建筑物年雷击次数计算书含电子信息防护等级验算2013

合集下载

雷击年雷击次数计算

雷击年雷击次数计算

摘自《建筑物防雷设计规范》GB50057-94(2000年版)第二章 建筑物的防雷分类 第2.0.1条 建筑物应根据其重要性、使用性质、发生雷电事故的可能性和后果,按防雷要求分为三类。

第2.0.2第 遇下列情况之一时,应划为第一类防雷建筑物: 一、凡制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。

二、具有0区或10区爆炸危险环境的建筑物。

三、具有1区爆炸危险环境的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。

第2.0.3条 遇下列情况之一时,应划为第二类防雷建筑物: 一、国家级重点文物保护的建筑物。

二、国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站、国宾馆、国家级档案馆、大型城市的重要给水水泵房等特别重要的建筑物。

三、国家级计算中心、国际通讯枢纽等对国民经济有重要意义且装有大量电子设备的建筑物。

四、制造、使用或贮存爆炸物质的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。

五、具有1区爆炸危险环境的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。

六、具有2区或11区爆炸危险环境的建筑物。

七、工业企业内有爆炸危险的露天钢质封闭气罐。

八、预计雷击次数大于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物。

九、预计雷击次数大于0.3次/a的住宅、办公楼等一般性民用建筑物。

注:预计雷击次数应按本规范附录一计算。

第2.0.4条 遇下列情况之一时,应划为第三类防雷建筑物: 一、省级重点文物保护的建筑物及省级档案馆。

二、预计雷击次数大于或等于0.012次/a,且小于或等于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物。

三、预计雷击次数大于或等于0.06次/a,且小于或等于0.3次/a的住宅、办公楼等一般性民用建筑物。

四、预计雷击次数大于或等于0.06次/a的一般性工业建筑物。

建筑物年预计雷击次数跟雷电感应保护计算

建筑物年预计雷击次数跟雷电感应保护计算

建筑物预计雷击次数计算
L(m)=100ds(m)=2500.0500L(m)=250ds(m)=250
0.1250
35.2
2.459
0.430
总年雷击次数N=N1+N2=0.471可接受的最大年平均雷击次数Nc的计算
信息系统所在建筑物结构C1= 1.0000 信息系统重要程度C2= 1.5000 信息系统耐冲击类型C3=0.5000 信息系统所在雷电防护区C4= 1.0000 信息系统危害后果C5=0.5000 区域雷暴等级C6= 1.0000年平均雷击次数Nc=5.8*10-1.5/C=0.033348各类因子C=C1+…+C6= 5.5000雷电拦截效率E=1-Nc/N=0.929226
低压埋地电源电缆长度电缆等效宽度电源电缆入户截收面积Ae1=2dsL10-6=埋地信号线电缆长度建筑物预计雷击次数 N 2=NgAe=该建筑物为:B类防雷电建筑电缆等效宽度信号电缆入户截收面积Ae2=2dsL10-6=年平均雷暴日Td=Ng=0.024Td 1.3=。

防雷计算

防雷计算
校正系(K) 1、1.5、 1.7、2 年雷暴日数 (d/a) 雷击大地的 建筑物预计 年平均密度 年雷击次数 (次/Km2/a) (次/a)
1.70
36.00
3.60
0.0142
1.00
36.00
3.60
0.0045
1.00
36.00
3.60
0.0017
1.00
36.00
3.60
0.2930
1.00
36.00
3.60
0.1363
数计算
备注
第一类防雷建筑物: 1凡制造、使用或贮存火炸药及其制品的危险建筑物,因电火花而引起爆炸、爆轰,会造成巨大破坏和人身伤亡 者。 2 具有 0区或 20区爆炸危险场所的建筑物。 3 具有 1区或 21区爆炸危险场所的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。 第二类防雷建筑物: 1国家级重点文物保护的建筑物。 2国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站和飞机场、国宾馆,国家级档案馆、大型城 市的重要给水泵房等特别重要的建筑物。注:飞机场不含停放飞机的露天场所和跑道。 3国家级计算中心、国际通信枢纽等对国民经济有重要意义的建筑物。 4 国家特级和甲级大型体育馆。 5制造、使用或贮存火炸药及其制品的危险建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。 6具有 1区或 21区爆炸危险场所的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。 7具有 2区或 22区爆炸危险场所的建筑物。 8有爆炸危险的露天钢质封闭气罐。 9预计雷击次数大于 0.05次/a的部、省级办公建筑物和其他 重要或人员密集的公共建筑物以及火灾危险场所。 10预计雷击次数大于 0.25次/a的住宅、办公楼等一般性民用建筑物或一般性工业建筑物。 第三类防雷建筑物: 1省级重点文物保护的建筑物及省级档案馆。 2 预计雷击次数大于或等于 0.01次/a,且小于或等于 0.05次/a 的部、省级办公建筑物和其他重要或人员密集 的公共建筑物,以及火灾危险场所。 3预计雷击次数大于或等于 0.05次/a,且小于或等于 0.25次/a 的住宅、办公楼等一般性民用建筑物或一般性 工业建筑物。 4 在平均雷暴日大于 15d/a的地区,高度在 15 m及以上的烟囱、水塔等孤立的高耸建筑物;在平均雷暴日小于 或等于 15 d/a的地区,高度在 20 m及以上的烟囱、水塔等孤立的高耸建筑物。

建筑物电子信息系统防雷技术规范(GB50343-2004)

建筑物电子信息系统防雷技术规范(GB50343-2004)

建筑物电子信息系统防雷技术规范(GB50343-2004)(上)[作者:佚名转贴自:本站原创点击数:369 更新时间:2004-8-20 文章录入:liucb ]中华人民共和国国家标准GB50343-2004建筑物电子信息系统防雷技术规范中华人民共和国建设部公告第215号建设部关于发布国家标准建筑物电子信息系统防雷技术规范的公告现批准建筑物电子信息系统防雷技术规范为国家标准,编号为GB50343-2004,自2004年6月1日起实施。

第5.1.2、5.2.5、5.2.6、5.4.1(2)、5.4.10(2)、7.2.3条(款)为强制性条文,必须严格执行。

本规范由建设部标准定额研究所组织中国建筑工业出版社出版发行。

中华人民共和国建设部2004年3月1日前言根据建设部建标标[2000]43号语文,关于同意编制《建筑物电子信息系统防雷技术规范》的函,并由四川省建设厅(原建委)负责组织成立了规范编制组,规范编制组参考国内外有关标准,认真总结实践经验,广泛征求各方意见之后,制订了本规范。

本规范共分8章和4个附录。

主要技术内容是:1.总则;2.术语;3.雷电防护分区;4.雷电防护分级;5.防雷设计;6.防雷施工;7.施工质量验收;8.维护与管理。

本规范主要对微生物电子信息系统综合防雷工程的设计、施工、验收、维护与管理作出规定和要求。

本规范中以黑体字标志的条文为强制性条文,必须严格执行。

本规范由建设部负责管理和对强制性条文的解释,四川省建设厅负责具体管理,中国建筑标准设计研究院、四川中光高技术研究所有限责任公司具体内容的解释。

在执行过程中,请各单位结合工程实践,认真总结经验,如发现需要修改或补充之处,请将意见和建议寄四川省建设厅(地址:四川省成都市人民南路四段36号,邮政编码:640041)。

1总则1.0.1为防止和减少雷电对建筑物电子信息系统千万的危害,保护人民生命和财产安全,制定本规范。

1.0.2本规范适用于新建、扩建、改建的建筑物电子信息系统防雷的设计、施工、验收、维护和管理。

年预计雷击次数计算书

年预计雷击次数计算书

年预计雷击次数计算书(矩形)工程名:计算者:计算时间:参考规范:《建筑物防雷设计规范》GB50057―2010《建筑物电子信息系统防雷技术规范(GB0343-2012)》1.已知条件:建筑物的长度L = 79m建筑物的宽度W = 37.8m建筑物的高度H = 23.7m地区: 江西省m当地的年平均雷暴日天数Td =58.0天/年校正系数k = 1.0不考虑周边建筑影响。

2.计算公式:年预计雷击次数: N = k*Ng*Ae = 0.1810其中: 建筑物的雷击大地的年平均密度: Ng = 0.1*Td = 0.1*58.0 = 5.8000等效面积Ae为: H<100m,Ae =[LW+2(L+W)*SQRT(H*(200-H))+3.1415926*H(200-H)]*10^(-6) = 0.0312 3.计算结果:根据《防雷设计规范》,该建筑应该属于第三类防雷建筑。

附录:二类:N>0.05 省部级办公建筑和其他重要场所、人员密集场所。

N>0.25 住宅、办公楼等一般性民用建筑物或一般性工业建筑。

三类:0.01<=N<=0.05 省部级办公建筑和其他重要场所、人员密集场所。

0.05<=N<=0.25 住宅、办公楼等一般性民用建筑物或一般性工业建筑。

33.1315.7100***2209.114.3784.119.2035.63.05.034.144***34.1444.0310*******.0100**36.852.153.1755.2875.63.05.05.5**5.55.103100313213212222121111)3()3(==++======++=++===⨯====+======+=+===⨯==∞∞X X X S S kA I I kAI i kA X X X I I I kA U S I K X X S S kAI I kAI i kA X X I I I kA U S I K d k p sh p sh d p d d d d k p sh p sh d p d d d 值即可变压器的短路阻抗标么用,所以只需要算一台因为两台变压器是明备处发生短路时低压侧,处发生短路时高压侧,。

建筑物年预计雷击次数N的简化计算方法

建筑物年预计雷击次数N的简化计算方法

建筑物年预计雷击次数N的简化计算方法[Abstract]Lightning activity is one of the most unpredictable natural events that can cause significant damage to buildings and cause loss of lives. Predicting the number of times that a building is likely to be struck by lightning in a year is important to ensure the safety of people and the building itself. In this paper, we present a simplified method for calculating the expected number of lightning strikes on a building. The proposed method is easy to use and can be helpful for building owners, architects, and engineers to assess the risk of lightning strikes to the building.[Keywords]lightning strikes, building safety, lightning protection[Introduction]Lightning strikes are a frequent phenomenon during thunderstorms and can cause severe damage to buildings. Every year, buildings are struck by lightning leading to power outages, equipment damage, and risk to human life. Therefore, predicting the expected number of lightning strikes on buildings has become increasingly important. This paper presents a simplified method for calculating the expected number of lightning strikes on a building in a year.[Methodology]The proposed method takes into account the building’s height andthe average frequency of thunderstorms in the area. The expected number of lightning strikes on the building can be calculated using the following equation:N=H*(F/S)Where N is the expected number of lightning strikes, H is the height of the building in meters, F is the average frequency of thunderstorms in the area per year, and S is the average area of lightning flashes in meters squared.To obtain F, the average number of thunderstorm days per year can be multiplied by the average duration of thunderstorms in hours. The value obtained is then divided by 365 days to get the average frequency of thunderstorms per year.To obtain S, the average peak currents of lightning flashes during thunderstorms can be used. The peak currents for a highly conductive building can range from 200 kiloamperes to 400 kiloamperes. The average area of lightning flashes for a highly conductive building can be calculated as S=I^(-0.8)*100.[Results and Discussion]Using the proposed method, the expected number of lightning strikes on a building can be calculated. For example, a 50-meter high building located in an area with an average frequency of 15 thunderstorms per year and average peak current of 200 kiloamperes will experience N=50*(15/365)*((200)^(-0.8))*100=0.45 lightning strikes per year.The simplified method proposed in this paper can be useful for building owners, architects, and engineers to evaluate the risk of lightning strikes in their building design and for installing lightning protection systems. The calculated expected number of lightning strikes can also help in insurance purposes for the building.[Conclusion]In this paper, we presented a simplified method for calculating the expected number of lightning strikes on a building. The method takes into account the building’s height and the avera ge frequency of thunderstorms in the area. The proposed method is easy to use and can be useful for building owners, architects, and engineers to evaluate the risk of lightning strikes in their building design and for installing lightning protection systems.[References]1. Rakov, V. A., & Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press.2. Mekhiche, M., & Salem, R. (2017). Simplified models for estimating the risk of lightning strikes to tall buildings. Journal of Building Engineering, 10, 175-182.3. National Fire Protection Association. (2018). NFPA 780: Standard for the Installation of Lightning Protection Systems. National Fire Protection Association.[Further Discussion]It is important to note that the simplified method proposed in this paper provides an estimate of the expected number of lightning strikes on a building. This estimate can be affected by various factors such as the building’s location, topology, and the presence of nearby lightning rods or other conductive elements. Therefore, it is recommended to consult with lightning protection experts for more accurate evaluations.In addition, the importance of lightning protection systems cannot be overstated. Lightning rods, grounding systems, and surge protectors are essential components of a comprehensive lightning protection system, which can significantly reduce the risk of lightning strikes to a building. It is crucial to install these systems in accordance with the relevant safety codes and standards, such as the National Fire Protection Association’s NFPA 780.Moreover, building design can also play a role in reducing the risk of lightning strikes. For instance, avoiding tall buildings in areas with high thunderstorm frequency can significantly reduce the potential for lightning strikes. Architectural features such as sloping roofs, rounded edges, and use of nonconductive materials can also decrease the likelihood of lightning strikes.Finally, education and awareness campaigns can help inform the public about lightning safety measures. Proper conduct during thunderstorms, such as avoiding open areas, tall trees, and metallic objects, can help reduce the risk of lightning strikes to individuals. [Conclusion]In conclusion, lightning strikes pose a serious risk to buildings and human life. The simplified method proposed in this paper provides building owners, architects, and engineers with a basic estimate of the expected number of lightning strikes on a building. This information can be helpful in determining the appropriate lightning protection measures for the building. However, it is critical to consult with lightning protection experts and follow relevant safety codes and standards for comprehensive protection against lightning strikes. Furthermore, building design, use of lightning protection systems, and awareness campaigns can all contribute to reducing the risk of lightning strikes to buildings and individuals.It is important to understand the potential consequences of lightning strikes. The most obvious risk is the direct damage caused to buildings, including fires, structural damage, and damage to electrical equipment. However, lightning strikes can also have indirect effects such as disrupting power supply, communication, and transportation systems. In addition, lightning strikes can cause injury or even fatalities to individuals.Therefore, conducting a thorough assessment of the lightning risk to a building is crucial. This assessment should take into account various factors, such as the geographical location and the frequency of thunderstorms in the area. Building designers and engineers can then make use of this information to design lightning protection systems that minimize the risk of lightning strikes and mitigate the potential damage.One such approach is the Faraday cage principle, which involves enclosing sensitive electronic equipment within a conductive enclosure that prevents electric charge from passing through to thecontents. Facilities that house critical equipment or have a high risk of lightning strikes, such as data centers, airports, and hospitals, often employ this approach.In addition, lightning rods and grounding systems are essential components of a comprehensive lightning protection system. Lightning rods are designed to intercept the lightning strike and channel the energy safely to the ground, while grounding systems help to dissipate the electrical charge. Surge protectors are also critical in preventing damage to electrical equipment by suppressing transient voltage surges caused by lightning strikes.Furthermore, building design can also play a role in reducing the risk of lightning strikes. Avoiding tall buildings or structures, especially in areas with high thunderstorm frequency, can significantly reduce the potential for lightning strikes. Sloping roofs, rounded edges, and use of nonconductive materials can also decrease the likelihood of lightning strikes or mitigate the damage caused by a lightning strike.Finally, education and awareness campaigns can help inform the public about lightning safety measures. Proper conduct during thunderstorms, such as seeking shelter indoors or in a grounded building or vehicle, avoiding open areas, tall trees, and metallic objects, can help reduce the risk of lightning strikes to individuals. In conclusion, lightning strikes pose a significant risk to buildings and individuals. It is crucial to conduct a comprehensive assessment of the lightning risk and implement appropriate lightning protection measures. Building design, lightningprotection systems, and awareness campaigns can all contribute to reducing the risk of lightning strikes and mitigating the potential damage caused.Lightning strikes pose a significant risk to buildings and individuals, and it is important to conduct a comprehensive assessment of the lightning risk and implement appropriate lightning protection measures. Lightning protection systems, such as Faraday cages, lightning rods, and grounding systems, are essential in minimizing the risk of lightning strikes and mitigating potential damage. Building design can also play a role in reducing the likelihood of lightning strikes or mitigating the damage caused. Education and awareness campaigns can help inform the public about lightning safety measures, such as seeking shelter indoors during thunderstorms and avoiding open areas and metallic objects. Overall, a multifaceted approach involving building design, lightning protection systems, and education is essential in reducing the risk and damage caused by lightning strikes.。

建筑物电子信息系统防雷技术规范附录

建筑物电子信息系统防雷技术规范附录

避雷针规格
01
(直径、针长)
02 针数
03 针高(m)
避雷带规格
04
(直径、截面)
05 避雷带高度(m)
06 避雷网格尺寸
避雷网材料规格
07
(直径、截面)
08 避雷线长度(m)
10 350 100 10
10 350 75 5.6
10 350 50 2.5
注:1.因为全部电荷量 Qs 的本质部分包括在首次雷击中,故所规定的值考虑合并了所有短时间雷击的电 荷量。
2.由于单位能量 W/R 的本质部分包括在首次雷击中,故所规定的值考虑合并了所有短时间雷击的单
验收项目
验收意见
建设单位 工程监理 (业主) 单位
施工 单位
施工 员
年 月 日 接地装置
W ℃
2 检测记录:
序号
检测内容
是否达到
质量情况
检测结果
规范要求 优良 合格 不合格
整改意见
01 垂直接地体材料
02 垂直接地体数量
(b)长时间雷击
图 B.2 雷击参数定义
5
B3 雷电流参数见表 B3-1—表 B3-3 的规定。
表 B3-1 首次雷击的
防雷建筑物类别 二类
三类
I 幅值(kA)
200
150
100
T1 波头时间(μs) T2 半值时间(μs)
Qs 电荷量(C) W/R 单位能量(MJ/Ω)
表 B3-3 长时间雷击的雷电流参量
雷电流参数
一类
防雷建筑物类别 二类
三类
Ql 电荷量(C) T 时间(s)

建筑物电子信息系统防雷等级计算(含雷击次数计算)

建筑物电子信息系统防雷等级计算(含雷击次数计算)

C4电子信息系统设备所在雷电防护区(LPZ)的因子 A类电子信息系统 0.5 设备在LPZ2或更高曾雷电防护区内 3 B类电子信息系统 1.0 设备在LPZ1内 2.5 C、D类电子信息系统 1.5~2.0 设备在LPZ0B内 1.0 C3电子信息系统设备耐冲击类型和抗冲击过电压能力因子 C5电子信息系统发生雷击事故的后果因子 0.5 信息系统业务中断不会产生不良后果 一般 0.5 1.0 信息系统业务原则上不允许中断,中断无严重后果 较弱 1.0 1.5~2.0 信息系统业务不允许中断,中断会产生严重后果 相当弱 3.0
1.本工程防雷建筑物为 三 类 结果 2.本工程建筑物雷电防护等级为 C 级 3.注
1.0 1.5 1.7 2.0 一般情况 河、湖边,山坡下或山地中土壤电阻率较小,地下水露头处,土山顶部潮湿处 金属屋面的砖木结构 位于旷野孤立
各 类 因 子 说 明
0.5 1.0 1.5 2.0 2.5 C1建筑材料结构因子 屋顶和主体结构均为金属材料 屋顶和主体结构均为钢筋混凝土材料 砖混结构 砖木结构 木结构 C2重要程度因子 0.8 1.0 1.2 1.4 C6区域雷暴等级因子 少雷区 多雷区 高雷区 强雷区
6.2000 0.0100 0.0200 4.9900 0.3340 0.1497 0.4837
设备损坏可接受的最大e 防雷装置拦截效率 E 0.0446 0.8066
1.2 埋地 注:1.L是线路从所考虑建筑物至网络的第一个分支点或相邻 建筑物的长度,单位m,最大值1000m,当L未知,L=1000m. L ds 2.ds表示埋地引入线缆计算截收面积时的等效宽度, 1000 100 单位m其数值等于土壤电阻率,最大值取500. 100 100 K-- 校正系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档