MATLAB电路仿真

合集下载

MATLAB电路仿真

MATLAB电路仿真

公式; 电压测量模块的选中; Scope模块的选中及其参数设置; RLC Branch的正确选择; 仿真参数的调整0-20s的仿真时间。
例4-4利用Simulink直接搭建模型
仿真结果如下
2.含有受控源的正弦稳态电路
受控电流源或者受控电压源有现成的模 块;
控制信号的正确引入是关键和难点;
Z2=[2,2]; %电阻2在不同频率的输入信号下产生的对应阻抗
Z3=[2,2]; %电阻3在不同频率的输入信号下产生的对应阻抗
Uoc=(Z2./(Z1+Z2)-Z4./(Z3+Z4)).*Us; %电压源在bd点产生的等 效电压
Zeq=Z3.*Z4./(Z3+Z4)+Z1.*Z2./(Z1+Z2); %计算等效电阻
方法二:直接在Simulink内构建仿真模型 用四种模块:
Serial RLC Branch 模块
Current Measurement 模块
Display 模块,输出测量的结果。
位于Simulink节点下的Sinks模块库中。
按照参数调制表设置参数, 将各个模块用信号现连接起来。
U=Is.*Zeq+Uoc
%bd两点间电压值
disp(' w
Um
phi') %显示结果
disp([w',abs(U'),angle(U')*180/pi])
w Um phi
1.0000 3.1623 -18.4349
w Um phi
1.0000 3.1623 -18.4349
写出U(t)的2.0表000达7式.07为11:-8.1301 Ut=3.1623cos(t-18.4349)+7.0711cos(2t-

matlab电路仿真教程

matlab电路仿真教程

matlab电路仿真教程Matlab是一种功能强大的软件,用于进行电路仿真和分析。

通过Matlab,用户可以轻松地进行电路分析、验证和优化。

在本教程中,我将介绍如何使用Matlab进行电路仿真,并提供一些实例来帮助您更好地理解。

首先,我们需要了解Matlab中的电路仿真工具。

Matlab提供了许多函数和工具箱,用于电路建模和仿真。

其中最常用的是Simulink和Circuits工具箱。

Simulink是一个可视化的仿真环境,用于建立和模拟电路系统。

Circuits工具箱则提供了一些基本电路元件和函数,用于电路建模和分析。

要开始使用Matlab进行电路仿真,首先需要安装Matlab和Simulink软件,并确保您具有有效的许可证。

然后,打开Matlab并导航到Simulink库。

在Simulink库中,您将找到许多电路元件,例如电阻器、电容器和电感器,以及电压源和电流源。

将合适的元件拖放到工作区域中,然后连接它们以构建您的电路。

在电路建模完成后,您需要为电路设置适当的参数。

例如,您可以指定电阻、电容和电感的值,以及电压源和电流源的值。

您还可以添加信号源和观察点,以便在仿真期间监视电路的行为。

一旦您完成了电路建模和参数设置,接下来就可以对其进行仿真了。

在Simulink工具箱中,有几种不同类型的仿真可用,例如时域仿真和频域仿真。

通过选择合适的仿真类型,并设置仿真时间和步长,您可以开始执行仿真并观察电路的响应。

在仿真完成后,您可以使用Matlab绘图工具箱中的一些函数来绘制和分析电路响应。

例如,您可以绘制电压随时间的变化曲线,或者计算电源输出和负载电流之间的关系。

通过使用Matlab的分析工具,您还可以进行降阶、优化和参数估计等进一步分析。

让我们通过一个简单的示例来说明如何使用Matlab进行电路仿真。

假设我们有一个简单的RC电路,其中包括一个电阻器和一个电容器。

我们想要了解电容器的电压如何随时间变化。

matlab电路仿真教程

matlab电路仿真教程

在MATLAB窗口的工具栏中单击
图标
在命令窗口中输入命令: >>simulink
2. Simulink浏览器
标题栏 菜单栏 工具栏 模块说明框
基本模块库
已安装专用 模块库
模块查找框 模块显示框
Simulink基本模块库包括8类子库 : Continuous(连续模块) Discrete(离散模块) Function&Tables(函数和平台模块) Math(数学模块) Nonlinear(非线性模块) Signals&Systems(信号和系统模块) Sinks(接收器模块) Sources(输入源模块)
基于MATLAB/Simulink的直流电路仿真分析
电路如图所示,参数如下:R1=2,R2=4,R3=12,R4=4,R5=12,R6=4, R7=2,Us=10V。求i3,U4,U7;
仿真结果
(2)启动仿真
启动方式: (1) Simulink模块编辑窗口菜单栏“ Simulation /Start” (2)单击工具栏上的 图标
举例说明 Sim6_1.mdl
三、Simulink常用模块介绍
在模块浏览器中的Simulink节点下包含了搭建一个Simulink模块所 需要的基本模块。本节主要对其中的Sources模块库、Sinks 模块库、 Simpower systeems模块库中的常用模块进行介绍。
输入已有的函数作为仿真的激励信号。首先要在MATLAB环境下建立一
个时间向量和相应的函数值向量,然后将时间向量和函数值向量的名称
[T, U]填入该图标的对话框中。
Sinks模块
Sinks模块库中的模块主要功能是接受信号,并且将接受的信号显示出来。

MATLAB电路仿真

MATLAB电路仿真

(3) 编写MATLAB 仿真程序或建立Simulink 模块方框图, 调试并运行程序。
(4)得出数值解,即仿真结果,对仿真结果进行分析,以 确定结果的可靠性和有效性。
20:24 5
第5周 MATLAB电路仿真
R + f(t ) -
L
i L(t ) + C u C(t ) -
图2-2 一个二阶电路系统
function in=f(t) %输入信号
in=(t>0)*1;%阶跃信号
20:24
10
第5周 MATLAB电路仿真 然后,利用 MATLAB 提供的求解微分方程的指令对 该微分方程组求解。 MATLAB 提供的求解微分方程的算 法有多个,如“ode45”、“ode23” 、“ ode15s” 等,不同 的算法适用的场合稍有不同。例如,通过“ ode45” 函数 求解,MATLAB程序(程序名为ex123.m)如下: 程序2-4 %filename ex123.m L=1;%电感值
%矩阵初始化
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);%方程1 xdot(2)=1/C*x(1);%方程2
function in=f(t)%输入信号
in=(t>0)*1;%信号阶跃 而ex123.m的“ode45”语句中仍然将系统状态改为[0,1]。 20:24 18 运行后得到的波形仿真结果如图 2-5所示。
20:24 15
第5周 MATLAB电路仿真 text(0.9,0.07,′\leftarrowi-L(t)′);grid; figure(2);plot(t,x(:,2));holdon;xlabel(′timesec′);
text(0.5,0.3,′\leftarrowu-C(t)′);grid;

基于Matlab的电路实时仿真平台设计与实现

基于Matlab的电路实时仿真平台设计与实现

基于Matlab的电路实时仿真平台设计与实现基于Matlab的电路实时仿真平台设计与实现一、引言电路仿真是电子工程领域中重要的工具之一,在电子电路设计过程中起着至关重要的作用。

而基于Matlab的电路实时仿真平台则是利用Matlab软件对电路进行仿真实验的重要应用之一。

本文将介绍基于Matlab的电路实时仿真平台的设计与实现过程。

二、电路仿真平台的设计与实现1. 平台功能需求分析基于Matlab的电路实时仿真平台的设计与实现主要包含以下功能需求:(1)电路建模:能够支持电路元件的建模以及电路的连接和布线。

(2)仿真参数设置:能够设置仿真的时间范围、步长等参数。

(3)仿真结果分析:能够实时显示电路中各个元件的电压、电流、功率等参数,并提供结果分析的功能。

(4)实验控制:能够控制实验的开始、暂停、恢复、停止等操作。

(5)数据记录与导出:能够记录仿真实验过程中的数据,并支持数据导出为Excel或其他格式。

2. 平台设计与实现基于以上功能需求,我们设计了一套基于Matlab的电路实时仿真平台。

平台的实现主要分为以下几个模块:(1)电路建模模块:利用Matlab提供的图形用户界面工具,搭建了一个电路建模界面。

用户可以通过该界面选择电路元件,并将元件进行连线和布线,从而实现电路的建模。

在建模过程中,用户还可以设置元件的参数和初始条件。

(2)仿真参数设置模块:通过设定仿真的时间范围、步长等参数,用户可以对仿真实验进行灵活的配置,以满足不同的需求。

(3)仿真运行模块:在完成电路建模和参数设置后,用户可以点击“运行”按钮,开始进行仿真实验。

平台利用Matlab强大的计算能力,根据电路模型和仿真参数进行实时的仿真计算,并实时绘制出电路中各个元件的电压、电流曲线等。

用户可以通过切换窗口或界面,实时观察仿真结果。

(4)实验控制模块:平台提供了开始、暂停、恢复、停止等操作按钮,用户可以根据需要自由控制仿真实验的进行。

例如,在观察到关键数据点时,用户可以暂停仿真实验,通过对元件参数的调整,进一步优化电路设计。

matlab电路仿真教程

matlab电路仿真教程
举例说明 Sim6_1.mdl
三、Simulink常用模块介绍
在模块浏览器中的Simulink节点下包含了搭建一个Simulink模块所 需要的基本模块。本节主要对其中的Sources模块库、Sinks 模块库、 Simpower systeems模块库中的常用模块进行介绍。
Sources 模块
阶跃函数,起始时间是第1秒而非0秒。双击step模块,对仿真起始时间(step time)和阶跃
正弦波,电路中常用到的正弦信号(Sine Wave)模块,双击图标,在弹出的窗口中
调整相关参数。信号生成方式有两种:Time based 和 Sample based 。
从工作空间输入。从MATLAB Workspace输入已有的函数作为仿真的激
励信号。首先要在MATLAB环境下建立一个时间向量和相应的函数值向量,然后将时间向量和函数值
matlab电路仿真教程
1
Simulink简介
一、Simulink窗口环境 1. 启动Simulink
在MATLAB窗口的工具栏中单击 图标 在命令窗口中输入命令: >>simulink
2. Simulink浏览器 标题栏 菜单栏 工具栏 模块说明框
基本模块库
已安装专用 模块库
模块查找框 模块显示框
SimPower Systems模块
DC Voltage Source直流电压源,在 “Electrical Sources”模块内. Series RLC Branch 串联RLC 支路,设置参数可以去掉任一元件,将其变为单独的电阻、电容或电感 的支路。 将Series RLC Branch 模块设置成单一电阻时,应将参数:“Resistance”设 为所仿真电阻的真实值, “Inductance”设置为0,“Capacitance”设置为inf; 将Series -RLC Branch模块设置单一电感时,应将参数:“Inductance”设置为所仿真电感的真实值, “Resistance”设置为0,“Capacitance”设置为inf; 将Series RLC Branch设置单一电容时,应将参ห้องสมุดไป่ตู้: “Capacitance”设置为所仿真电感的真实值, “Resistance”和“Inductance”均设置为0。

matlab在电路分析和仿真中的应用

matlab在电路分析和仿真中的应用
2024/7/15
MATLAB/SIMULNK的主要产品及其相互关系
2024/7/15
MATLAB的优点
• 1. 容易使用 • 2. 可以由多种操作系统支持 • 3. 丰富的内部函数 • 4. 强大的图形和符号功能 • 5. 可以自动选择算法 • 6. 与其他软件和语言有良好的对接性
2024/7/15
2024/7/15
Matlab 的安装
2 输入名字和公司名称 3 在第三个空白处(PLP)输入软件的序列号sn 4 继续安装,直到安装完成。
2024/7/15
5 安装帮助 将安装目录中的help文件夹替换为安装包中的 help文件夹
MATLAB 7用户界面概述
MATLAB 7的用户界 面主要包括以下三个 方面的内容: • MATLAB 7的主菜单 • MATLAB 7的工具栏 • MATLAB 7的窗口
matlab自定义的函数文件称内置函数文件
调用内置函数的方法:使用函数名并给出相应的入 口、出口参数即可。
例如:sin.m函数——用type sin查不到。
调用格式:y=sin(2*x)
1
实际应用中:
0.8
x=0:2*pi/180:2*pi;
0.6
y=sin(2*x)
0.4
0.2
plot(x,y)
0
-0.2
2024/7/15
-0.4
-0.6
取R=255欧,L=125uH,C=6800pF,则:
H (s)
sRC s2LC sRC
1
85s2
1734000s 1734000s
1014
m文件如下: % LCR串联谐振电路 R=255; L=125*10^(-6); C=6800*10^(-12);

MATLAB电路仿真

MATLAB电路仿真

实验一直流电路(矩阵的基本运算)一、实验目的:1、加深对直流电路的节点电压法和网孔电流法的理解。

2、学习MA TLAB的矩阵运算方法。

二、实验示例1、节点分析示例一电路如图所示,求节点电压V1、V2和V3。

MA TLAB求解:Y = [ 0.15 -0.1 -0.05;-0.1 0.145 -0.025;-0.05 -0.025 0.075 ];I = [ 5;0;2 ];fprintf(' 节点V1,V2,V3 :\n')v = inv(Y)*I仿真结果:节点V1,V2和V3:v =404.2857350.0000412.85712、回路分析示例二使用解析分析得到通过电阻R B的电流。

另外,求10V电压源提供的功率。

MA TLAB求解:Z = [40 -10 -30;-10 30 -5;-30 -5 65];V = [10 0 0]';I = inv(Z)*V;IRB = I(3)-I(2);fprintf('the current through R is %8.3f Amps \n',IRB)PS = I(1)*10;fprintf('the power bupplied by 10V source is %8.4f watts \n',PS)仿真结果:the current through R is 0.037 Ampsthe power bupplied by 10V source is 4.7531 watts三、实验内容:1、电阻电路的计算如图,已知:R1=2,R2=6,R3=12,R4=8,R5=12,R6=4,R7=2.(1) 如Us=10V,求i3,u4,u7;(2) 如U4=4V,求Us,i3,i7.(1)Z = [20 -12 0;-12 32 -12;0 -12 18];V = [10 0 0]';I = inv(Z)*V;i3 = I(1)-I(2);u4 = 8*I(2);u7 = 2*I(3);fprintf('i3=%f \n',i3)fprintf('u4=%f \n',u4)fprintf('u7=%f \n',u7)仿真结果:i3=0.357143u4=2.857143u7=0.476190(2)Z = [0 8 0;-12 32 -12;0 -12 18];V = [4 0 0]';I = inv(Z)*V;Us = 20*I(1)-12*I(2);i3 = I(1)-I(2);i7 = I(3);fprintf('Us=%f \n',Us)fprintf('i3=%f \n',i3)fprintf('i7=%f \n',i7)仿真结果:Us=14.000000i3=0.500000i7=0.3333332、求解电路里的电压,例如V1,V2,……V5.Y = [1 -1 2 -2 0;0 5 -13 8 0;2 0 4 -11 0;176 -5 5 -196 0;0 0 0 0 1];I = [0 -200 -120 0 24]';V = inv(Y)*I;fprintf('V1=%fV\nV2=%fV\nV3=%fV\nV4=%fV\nV5=%fV\n',V(1),V(2), V(3),V(4),V(5))仿真结果:V1=117.479167VV2=299.770833VV3=193.937500VV4=102.791667VV5=24.000000V3、如图,已知R1=R2=R3=4,R4=2,控制常数k1=0.5,k2=4,is=2,求i1和i2.Z = [1 0 0 0;-4 16 -8 -4;0 0 1 0.5;0 -8 4 6];V = [2 0 0 0]';I = inv(Z)*V;i1 = I(2)-I(3);i2 = I(4);fprintf('i1=%f V\ni2=%f V\n',i1,i2)仿真结果:i1=1.000000 Vi2=1.000000 V四、实验总结1、仿真前需进行准确的计算,列出节点或回路表达式方可列出矩阵惊醒计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一直流电路(矩阵的基本运算)一、实验目的:1. 加深对直流电路的节点电压法和网孔电流法的理解。

2. 学习MA TLAB的矩阵运算方法。

二、实验内容:1电阻电路的计算如图,已知:R1=2,R2=6,R3=12,R4=8,R5=12,R6=4,R7=2.(1) 如Us=10V,求i3,u4,u7;(2) 如U4=4V,求Us,i3,i7.(1)Z=[20 -12 0;-12 32 -12;0 -12 18];V=[10 0 0]';I=inv(Z)*V;i3=I(1)-I(2);u4=I(2)*8;u7=I(3)*2;fprintf('i3=%fA\n',i3);fprintf('u4=%fA\n',u4);fprintf('u7=%fA\n',u7)程序运行结果:i3=0.357143Au4=2.857143Au7=0.476190A(2)Z=[-12 32 -12;0 -12 18;0 8 0];V=[0 0 4]';I=inv(Z)*V;us=20*I(1)-12*I(2);i3=I(1)-I(2);u7=I(3)*2;fprintf('us=%fV\n',us);fprintf('i3=%fA\n',i3);fprintf('u7=%fV\n',u7)程序运行结果:us=14.000000Vi3=0.500000Au7=0.666667V2求解电路里的电压,例如V1,V2,……V5.Y=[-4.275 0.125 4.65;-0.1 -0.2 0.55;-0.125 0.075 0.05];I=[0 6 5]';V=inv(Y)*I;V2=V(1)+2*V(2)-2*V(3);V5=24;fprintf('V(1)=%fV\n',V(1));fprintf('V(2)=%fV\n',V2);fprintf('V(3)=%fV\n',V(2));fprintf('V(4)=%fV\n',V(3));fprintf('V(5)=%fV\n',V5)程序运行结果:V(1)=117.479167VV(2)=299.770833VV(3)=193.937500VV(4)=102.791667VV(5)=24.000000V3如图,已知R1=R2=R3=4,R4=2,控制常数k1=0.5,k2=4,is=2,求i1和i2.Y=[1 -1;-0.5 1.5];I=[4 0]';V=inv(Y)*I;i1=[V(1)-V(2)]*0.25;i2=V(2)*0.5;fprintf('i1=%fA\n',i1);fprintf('i2=%fA\n',i2)程序运行结果:i1=1.000000Ai2=1.000000A实验二直流电路(2)(基本二维图形的绘制)一、实验目的:1.加深对戴维南定律,等效变换等的了解。

2.进一步了解MATLAB在直流电路的应用。

二、实验内容1在图2-3,当RL从0改变到50KΩ,绘制负载功率损耗。

检验当RL=10KΩ的最大功率损耗。

U=10;R=10e3;RL=0:50e3;P=(RL*U./(RL+R)).*U./(RL+R);figure(1),plot(RL,P),grid程序运行结果:00.51 1.52 2.53 3.54 4.55x 10400.511.522.5-3实验三 正弦稳态一、 实验目的:1. 学习正弦稳态电路的分析方法。

2. 学习MATLAB 复数的运算方法。

二、实验内容1如图所示电路,设R1=2,R2=3,R3=4,jxl=j2,-jXC1=-j3,-jXC2=-j5,Us1=8∠0°V ,Us2=6∠0°,Us3=∠0°,Us4=15∠0°,求各电路的电流相量和电压向量。

Z1=2j;Z2=-3j;Z3=-5j;R1=2;R2=3;R3=4;Y1=R1*Z1/(R1+Z1);Y2=R2*Z2/(R2+Z2);Y3=R3*Z3/(R3+Z3);Us1=8;Us2=6;Us3=8;Us4=15;Y=[Y1+Y2 -Y2;-Y2 Y2+Y3];I=[Us1/Z1+Us2/R2;Us3/R3+Us4/Z3-Us2/R2]; U=inv(Y)*I;ua=U(1)ub=U(2)I1=Y1*uaI2=Y2*(ub-ua)I3=Y3*ubI1R=ua/R1I1L=(ua-Us1)/Z1I2R=(Us2+ub-ua)/R2I2C=(ub-ua)/Z2I3R=(ub-Us3)/R3I3C=(ub-Us4)/Z3程序运行结果:ua =0.9611 - 1.5142iub =-0.0294 - 0.2068iI1 =2.4753 - 0.5531iI2 =0.4753 + 3.4469iI3 =-0.4753 - 0.4469iI1R =0.4806 - 0.7571iI1L =-0.7571 + 3.5194iI2R =1.6698 + 0.4358iI2C =-0.4358 - 0.3302iI3R =-2.0074 - 0.0517iI3C =0.0414 - 3.0059i2.含电感的电路:复功率如图,已知R1=4,R2=R3=2,XL1=10,XL2=8,XM=4,Xc=8,Us=10∠0°V,Is=10∠0°A.求电压源,电压源发出的复功率。

R1=4;R2=2;R3=R2;XC=8;Us=10;Is=10;Z1=6*j;Z2=4*j;Z3=Z2;Is1=Us/R1;Y1= (R1-XC*j)/ (R1*(-XC*j));Y2=1/Z1;Y3=1/Z3;Y4=1/ (Z2+R2);Y5=1/R3;Y= [ Y1+Y2 -Y2 0;-Y2 Y2+Y3+Y4 -Y4;0 -Y4 Y4+Y5];I= [Is1; 0; Is];U=Y\I;IR1=-(U (1)-Us)/R1;Pu=Us *conj (IR1)Pi=U (3)*conj (Is)程序运行结果:Pu = -4.0488 - 9.3830iPi = 1.7506e+002 +3.2391e+001i实验四交流分析和网络函数一、实验目的1、学习交流电路的分析方法。

2、学习交流电路的MA TLAB分析方法。

二、实验内容1电路显示如图所示4-2,求电流i1(t)和电压uc(t)Z=[10-7.5j 5j-6;5j-6 16+3j];U=[5*exp(pi*0*1j/180) -2*exp(pi*75*1j/180)]';I=inv(Z)*U;Z1=-10j;I1=I(1);U1=(I(1)-I(2))*Z1;I1_abs=abs(I1);I1_ang=angle(I1)*180/pi;U1_abs=abs(U1);U1_ang=angle(U1)*180/pi;fprintf('I1, magnitude: %f \n I1, angle in degree:%f \n',I1_abs,I1_ang); fprintf('U1, magnitude: %f \n U1, angle in degree:%f',U1_abs,U1_ang) 程序运行结果:I1, magnitude: 0.548304I1, angle in degree: 15.019255U1, magnitude: 5.965524U1, angle in degree: -40.861691实验五动态电路一、实验目的1、学习动态电路的分析方法。

2、学习动态电路的MA TLAB计算方法。

二、实验内容1正弦激励的一阶电路,已知R=2欧姆,C=0.5F, 电容初始电压Uc(0+)=4V,激励的正弦电压Us(t)=Umcoswt,其中w=2rad/s。

当t=0时,开关s闭合,求电容电压的全响应,区分其暂态响应与稳态响应,并画出波形。

uc0=4;w=2;R=2;C=1;Zc=1/(j*w*C);us=8*cos(w*t);ucf=us*Zc/(Zc+R);dt=0.1;t=0:dt:10;uc1=uc0*exp(-t/T);T=R*C;figure(3);subplot(3,1,1);h1=plot(t,ucf);grid,set(h1,'linewidth',2)subplot(3,1,2);h2=plot(t,uc1);grid,set(h2,'linewidth',2);uc=ucf+uc1;subplot(3,1,3);h3=plot(t,uc);grid,set(h3,'linewidth',2)程序运行结果:012345678910-0.50.5012345678910024012345678910-505uc 全响应图实验六 频率响应一、实验目的1、学习有关频率响应的的相关概念。

2、学习MATLAB 的频率计算。

二、实验示例1、一阶低通电路的频率响应ww=0:0.2:4;H=1./(1+j*ww);Figure (1)subplot(2,1,1),plot(ww, abs(H)),grid, label ('ww'), ylabel ('angle(H)')subplot(2,1,2),plot(ww, angle(H))grid, label('ww'),ylabel('angle(H)')figure(2)subplot(2,1,1),semilogx(ww,20*log10(abs(H))) grid, label('ww'),ylabel('分贝')subplot(2,1,2),semilogx(ww, angle(H))grid, label('ww'),ylabel('angle(H)')程序运行结果:(a)线性频率响(b)对数频率响2、频率响应:二阶低通电路for Q=[1/3,1/2,1/sqrt(2),1,2,5]ww=logspace(-1,1,50);H=1./(1+j*ww/Q+(j*ww).^2);figure(1)subplot(2,1,1),plot(ww,abs(H)),hold onsubplot(2,1,2),plot(ww,angle(H)),hold onfigure(2)subplot(2,1,1),semilogx(ww,20*log10(abs(H))),hold on subplot(2,1,2),semilogx(ww,angle(H)),hold onendfigure(1)subplot(2,1,1),grid,xlabel('w'),ylabel('abs(H)')subplot(2,1,2),grid,xlabel('w'),ylabel('abs(H)')figure(2)subplot(2,1,1),grid,xlabel('w'),ylabel('abs(H)')subplot(2,1,2),grid,xlabel('w'),ylabel('abs(H)')程序运行结果:(a)线性频率响(b)对数频率响。

相关文档
最新文档