics(逆磁性矿物) paramagnetics(顺磁性矿物) Ferromagnetism(铁磁性) magnetic induction(磁导率)Field intensity(磁场强度) magnetic susceptibility(磁化系数) Ceramic(瓷器) taconite(角岩)Pelletise(造球) bsolete(废弃的)Feebly(很弱的) solenoid(螺线管)Cobbing(粗粒分选) depreciation(折旧)Asbestos(石棉) marcasite(白铁矿)Leucoxene(白钛石) conductivity(导电性)Preclude(排除) mainstay(主要组成)Rutile(金红石) diesel(柴油)Cryostat(低温箱)Chapter 14 ore sortingappraisal(鉴别);audit(检查);barren waste(废石); beryllium isotope(铍同位素); boron mineral(硼矿物); category(范围);coil(线圈);downstream(后处理的); electronic circuitry(电路学); feldspar(长石); fluorescence(荧光);grease(油脂);hand sorting(手选);infrared(红外的);irradiate(照射);laser beam(激光束); limestone(石灰石); luminesce(发荧光); luminescence(荧光); magnesite(菱镁矿); magnetic susceptivity(磁敏性); matrix(基质); microwave(微波);monolayer(单层);neutron absorption separation(中子吸收法); neutron flux (中子通量);oleophilicity(亲油的);phase shift(相变);phosphate(磷酸盐);photometricsorting(光选);photomultiplier(光电倍增管);preliminary sizing(预先分级);proximity(相近性);radiometric (放射性的);scheelite(白钨矿);scintillation(闪烁);seam(缝隙);sequential heating(连续加热);shielding(防护罩);slinger(投掷装置);subtle discrimination(精细的鉴别);talc(滑石);tandem(串联的);thermal conductivity(热导率);ultraviolet(紫外线); water spray(喷水); Chapter15DewateringAcrylic(丙烯酸) monomer(单分子层) Allotted(分批的)jute(黄麻) Counterion(平衡离子) amide(氨基化合物) Diaphragm(隔膜) blanket(覆盖层) Electrolyte(电解液) gelatine(动物胶) Flocculation(聚团) decant(倒出)Gauge(厚度,测量仪表) rayon(人造纤维丝) hyperbaric(高比重的) Membrane(薄膜) coagulation(凝结) miscelaneous(不同种类的) barometric(气压的) Potash(K2CO3)tubular(管状的) Sedimentation(沉淀) filtration(过滤)Thermal drying(热干燥) polyacrylamide(聚丙烯酰胺)Chapter16 tailings disposalBack-fill method—矿砂回填法tailings dams—尾矿坝impoundment—坝墙Cyclone—旋流器Dyke—坝体slimes—矿泥Floating pump—浮动泵站compacted sand—压实矿砂Lower-grade deposits -- 低品位矿床heavy metal—重金属mill reagent—选矿药剂Neutralization agitator—中和搅拌槽thickener---浓密池overflow –溢流River valley—河谷upstream method of tailings-dam construction –上流筑坝法Sulphur compound—硫化物additional values—有价组分the resultant slimes—脱出的矿泥surface run-off-- 地表水lime—石灰the downstream method—下游筑坝法the centre-line method –中线筑坝法drainage layer—排渗层Underflow—沉砂water reclamation—回水利用reservoir—贮水池Part II ElaborationsChapter2 Ore handing1.The harmful materials and its harmful effects(中的有害物质,及其影响) -----P30 右2.The advantage of storage (贮矿的好处)-----p35 左下Chapter 4 particle size analysis3.equivalent diameter (page90);4.:stokes diameter (page98) ; median size (page95,left and bottom); 80% passing size (page95,right) ; cumulative percentage(page94-95under the title’presentation of results’); Sub-sieve;(page 97,right)5.why particle size analysis is so important in the plant operation? (page90, paragraph one); some methods of particle analysis, their theory and the applicable of thesize ranges.(table4.1+theory in page91-106)7.how to present one sizing test?(page94)8.how to operate a decantation test?(page98 sedimentation test)9.advantage and disadvantage of decantation in comparison with elutriation? (Page99 the second paragraph on the left +elutriation technique dis/advantage in page 102 the second paragraph on the left)Chapter 6Crushers10.The throw of the crusher: Since the jaw is pivoted from above, it moves a minimum distance at the entry point and a maximum distance at the delivery. This maximum distance is called the throw of the crusher.11.Arrested(free) crushing: crushing is by the jaws only12.Choked crushing: particles break each other13.The angle of nip:14.1)the angle between the crushing members2)the angle formed by the tangents to the roll surfaces at their points of contact withthe particle(roll crushers)15.Ore is always stored after the crushers to ensure a continuous supply to the grinding section. Why not have similar storage capacity before the crushers and run this section continuously?(P119,right column, line 13)16.The difference between the jaw crusher and the gyratory crusher?(P123,right column, paragraph 3)17.Which decide whether a jaw or a gyratory crusher should be used in a particular plant?(p125,left column, paragraph 2)18.Why the secondary crushers are much lighter than the heavy-duty, rugged primary machines?(P126,right column, paragraph 4)19.What’s the difference between the 2 forms of the Symons cone crusher, the Standard and the short-head?(P128,left column, paragraph3 )20.What’s the use of the parallel section in the cone crusher?(P128,left column, paragraph4)21.What’s the use of the distributing plate in the cone crusher?(P128,right column, paragraph1)22.Liner wear monitoring(P129,right column, paragraph2)23.Water Flush technology(P130, left column, paragraph1)24.What’s the difference between the gyradisc crusher and the conventional cone crusher?(P130,right column, paragraph 4)25.What’s the use of the storage bin?(P140,left column, paragraph 2)26.Jaw crushers(p120)27.the differences between the Double-toggle Blake crushers and Single-toggle Blakecrushers(p121, right column, paragraph 3)28.the use of corrugated jaw plates(p122, right column, line 8)29.the differences between the tertiary crushers and the secondary crushers?(p126,right column, paragraph 5)30.How to identify a gyratory crusher, a cone crushers?(p127, right column, paragraph 3)31.the disadvantages of presence of water during crushing(p130,right column, paragraph 2)32.the relationship between the angle of nip and the roll speed?(p133, right column)33.Smooth-surfaced rolls——used for fine crushing; corrugated surface——used for coarse crushing;(p134, left column, last paragraph)Chapter 7 grinding mills34.Autogenous grinding:An AG mill is a tumbling mill that utilizes the ore itself as grinding media. The ore must contain sufficient competent pieces to act as grinding media.P16235.High aspect ratio mills: where the diameter is 1.5-3 times of the length. P16236.Low aspect ratio mills:where the length is 1.5-3 times of the diameter. P16237.Pilot scale testing of ore samples: it’s therefore a necessity in assessing the feasibility of autogenous milling, predicting the energy requirement, flowsheet, and product size.P16538.Semi-autogenous grinding: An SAG mill is an autogenous mill that utilizes steel balls in addition to the natural grinding media. P16239.Slurry pool:this flow-back process often leads to higher slurry hold-up inside an AG or SAG mill, and may sometimes contribute to the occurrence of “slurry pool”, which has adverse effects on the grinding performance.P16340.Square mills:where the diameter is approximately equal to the length.P16241.The aspect ratio: the aspect ratio is defined as the ratio of diameter to length. Aspect ratios generally fall into three main groups: high aspect ratio mills、square mills and low aspect ratio mills.P16242.grinding circuit: Circuit are divided into two broad classifications: open and closed.( 磨矿回路p170)43.closed circuit: Material of the required size is removed by a classifier, which returns oversize to the mill.(闭路p170左最后一行)44.Circulation load: The material returned to the mill by the classifier is known as circulation load , and its weight is expressed as a percentage of the weight of new feed.(循环负荷p170右)45.Three-product cyclone: It is a conventional hydrocyclone with a modified top cover plate and a second vortex finder inserted so as to generate three product streams. (p171右)46.Parallel mill circuit: It increase circuit flexibility, since individual units can be shut down or the feed rate can be changed, with little effect on the flowsheet.(p172右) 47.multi-stage grinding: mills are arranged in series can be used to produce。
23_8_MnTRIP_TWIP钢的组织性能及强化机制

第8卷第3期材 料 与 冶 金 学 报Vol 18No 13 收稿日期:2009205205. 基金项目:国家大学生创新性实验计划资助项目(070107). 作者简介:张淑娟(1984—),女,河北保定人,东北大学本科生;丁桦(1958—),女,安徽合肥人,东北大学教授,博士生导师.2009年9月Journal ofMaterials and MetallurgySep t .20092318%M n TR I P /T W I P 钢的组织性能及强化机制张淑娟,丁 桦,丁 昊,曾建敏,唐正友(东北大学材料与冶金学院,沈阳110004)摘 要:研究了锰含量(质量分数)为2318%的低碳高锰钢的力学行为和组织演变,并对其强化机制进行了探讨.结果表明:2318%M n TR I P /T W I P 钢的屈服强度约为300M Pa,抗拉强度可达610MPa,断裂延伸率可达到63%.实验钢拉伸变形呈连续屈服,其应变硬化指数n 值约为0148.该钢在变形初期的强化机制以应变诱发孪生为主,变形后期出现应变诱发马氏体相变.位错与形变孪晶、马氏体之间的相互作用也对强度的增加做出贡献.关键词:高锰TR I P /T W I P 钢;微观组织;力学行为;强化机制中图分类号:TG14211 文献标识码:A 文章编号:167126620(2009)0320198204M i crostructures,m echan i ca l properti es and strengthen i n gm echan is m s of a 2318%M n TR I P /T W I P steelZHAN G Shu 2juan,D IN G H ua,D IN G H ao,Z E N G Jian 2m in,TAN G Z heng 2you(Schoo l of M aterials and M etallu rgy,N o rtheastern U n iversity,Shenyang 110004,C h ina )Abstract:In the p resen t w o rk,m echan ical behavio r and m icrostructu ral evo lu tion of a TR IP /TW IP steel con tain ing2318%M n w as investigated and strengthen ing m echan is m s w ere analyzed .The resu lts show ed that the yield strength,tensile strength and elongation w ere 300M Pa,610M Pa and 63%res pectively .The steel exh ibited con tinuous yielding and the strain harden ing exponen t w as 0148.In the p ri m ary stage of defo r m ation,strain induced t w inn ing w as the m ajo r strengthen ing m echan is m ,w h ile strain induced transfo r m ation beca m e i m po rtan t as the strain increased .T he in teractions a m ong the t w ins,m artensite and dislocations also con tribu ted to the increase of strength of the experi m en tal steel .Key words:h igh m anganese TR IP /TW IP steel ;m icrostructu re;m echan ical p roperty;strengthen ing m echan is m 现代汽车结构、性能和技术的重要发展方向为减轻车体重量、节约能源、降低排放、提高汽车的安全性能.汽车零部件中,钢占有很大比重,在不降低其他各项性能指标的前提下,减少汽车用钢能在很大程度上减少车体的重量.高锰T R I P (transfor mati on induced p lasticity )/T W I P (t w inning induced p lasticity )钢正是国外为满足超轻钢汽车车身(ULS AB ,ultra -light steel aut omobile body )计划而研发的新一代钢.高锰TR I P /T W I P 钢的特点是有较高的强度和延伸率,较低的屈强比及良好的成形性能,并具有很强的能量吸收能力.Grassel 和Fr o mmeyer 等研究者发表了Fe -(15-30)Mn-3A l -3Si 系统的研究结果[1,2].近年来,国内外的其他一些研究者也在高锰T R I P 和T W I P 钢的组织性能及成分设计方面进行了研究[3~7].虽然对高锰TR I P /T W I P 钢已经进行了较为广泛的研究,但当高锰钢中T R I P 和T W I P 两种效应同时存在时,对其变形行为和组织演变的分析还不多,尤其是对不同变形阶段高锰钢组织性能之间关系的研究更为有限.本文研究锰质量分数为2318%的T R I P /T W I P 钢在单轴拉伸下的变形特性,通过对其应力应变曲线的分析以及在不同变形量时微观组织的观察,得出其组织性能之间的关系及强化机制.1 实验材料及方法实验钢采用50kg 真空中频感应炉熔炼,化学成分为:w (C )=0106%,w (Mn )=2318%,w (Si )=310%,w (A l )=217%,余量为铁.铸锭经锻造加工成40mm 厚的锻坯,然后加热至1150℃保温2h,热轧成315mm 厚的板材,经线切割加工成拉伸试样,再加热到1100℃保温1h 后水淬.在C MT5105型微机控制电子万能实验机上对试样进行不同变形量的拉伸实验,应变速率为10-3/s .分别将实验钢拉伸到变形量为4%,10%,20%,50%及拉断.将拉伸试样用砂纸打磨,经抛光、腐蚀后利用OLY MP US GX51光学显微镜观察分析试样的金相组织,采用透射电境(TE M )对试样显微组织进行观察,结合X 射线衍射分析晶体结构.2 实验结果211 实验钢的力学行为试样进行拉伸得到的应力应变曲线如图1所示.由图可以看出,该实验钢的屈服强度约为300MPa,抗拉强度可达610MPa .断裂延伸率可达到63%.屈强比为0149.从图中可以看出实验钢没有明显的屈服点,呈连续屈服.应变硬化指数n 值较高,达到0148.图1 实验钢的工程应力-应变曲线F i g 11 S tre s s -stra i n re l a ti o n sh i p o fthe e xp e ri m en ta l s te e l212 实验钢变形过程中的组织演变实验钢经过固溶处理后,奥氏体晶粒比较粗大,组织中存在着大量退火孪晶(图2(a )).变形程度较小时,微观组织变化不大(图2(b )).随着变形量的增加,晶粒内出现形变孪晶,且所占比例不断增加(图2(c )和(d )).当试样拉断时,实验钢的原始奥氏体晶界已较模糊(图2(e )).图3为试样拉伸不同变形量的X 射线衍射图.通过X 衍射分析结果可知,实验钢在拉伸前主要为奥氏体组织和极少量密排六方马氏体组织.拉伸变形初期组织基本不发生变化;而在变形后期,除了基体奥氏体相之外,还出现了一定量体图2 实验钢不同变形量的光学显微组织(OM )F i g 12 M i c r o s truc tu re s o f the exp e ri m e n ta l s te e lde f o r m e d t o d i ffe re n t exte n t(a )—0;(b )—4%;(c )—20%;(d )—50%;(e )—拉断991第3期 张淑娟等:2318%Mn T R I P /T W I P 钢的组织性能及强化机制图3 实验钢拉伸前及不同变形程度组织的X 射线衍射图F i g 13 X -ray sp ec tra o f the e xp e ri m en ta l stee l p ri o r t o and a fte r te n s il e te s ti ng(a )—0;(b )—10%;(c )—50%;(d )—拉断心立方马氏体相.这说明在拉伸过程中发生了TR I P 效应,即部分面心立方的奥氏体转变为体心立方的马氏体.因此,结合金相显微分析和X 射线衍射结果可以得出实验钢在拉伸过程中同时发生了T W I P 效应和T R I P 效应.且实验钢在变形初期以T W I P 效应为主,而随着变形过程的进行,T R I P 效应逐渐明显.图4 实验钢拉伸后的微观组织(TE M )F i g 14 M i c r o struc tu re s o f the e xp e ri m en ta lstee l a fte r te n s il e te sti ng (a )—20%;(b )—拉断图4为实验钢拉伸后的透射电镜照片,从中可以看到有形变孪晶的存在,也说明实验钢在拉伸过程中发生了T W I P 效应.从图中可以看到不同方向的孪晶,说明在一个奥氏体晶粒中不只开动一个孪生系统.文献[8]也给出了的类似结果.另外,在透射电镜照片中还可观察到大量位错的存在,说明在变形过程中位错滑移也起着重要的作用.3分析与讨论对Fe -(15~30)Mn -3A l -3Si 系统的研究中发现[1,2],当w (Mn )<15%时,TR I P 效应占主导地位;当w (Mn )≥25%时,只有T W I P 效应发生.而当w (Mn )在15%~25%之间时,两种效应同时存在.本文研究的w (Mn )=2318%高锰钢应以T W I P 效应更为显著.02材料与冶金学报 第8卷在所研究的高Mn钢中,退火孪晶的宽度与晶粒尺寸相近,因此只能提供有限的孪晶界面,退火孪晶对实验钢力学性能的贡献仅仅是细化基体晶粒的作用.由于实验钢原始奥氏体晶粒尺寸较大,退火孪晶的宽度也较宽,实验钢的屈服强度并不很高.且退火孪晶界面在变形过程中是稳定的,不能再生.在变形过程中,变形诱发了大量的形变孪晶,形变孪晶均匀分布于整个试样中,其宽度远远小于退火孪晶,为高应变区提供了足够的界面,对位错的进一步运动构成了障碍,极大地提高了塑性形变的阻力,使流变应力增加.同时,多个孪晶系统的开动,进一步提高了对位错运动的阻力.在高锰钢的变形过程中,形变孪晶的形成是一个连续的过程,因此会不断形成新的界面,阻碍位错的运动,使流变应力不断增加.同时,T W I P效应的发生也延迟了缩颈的发生,提高了实验钢的塑性.与此同时,在所研究的实验钢中,还发生应变诱发马氏体相变(T R I P效应),对材料的强度和塑性的提高也起到一定的作用.实验结果表明应变诱发马氏体在变形初期不明显,随着变形过程的进行,应力集中逐渐增强,满足了诱发马氏体的应力条件,马氏体的增加使实验钢变形后期的强度增加.此外,位错也会与形变孪晶和马氏体相互作用,对实验钢强度的提高做出贡献.形变孪晶、马氏体的形成、位错滑移及其它们三者之间的相互作用使实验钢具有较高的抗拉强度.从实验结果中可以发现,在高锰钢中,T W I P效应、T R I P效应以及它们与位错的相互作用是主要的强化机制,Mn的固溶强化作用已退居其次.已有研究者对不同合金元素含量的高锰TR I P和T W I P钢拉伸时的力学行为进行了研究,表明这些钢在变形过程中可分为不同的阶段,各阶段的应变硬化机制不同[9,10].也有研究者定量测定了变形前后的组织分量[2].在本研究中,根据应力应变曲线的特征和组织分析,可将实验钢的拉伸变形过程分为3个阶段:弹性变形、T W I P 效应为主和TR I P效应为主的阶段.本文所研究实验钢的塑性明显优于一般的汽车用钢,且其屈服强度低,抗拉强度高,即具有较低的屈强比和高的应变硬化指数,同时变形呈连续屈服行为.这些优异的性能均有利于板料成形.可见,高锰T R I P/T W I P钢作为新一代汽车材料具有良好的应用前景.4 结 论(1)Mn含量为2318%的TR I P/T W I P钢的屈服强度约为300MPa,抗拉强度可达610MPa.最大延伸率可达到63%.实验钢拉伸变形时没有明显的屈服点,呈连续屈服.具有较高的应变硬化指数,n值约为0148.(2)在所研究实验钢中,同时存在TR I P和T W I P效应.其拉伸变形过程可分为3个阶段:弹性变形,T W I P效应为主和T R I P效应为主的阶段.在变形初期,主要强化机制为应变诱发孪生.应变诱发马氏体主要在变形后期出现.同时,形变孪晶、马氏体及与位错的相互作用也对强度做出贡献.致谢:本文作者感谢国家大学生创新性实验计划的资助.参考文献:[1]G rassel O,Kruger L,Fromm eyer G,el at.H igh strength Fe-M n-(A l,Si)TR IP/TW IP steels developm ent-p roperties-app lication[J].International Journal of Plasticity,2000,16:1391-1409.[2]Fromm eyer G,B rux U.M icrostructu res and m echan icalp roperties of h igh-strength Fe-M n-A l-C light-w eigh tTR IPLEX steels[J].Steel research in t,2006,77(9-10):627-633.[3]R intaro U eji,Ken ji H arada,N oriyuki Tsuch ida,et al.H ighs peed defo r m ation of ultrafine grained TW IP steel[J].M aterSci Fo rum,2007,561-565:107-110.[4]米振莉,唐荻,严玲,等.高强度高塑性TW IP钢的开发研究[J].钢铁,2005,40(1):58-60.(M I Zhen-li,TAN G D i,YAN L ing,el at.Study of highstrength and h igh p lasticity TW IP steel[J].Iron and Steel,2005,40(1):58-60.)[5]Yang P,X ie Q,M eng L,el at.D ependence of defo r m ationt w inn ing on grain o rien tation in a high m anganese steel[J].Scri p ta M aterialia,2006,55:629-631.[6]李卫,唐正友,王玫,等.高锰奥氏体TR IP/TW IP钢的组织和力学性能[J].钢铁,2007,42(1):71-75.(L I W ei,T ang Z heng-you,W AN G M ei,el at.M icrostructu re and m echan ical p roperties of h igh m anganesaustenite TR IP/TW IP steels[J].Iron and Steel,2007,42(1):71-75.)[7]D I N G H ua,TAN G Zhengyou,L IW ei,el at.M icrostructu resand m echan ical p roperties of Fe-M n-(A l,Si)TR IP/TW IPsteels[J].Jou rnal of Iron and Steel R esearch,2006,13(6):66-70.[8]米振莉,唐荻,江海涛,等.Fe-28M n-3Si-3A lTW IP钢变形过程中的孪晶观察[J].钢铁,2007,42(2):73-76.(M I Zhen-li,TAN G D i,JI AN G H ai-tao,el at.Tw insobservation du ring defo r m ation of Fe-28M n-3Si-3A lTW IP steel[J].Iron and Steel,2007,42(2):73-76.) [9]周小芬,符仁钰,苏钰,等.Fe—M n-C系TW IP钢的拉伸应变硬化行为研究[J].钢铁,2009,44(3):71-74.(ZHO U X iao-fen,F U R en-yu,SU Yu,el at.T ensilestrain harden ing behaviou r of Fe-M n-C TW IP steels[J].Iron and Steel,2009,44(3):71-74.)[10]熊荣刚,符仁钰,黎倩,等.TW IP钢的拉伸应变硬化行为[J].钢铁,2007,42(11):61-64.(X I O N G R ong-gang,F U R en-yu,L I Q ian,el at.T ensilestrain harden ing behaviou r of TW IP steels[J].Iron and Steel,2007,42(11):61-64.)102第3期 张淑娟等:2318%Mn T R I P/T W I P钢的组织性能及强化机制。
写未来出现高科技产品的英语作文

写未来出现高科技产品的英语作文The Future is Now: Embracing the Era of High-Tech MarvelsAs we stand on the precipice of a technological revolution, the future has never looked brighter. The rapid advancements in science and engineering have paved the way for the emergence of high-tech products that will forever change the way we live, work, and interact with the world around us. From autonomous vehicles to cutting-edge medical devices, the future is brimming with innovative solutions that promise to make our lives easier, more efficient, and more connected than ever before.One of the most exciting developments in the realm of high-tech products is the rise of autonomous vehicles. Imagine a world where cars can navigate the roads without the need for human intervention. This revolutionary technology has the potential to transform the way we commute, reducing the risk of accidents, easing traffic congestion, and freeing up valuable time for other pursuits. With self-driving cars, the daily commute could become a productive or relaxing experience, as passengers can use the travel time to work, read, orsimply enjoy the ride.Beyond transportation, high-tech products are also poised to revolutionize the healthcare industry. Advancements in medical technology have given rise to innovative devices that can monitor our health, detect diseases at earlier stages, and provide personalized treatment options. Imagine a future where a simple wearable device can continuously track our vital signs, alerting us and our healthcare providers of any anomalies before they become serious health concerns. This level of proactive healthcare could lead to earlier interventions, improved patient outcomes, and a more efficient healthcare system.Another area where high-tech products are making a significant impact is in the realm of renewable energy. As the world grapples with the pressing issue of climate change, the development of advanced solar panels, wind turbines, and energy storage solutions has become increasingly crucial. These high-tech products are not only more efficient and cost-effective than their traditional counterparts, but they also hold the promise of a more sustainable future, where our reliance on fossil fuels is greatly reduced, and clean, renewable energy becomes the norm.The rise of the Internet of Things (IoT) is another exciting development in the world of high-tech products. Imagine a futurewhere our homes, workplaces, and even cities are seamlessly connected, allowing for unprecedented levels of automation, efficiency, and convenience. Smart home devices can adjust the temperature, lighting, and security based on our preferences and habits, while smart city infrastructure can optimize traffic flow, waste management, and energy consumption. The IoT promises to create a more efficient, sustainable, and connected world, where technology works in harmony with our daily lives.In the realm of entertainment and communication, high-tech products are also making significant strides. Imagine a future where holographic displays and virtual reality experiences transport us to entirely new worlds, blurring the lines between reality and fantasy. Advancements in 5G and future-generation networks will enable lightning-fast data speeds and low-latency communications, revolutionizing the way we stream content, play games, and collaborate with others across the globe.As we look to the future, the potential of high-tech products is truly limitless. From advancements in artificial intelligence and robotics to breakthroughs in biotechnology and nanotechnology, the innovations on the horizon promise to transform every aspect of our lives. These high-tech marvels will not only make our lives more convenient and efficient but also address some of the most pressing challenges facing humanity, such as climate change, disease, andresource scarcity.However, with the rapid pace of technological change, it is crucial that we approach the future with a balanced and responsible mindset. While the benefits of high-tech products are undeniable, we must also consider the potential social, ethical, and environmental implications of these advancements. Ensuring that these technologies are developed and deployed in a way that prioritizes human wellbeing, privacy, and sustainability will be a key challenge for policymakers, innovators, and the public alike.As we stand on the cusp of this technological revolution, the future has never looked more exciting. The emergence of high-tech products will not only transform our daily lives but also pave the way for a more prosperous, sustainable, and connected world. By embracing these innovations and addressing the challenges they present, we can shape a future that is truly worthy of the human spirit – one that is filled with wonder, progress, and a deep respect for the incredible potential of the human mind.。
中文期刊论文格式

投稿格式要求1 板式纸张大小:纸的尺寸为标准A4复印纸(210mm ×297mm )页边距:上3cm ,下3cm ,左3cm ,右3cm ,页眉2cm ,页脚2cm 2 论文撰写必须包括以下项目:2.1 文章题目(一般不超过20字) 范例:2.2范例:(1.珠海市公路建设中心,广东 珠海2.3 中文摘要、关键词(4~8个)、中图分类号(1)摘要应写成报道式摘要,按照目的、方法、结果、结论四要素来撰写。
摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容地短文,避免使用第一人称,应使用第三人称,摘要不分段,字数以200~300字为宜。
(2)关键词的选择应规范。
第一个关键词为该文所属相应栏目名称,第二个关键词为该文研究成果名称,第三个关键词为得到该文研究成果所采用的方法名称,第四个关键词为作为该文主要研究对象的事物名称,第五个及以后的关键词为作者认为有利于文献检索的其他名词。
范例:验,总结了疲劳方程及疲劳曲线,对比分析了3种添加剂稳定的冷再生基层混合料疲劳试验结果,并从疲劳曲线特征及疲劳破坏特征两方面,同普通半刚性材料的疲劳性能进行了比较分析。
结果表明,石灰粉煤灰稳定的再生混合料杭疲劳性能最好,其次是水泥粉煤灰,7%水泥稳定的再生混合料杭疲劳性能较差;再生混合料的疲劳特性与普通半刚性材料存在较大差异,在较低:道路工程;冷再生混合料;疲劳试验;:U416.26 文献标识码:A2.4 引言、正文、结语(1)汉字字体字号选5号宋体,外文、数字字号与同行汉字字号相同,字体用Time New Roman 体。
(2)引言是论文内容的重要提示,作者在引言中应概述前人在该领域内所做的工作,并陈述论文在此基础上所取得的成果和突破。
(3)结语中应指出该论文的独创性成果及存在的局限,以方便他人在此基础上做进一步的研究。
(4)正文中的图、表按出现的先后顺序进行编号,图务必清晰、精确,图名、表名必须有中文表述,坐标图的横、纵坐标必须标明其对应的量及单位。
超高强铝合金研究进展与发展趋势

引用格式:邢清源,臧金鑫,陈军洲,等. 超高强铝合金研究进展与发展趋势[J]. 航空材料学报,2024,44(2):60-71.XING Qingyuan,ZANG Jinxin,CHEN Junzhou,et al. Research progress and development tendency of ultra-high strength aluminum alloys[J]. Journal of Aeronautical Materials,2024,44(2):60-71.超高强铝合金研究进展与发展趋势邢清源1,2*, 臧金鑫1,2, 陈军洲1,2, 杨守杰1,2, 戴圣龙1,2*(1.中国航发北京航空材料研究院 铝合金研究所,北京 100095;2.北京市先进铝合金材料及应用工程技术研究中心,北京100095)摘要:超高强铝合金具有密度低、比强度高等特点,广泛应用于航空、航天、核工业等领域。
合金的极限强度已从第四代铝合金的600 MPa级,逐步发展到650~700 MPa级、750 MPa级,甚至800 MPa级及以上第五代铝合金。
本文首先对超高强铝合金的发展历程和国内外发展现状进行概述;随后,从成分设计与优化、熔铸与均匀化技术、热变形技术、热处理技术、计算机辅助模拟计算共五个方面对近些年的研究进展和所遇到的问题进行了总结和讨论;最后,结合未来装备的发展需求和国内的技术现状,指出“深入研究基础理论,解决综合性能匹配等问题以及在特定应用场景下专用材料的推广应用”是超高强铝合金的发展趋势和重要方向。
关键词:超高强铝合金;Al-Zn-Mg-Cu系合金;熔铸法;高合金化doi:10.11868/j.issn.1005-5053.2023.000171中图分类号:TG146.21 文献标识码:A 文章编号:1005-5053(2024)02-0060-12Research progress and development tendency of ultra-highstrength aluminum alloysXING Qingyuan1,2*, ZANG Jinxin1,2, CHEN Junzhou1,2, YANG Shoujie1,2, DAI Shenglong1,2*(1. Aluminum Alloy Institute,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;2. Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications,Beijing 100095,China)Abstract: Ultra-high strength aluminum alloy has achieved extensive application in the nuclear,aerospace,and aviation industries because of its high specific strength and low density. The fifth generation of ultra-high strength aluminum alloy has been produced,and in comparison to the fourth generation’s 600 MPa level,its ultimate strength has been consistently redefined and increased from 650-700 MPa to 750 MPa or even 800 MPa. This paper reviews the history of the research on aluminum alloys with ultra-high strengths and introduces the current state of development both domestically and internationally. The key issues and recent research development are further explored,including computer simulation,thermal deformation,heat treatment,homogenization,melting,and casting,as well as composition design. Finally,combined with the development needs of future equipment and domestic technology status,it is pointed out that in-depth study of basic theory to solve the problem of comprehensive performance matching,the promotion and application of special materials in specific application scenarios are the development trend and important direction of ultra-high strength aluminum alloy.Key words: ultra-high aluminum alloy;Al-Zn-Mg-Cu alloy;ingot metallurgy;high alloying超高强铝合金属于7×××系(Al-Zn-Mg-Cu系)合金,是该系列合金中的一个重要分支,具有低密度、高比强度等特点,被广泛用于航空、航天、核工业、兵器等领域,按照航空铝合金代次的划分,超高强铝合金已发展至第五代合金。
400℃退火对ECAP形变Q235钢的强度和位错强化的影响

400℃退火对ECAP形变Q235钢的强度和位错强化的影响樊曙天;许晓静【摘要】将经过淬火预处理和等通道转角挤压加工(ECAP)的Q235钢进行400℃退火.采用拉伸试验、X射线衍射(XRD)分析及描述强度—位错密度关系的Taylor 公式,研究400℃退火对ECAP形变低碳钢的强度和位错强化的影响.拉伸试验表明:400℃退火使ECAP形变Q235钢强度降低,屈服强度从825 MPa下降到725 MPa,加工硬化能力和塑性显著提高.基于XRD分析和Taylor公式的定量计算说明,400℃退火对ECAP形变Q235钢的位错强化影响很小,实际强度的降低不是来自于位错强化的降低,而是来自于其他强化机制(晶界、亚晶界等)的降低.%Q235 steel was quenched and subjected to equal-channel angularpressing( ECAP) processing. The effect of 400 ℃ annealing on strength and dislocation strengthening of the ECAP-processed Q235 steel was investigated by tensile testing, X-ray diffractometer analysis and Taylor equation of strength-dislocation density relationship. Tensile testing indicates that the yield strength of the ECAPed Q235 steel is decreased from 825 MPa to 725 Mpa by 400 ℃ annealing, while the strain hardening capacity and ductility are obviously improved. The theoretical calculation based on X-ray diffractometer a-nalysis and Taylor equation indicates that 400 ℃ annealing has slight influence on the dislocation strengthening. The decreasing of strength is not due to the dislocation strengthening decrease, but may due to grain boundary or subgrain boundary strengthening.【期刊名称】《江苏大学学报(自然科学版)》【年(卷),期】2012(033)003【总页数】4页(P342-344,358)【关键词】Q235钢;ECAP加工;退火;强度;位错强化【作者】樊曙天;许晓静【作者单位】江苏大学机械工程学院,江苏镇江212013;江苏大学机械工程学院,江苏镇江212013【正文语种】中文【中图分类】TG142.1等通道转角变形(equal-channel angular extrusion or pressing,ECAP)是一种能在不改变材料形状的情况下,以纯剪切方式实现块体材料大塑性变形的技术.现已发展成为制取超细晶或纳米结构材料,大幅提升材料性能的重要方法[1-2].近年来,国际上对钢的ECAP工艺、形变组织结构、力学性能的研究均有一些报道[3-8].Y.I.Son 等人[4]对低碳钢采用ECAP和后续铁素体-奥氏体两相区淬火,获得晶粒尺寸在1μm左右的铁素体-马氏体两相组织,并发现该组织具有较高的强度和良好的加工硬化能力.Y.Fukuda等人[5]对碳质量分数为0.08%的低碳钢进行了 ECAP加工,使该钢的晶粒尺寸细化到0.2μm.吴桂潮等人[6]对完全退火态40Cr进行了ECAP加工,使钢的屈服强度从约320 MPa提高到800 MPa.迄今为止,有关退火对ECAP变形钢强度和位错强化的影响鲜见报导.本研究以经淬火预处理及ECAP加工的Q235低碳钢为试验材料,研究400℃退火对ECAP形变低碳钢拉伸性能的影响,通过位错强化定量计算,了解退火对ECAP形变低碳钢强度的影响机理,以期为ECAP形变低碳钢的后续性能优化提供科学依据.1 试验方法试验所使用材料为经过淬火预处理和ECAP加工的Q235低碳钢.Q235低碳钢的名义成分为Fe-C-Mn-Si-P-S,其中,C,Mn,Si,P 和 S 的质量分数分别为0.17%,0.68%,0.37%,0.036%和0.039%,余量为Fe.该钢加热时的奥氏体相变开始点Ac1和奥氏体相变终止点Ac3温度分别约为735℃和863℃.所用的淬火工艺为930℃,2 h保温后淬入室温水中.ECAP加工在室温下进行,等效应变约为0.5.ECAP加工后进行退火处理,温度为400℃,保温时间为0.5 h.拉伸试样沿着棒材长度方向取样,标距长、宽和厚分别为 5,3和 1.5 mm.用WDW-200型微机控制式万能试验机测试室温拉伸性能,初始应变速率为1.0×10-3 s-1.用JXA-840A 型扫描电镜(SEM)观察断口表面.用D/max-2500PC型X射线衍射仪(XRD)测定衍射峰及其半高峰宽,扫描速率为5(°)·min-1,Cu靶Kα线,波长为0.154 05 nm.2 结果与讨论2.1 拉伸性能与断口表面图1为钢拉伸变形的应力-应变曲线.由图1可知,400℃退火处理明显降低了ECAP形变Q235钢的强度,屈服强度从825 MPa下降到725 MPa,抗拉强度约从870 MPa下降到800 MPa,但应变硬化能力和塑性显著提高.图1 拉伸应力-应变曲线图2为拉伸断口SEM形貌.由图2可知,断口都是以单元剪切断裂特征为主,这与材料强度和塑性较高相吻合,相比之下,退火态材料断口表面上出现了较多撕裂棱,证明塑性相对更高.图2 拉伸断口SEM形貌2.2 XRD分析与位错强化图3为XRD分析谱及半高峰宽.图4为Fe的标准XRD谱.比较图3a,3c及图4可以看出,ECAP形变钢退火前后其内部的晶体取向都较低.比较图3b,3d可以看出,400℃退火处理对 ECAP形变Q235钢的XRD半高峰宽的影响较小.平均XRD相干衍射区尺寸d、晶格应变〈e2〉1/2与半高峰宽δ2θ、各衍射峰最高峰位置θ0、波长λ之间的关系可用下面Cauchy-Gaussion函数描述[7]:图5 为(δ2θ)2/tan2θ0 与δ2θ/(tan θ0 sin θ0)之间的关系.经数学线性拟合,求解出平均XRD相干衍射区尺寸和晶格应变,其值列于表1中.位错密度ρ与XRD相干衍射区尺寸d、平均晶格应变〈e2〉1/2之间的关系一般可用下面函数关系描述:式中:b为柏氏矢量大小,Fe的b值为0.248 nm[9].位错对强度的贡献与位错密度ρ之间的关系一般可用下面Taylor函数关系描述:式中:M为Taylor位向因子,不考虑织构时为2.75[10];α 为数值因子,取值0.24[10];G 为剪切模量,取值 81 GPa[9];柏氏矢量 b 取值 0.248 nm[9].相关计算结果见表1.由表1可知,400℃退火处理对ECAP形变Q235钢的位错强化影响很小,因此,实际强度明显降低不是来自于位错强化的降低,而是来自于其他强化机制(晶界、亚晶界等)的降低.图5 (δ2θ)2/tan2θ0与δ2θ/(tan θ0 sin θ0)之间关系表1 XRD数据计算的一些微观结构与力学性能特征位错强化/44.26 0.062 81.982 186.68 ECAP后退火态MPa ECAP加工态状态相干衍射区尺寸/nm晶格应变/%位错密度/(1014 m-2)39.29 0.068 02.416 206.113 结论1)拉伸试验表明:400℃退火使经淬火预处理并经等通道转角挤压加工的Q235钢强度显著降低,屈服强度约从825 MPa下降到725 MPa,但加工硬化能力大幅提高,塑性也有所提高.2)基于XRD分析和Taylor公式的定量计算说明:400℃退火对ECAP形变Q235钢的位错强化影响很小,实际强度的降低不是来自于位错强化的降低,而是来自于其他强化机制(晶界、亚晶界等)的降低.参考文献(References)【相关文献】[1] Valiev R Z,Islamgaliev R K,Alexandrov IV.Bulk nanostructured materials from severe plastic deformation[J].Progress in Materials Science,2000,45(2):103-189. [2] Valiev R Z,Langdon T G.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in Materials Science,2006,51(7):881-981.[3] Park JW,Kim JW,Chung Y H.Grain refinement of steel plate by continuous equal-channel angular process[J].Scripta Materialia,2004,51(2):181-184.[4] Son Y I,Lee Y K,Park K T,et al.Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing:microstructure and tensile properties [J].Acta Materialia,2005,53(11):3125-3134.[5] Fukuda Y,Ohishi K,Horita Z,et al.Processing of a low-carbon steel by equal-channel angular pressing[J].Acta Materialia,2002,50:1359-1368.[6]吴桂潮,许晓静,王彬,等.完全退火态 40Cr钢ECAP加工后的拉伸性能[J].热加工工艺,2010,39(17):16-17.Wu Guichao,Xu Xiaojing,Wang Bin,et al.Tensile properties of fullyannealed 40Cr steel processed by equal-channel angular pressing[J].Hot Working Tech-nology,2010,39(17):16-17.(in Chinese)[7] Youssef K M,Scattergood R O,Murty K L,et al.Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility[J].Scripta Materialia,2006,54(2):251-256. [8] Zhao Y H,Liao X Z,Jin Z,et al.Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J].Acta Materialia,2004,52(15):4589-4599.[9] Korznikov A V,Safarov IM,Nazarov A A,et al.High strength state in low carbon steel with submicron fibrous structure[J].Materials Science and Engineering A,1996,206(1):39-44.[10] Krasilnikov N,Lojkowski W,Pakiela Z,et al.Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation[J].Materials Science and Engineering A,2005,397(1/2):330-337.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Development of ultra-fine grained W–TiC and their mechanical properties for fusion applicationsH.Kurishita a,*,Y.Amano b ,S.Kobayashi b ,K.Nakai b ,H.Arakawa a ,Y.Hiraoka c ,T.Takida d ,K.Takebe d ,H.Matsui aaInternational Research Center for Nuclear Materials Science,Institute for Materials Research (IMR),Tohoku University,Oarai,Ibaraki 311-1313,JapanbDepartment of Materials Science and Engineering,Ehime University,Matsuyama 790-8577,JapancOkayama University of Science,1-1Ridai-cho,Okayama 700-0005,Japan dA.L.M.T.Corp.,2Iwase-koshi-machi,Toyama 931-8371,JapanAbstractEffects of neutron irradiation on microstructural evolution and radiation hardening were examined for fine-grained W–0.3wt%TiC (grain size of 0.9l m)and commercially available pure W (20l m).Both materials were neutron irradiated at 563K to 9·1023n/m 2(E >1MeV)in the Japan Materials Testing Reactor (JMTR).Post-irradiation examinations showed that the microstructural changes and the degree of hardening due to irradiation were significantly reduced for fine-grained W–0.3TiC compared with pure W,demonstrating the significance of grain refinement to improve radiation resistance.In order to develop ultra-fine grained W–TiC compacts with nearly full densification,the fabrication process was modified,so that W–(0.3–0.7)%TiC with 0.06–0.2l m grain size and 99%of relative density was fabricated.The achievable grain refinement depended on TiC content and milling atmosphere.The three-point bending fracture strength at room temperature for ultra-fine grained W–TiC compacts of powder milled in H 2reached approximately 1.6–2GPa for composition near 0.5%TiC.Ó2007Elsevier B.V.All rights reserved.1.IntroductionTungsten and its alloys are very promising for use as high heat flux components and high-power density structural materials in radiation environ-ments because of their excellent compatibility with liquid metals,high melting points,low thermal expansion coefficients and low sputtering yield,etc.However,they exhibit serious embrittlement in several regimes,i.e.,low temperature embrittlement,recrystallization embrittlement and radiation embrittlement [1].In order to alleviate such embrit-tlement,the authors have been developing tungsten alloys with a microstructure of fine grains and finely dispersed particles of transition metal carbides such as TiC by applying mechanical alloying (MA)[2]and hot isostatic pressing (HIP),followed by hot forging and hot rolling [3–6].Our recent studies on low temperature embrittle-ment in MA-HIPed W–TiC alloys showed that the0022-3115/$-see front matter Ó2007Elsevier B.V.All rights reserved.doi:10.1016/j.jnucmat.2007.04.008*Corresponding author.Tel.:+81292674157;fax:+81292674947.E-mail address:kurishi@imr.tohoku.ac.jp (H.Kurishita).Journal of Nuclear Materials 367–370(2007)1453–1457/locate/jnucmatbeneficial effect of plastic working such as forging and rolling after consolidation on room-tempera-ture ductility improvement is strongly dependent on grain size and magnified with decreasing grain size[6].This indicates the significance of further grain refinement for ductility enhancement.In addi-tion,recent experimental and simulation studies of radiation effects onfine/refined/nanocrystalline materials[7–19]showed that these structures are effective in improving radiation resistance.How-ever,there have been no reports on the effect of grain refinement on radiation resistance for W and its alloys.In this study MA-HIPed W–0.3%TiC with a grain size of0.9l m and commercially available pure W specimens(grain size:20l m)were irradi-ated with fast neutrons in the Japan Materials Testing Reactor(JMTR)and their microstructural evolution and Vickers microhardness were exam-ined and compared.In order to achieve further refinement of the W–TiC compacts with nearly full densification the fabrication process has been modified.It is demonstrated that W–(0.3–0.7)% TiC compacts with ultra-fine grains of0.06–0.2l m and a high relative density of99%have been suc-cessfully fabricated.The current status of the micro-structural and mechanical property evaluation for the ultra-fine grained W–TiC compacts is presented.2.ExperimentalPowders of pure W(an average particle size 4.0l m and purity99.9%)and TiC(40l m,99.9%) were used as the starting materials.They were mixed in a glove box to provide nominal compositions of pure W and W–(0.3–0.7)wt%TiC and then charged into two vessels made of TZM(Mo–0.5%Ti–0.1%Zr alloy)together with TZM balls for MA. MA treatments were conducted by a3MPDA(three mutually perpendicular directions agitation)ball mill in a purified Ar(purity99.9999%)or purified H2gas atmosphere.The details of MA processes are reported elsewhere[5,6].The MA treated powder was placed in a Mo boat and heated at1073K for 3.6ks in vacuum to remove Ar or H2introduced during MA process. The vacuum-treated powder was charged into a mild steel capsule and then subjected to HIP in an Ar atmosphere atfirst at1620K and200MPa for 3h,with in some cases an additional HIP at 2220K and200MPa for3h for the sintered com-pact.The measured relative densities of the as-HIPed compacts were approximately99%.The con-tents of oxygen and nitrogen impurities were approximately200–400and60–100wt ppm,respec-tively.Mo contents arising from the vessels and balls of TZM during MA were in a range between 1.8and2.4wt%.The as-HIPed compacts were machined to pre-pare specimens for microstructural observation by transmission electron microscopy(TEM)and Vickers microhardness and three-point bending (3PB)tests.TEM observations were made with a JEM-2000FX or JEM-4000FX operating at200or 400kV,respectively.Vickers microhardness was measured at room temperature with a load of 4.9N for20s.3PB tests were conducted on minia-turized specimens with dimensions of1mm by 1mm by20mm with a span of13.3mm and a crosshead speed of0.01mm sÀ1.Fracture surfaces of the tested specimens were examined with afield emission scanning electron microscope.Neutron irradiation of TEM disk specimens of two-step HIPed W–0.3TiC(grain size:0.9l m)and commercially available pure W in the stress relieved state(20l m)was performed at563K to9·1023 n/m2(E>1MeV)in JMTR.Post-irradiation exam-inations(PIE)were conducted in the facilities of IMR-Oarai center,Tohoku University.3.Results and discussion3.1.Neutron irradiation effectTEM observations of pure W and W–0.3TiC compacts showed a high density of sub-grain bound-aries.The average diameters of sub-grains before and after irradiation were0.71l m and0.74l m for pure W and0.49l m and0.53l m for W–0.3TiC, respectively.The sub-grain sizes for both materials are in a similar range,while the grain sizes exhibita rather large difference(W:20l m,W–0.3TiC:0.9l m).Fig.1shows bright-field and dark-field images and a selected area diffraction pattern from a disper-soid existing at a grain boundary in neutron irradi-ated W–0.3TiC.From the pattern the dispersoid was identified to be TiC,although it may be Ti(C, O,N)x.It was found that a Kurdjumov–Sachs (K–S)orientation relationship exists between the TiC dispersoid and the W matrix.The K–S relation-ship meetsð111Þfcc kð110Þbcc;½1 10 fcc k½1 11 bcc:1454H.Kurishita et al./Journal of Nuclear Materials367–370(2007)1453–1457Such a good orientation relationship between the TiC dispersoid and the W matrix indicates that the TiC dispersoid was formed by precipitation from a supersaturated state.Since the precipitation is difficult to occur at a low irradiation temperature of 563K (T /T m =0.15,where T m is the melting point of W),the observed TiC dispersoid was not formed as a consequence of irradiation,but already existed in the original microstructure.In fact,such TiC dispersoids were observed at grain boundaries before irradiation.This demonstrates that the TiC dispersoids are stable against neutron irradiation under the present conditions.Fig.2shows TEM microstructures near a grain boundary for (a)pure W and (b)W–0.3TiC after neutron irradiation.A number of radiation induced defects such as small black dots or interstitial-type dislocation loops are observed in the grain interior.Fig.2(c)shows the size (radius)distribution of radi-ation-induced defects in pure W and W–0.3TiC.The average radius and number density of the defects were 3.3nm and 3600/l m 3for pure W and 2.9nm and 2700/l m 3for W–0.3TiC,respectively.MA in an Ar atmosphere resulted in the formation of nano-sized Ar cavities (W–0.3TiC [6]),which may cause overestimation of the defect density.W–0.3TiC likely contains fewer radiation-induced defects and hence exhibits higher resistance to radi-ation-induced microstructural changes than pure W.This suggests that the sink efficiency of grain bound-aries and TiC dispersoids is higher than that of sub-grain boundaries.The Vickers microhardness numbers before and after irradiation were measured to be 506and 569for pure W and 667and 697for W–0.3TiC.The amount of radiation hardening,D H V ,30for W–0.3TiC and 63for pure W,was much less for W–0.3TiC.These results indicate that thefine-Fig.1.(a)Bright-field and (b)dark-field images and (c)a selected area diffraction pattern from a dispersoid existing at a grain boundary in neutron irradiatedW–0.3TiC.Fig.2.TEM bright-field images near a grain boundary for (a)pure W and (b)fine-grained W–0.3TiC compacts after neutron irradiation at 563K and (c)size distribution of radiation-induced defects.H.Kurishita et al./Journal of Nuclear Materials 367–370(2007)1453–14571455grained,TiC dispersed microstructure in W–0.3TiC is effective in improving the resistance to radiation hardening.3.2.Fabrication of ultra-fine grained W–TiC compactsFabrication of ultra-fine grained W–TiC com-pacts requires HIPing at lower temperatures to sup-press grain growth.As the HIPing temperature is lowered,however,the densification of the compacts is inadequate;e.g.,the relative density of a compact HIPed at1350°C is$94%,whereas the grain size is as small as50nm[3].Therefore,the fabrication pro-cess was modified to achieve a high relative density of$99%in ultra-fine grained W–TiC.The modified process lead to the fabrication of consolidated bodies with a relative density of approximately99%.Table1lists the average grain sizes of pure W and W–TiC with different TiC additions and MA atmospheres.It is obvious that TiC addition and MA in Ar have a significant grain refinement effect. Larger grains of pure W are due to the absence of dispersed particles.Fig.3shows a TEM micrograph for W–0.7TiC(MA in Ar)exhibiting the smallest grain size.It was confirmed that Ar formed small bubbles or cavities in the compacts providing that MA was processed in Ar.Such bubbles or cavities may give a pinning effect similar to dispersoids and cause grain refinement.Fig.4shows the dependence of3PB fracture strength on TiC content and milling atmosphere. The fracture strength was estimated to be the max-imumfiber stress given byr¼3PL=2Bt2:ð1ÞHere,r is the stress,P is the applied load,L is the span(13.3mm),B and t are the specimen widthand thickness,respectively.MA in H2provides con-siderably higher fracture strength than that in Ar. This is likely attributed to easier removal of H2than that of Ar from the W–TiC compacts.The fracture strength of W–TiC with MA in H2reaches approx-imately1.6–2GPa around0.5%TiC.It should be noted that this value was obtained for the ultra-fine grained,as-HIPed W–0.5TiC compacts without anisotropy and is much higher than that forfine-grained W–0.3TiC with grain size of0.6l m, 1.2GPa[6].Pure W,on the other hand,although processed with MA in H2,exhibited intergranular fracture at very low stresses,$1000MPa,which are much lower than the fracture strengths of W–TiC.The high strength of ultra-fine grained W–TiC is therefore attributable to grain-boundary strengthening by TiC dispersoids and to the reduc-tion of the effective size of a weak grain boundary acting as a crack initiator by grain refinement.Table1Average grain sizes of pure W and W–TiC compacts with different TiC contents and milling atmospheresMA atmosphere Pure W W–0.3TiC W–0.5TiCW–0.7TiCPurified H23300148129106 Purified Ar––7959Fig.3.A TEM bright-field image showing the grain structure of a HIPed W–0.7%TiC compact processed with MA in an Ar atmosphere.1456H.Kurishita et al./Journal of Nuclear Materials367–370(2007)1453–14574.Conclusions(1)Microstructural changes and radiation harden-ing by neuron irradiation at563K to9·1023n/m2(E>1MeV)in JMTR are significantlyreduced forfine-grained W–0.3TiC with grainsize of0.9l m compared with commerciallyavailable pure W with grain size of20l m. (2)TiC dispersoids at grain boundaries have a K–S orientation relationship with the W matrixand are stable against neutron irradiationunder the present conditions.(3)Ductility enhancement and neutron irradia-tion resistance improvement for P/M W–TiCalloys require further grain refinement fromfine grains to ultra-fine grains.(4)TiC additions up to0.7wt%and MA in an Aratmosphere give a significant grain refinementeffect due to the pinning effects of TiC disper-soids and Ar bubbles or cavities,resulting inthe smallest grain size of59nm.(5)MA in H2provides considerably higher frac-ture strengths than that in Ar.The3PB frac-ture strength at room temperature for ultra-fine grained W–(0.3–0.7)%TiC with MA inH2reaches approximately1.6–2GPa around0.5%TiC content.These values are muchhigher than those for as-HIPed,fine-grainedW–0.3TiC with a grain size of0.6l m,$1.2GPa.(6)The high strength of ultra-fine grained W–TiCis most likely due to grain-boundary strength-ening by TiC dispersoids and to the reductionof the effective size of a weak grain boundaryacting as a crack initiator by grain refinement. AcknowledgementThe authors would like to express their gratitude to Dr S.Matsuo for his review.He present work was partly supported by a Grant-in-Aid for Scien-tific Research(A)(#13308022),Japan Society for the Promotion of Science(JSPS),which is greatly appreciated.References[1]For instance I.Smid,M.Akiba,G.Vieider,L.Plo¨chl,J.Nucl.Mater.253–263(1998)160.[2]J.S.Benjamin,Metall.Trans.5(1970)2943.[3]Y.Kitsunai,H.Kurishita,M.Narui,H.Kayano,Y.Hiraoka,T.Igarashi,T.Takida,J.Nucl.Mater.271&272 (1999)423.[4]H.Kurishita,Y.Kitsunai,T.Kuwabara,M.Hasegawa,Y.Hiraoka,T.Takida,T.Igarashi,J.Plasma Fus.Res.75 (1999)594(in Japanese).[5]Y.Ishijima,H.Kurishita,K.Yubuta,H.Arakawa,M.Hasegawa,Y.Hiraoka,T.Takida,K.Takebe,J.Nucl.Mater.329–333(2004)75.[6]Y.Ishijima,H.Kurishita,H.Arakawa,M.Hasegawa,Y.Hiraoka,T.Takida,K.Takebe,Mater.Trans.46(2005)568.[7]H.Kurishita,Y.Kitsunai,T.Shibayama,H.Kayano,Y.Hiraoka,J.Nucl.Mater.233–237(1996)557.[8]Y.Kitsunai,H.Kurishita,T.Shibayama,M.Narui,H.Kayano,Y.Hiraoka,J.Nucl.Mater.239(1996)253. [9]M.Rose,A.G.Balogh,H.Hahn,Nucl.Instrum.and Meth.B127&128(1997)119.[10]T.Kuwabara,H.Kurishita,ai,M.Narui,S.Mizuta,M.Yamazaki,H.Kayano,J.Nucl.Mater.258–263(1998) 1236.[11]Y.Chimi,A.Iwase,N.Ishikura,M.Kobiyama,T.Inami,S.Okuda,J.Nucl.Mater.297(2001)355.[12]M.Samara,P.M.Derlet,H.V.Swygenhoven,M.Victoria,Phys.Rev.Lett.88(2002)12.[13]ai,M.Fujiwara,J.Nucl.Mater.307–311(2002)749.[14]H.Kurishita,Basic Studies in the Field of High-TemperatureEngineering,OECD,2002,p.103.[15]S.Kobayashi,Y.Tsuruoka,K.Nakai,H.Kurishita,Mater.Trans.45(2004)29.[16]S.Kobayashi,Y.Tsuruoka,K.Nakai,H.Kurishita,J.Nucl.Mater.329–333(2004)447.[17]N.Nita,R.Schaeublin,M.Victoria,J.Nucl.Mater.329–333(2004)953.[18]Y.Kitsunai,H.Kurishita,T.Kuwabara,M.Narui,M.Hasegawa,T.Takida,K.Takebe,J.Nucl.Mater.346(2005) 233.[19]H.Kurishita,T.Kuwabara,M.Hasegawa,S.Kobayashi,K.Nakai,J.Nucl.Mater.343(2005)318.H.Kurishita et al./Journal of Nuclear Materials367–370(2007)1453–14571457。