第四强度理论校核

合集下载

材料力学第五版课后习题答案

材料力学第五版课后习题答案

7-4[习题7-3] 一拉杆由两段沿n m -面胶合而成。

由于实用的原因,图中的α角限于060~0范围内。

作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。

现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3,且这一拉杆的强度由胶合缝强度控制。

为了使杆能承受最大的荷载F ,试问α角的值应取多大? 解:AFx =σ;0=y σ;0=x τ ατασσσσσα2s i n 2c o s 22x yx yx --++=][22cos 12cos 22σαασα≤+=+=A F A F A F ][22cos 1σα≤+A F ,][cos 2σα≤AFασ2cos ][A F ≤,ασ2max,cos ][AF N = ατασστα2c o s 2s i n 2x yx +-=][3][2sin στατα=≤=F ,σ][5.1A F ≤,σ][5.1max,AF T =由切应力强度条件控制最大荷载。

由图中可以看出,当060=α时,杆能承受最大荷载,该荷载为:A F ][732.1max σ=7-6[习题7-7] 试用应力圆的几何关系求图示悬臂梁距离自由端为m 72.0的截面上,在顶面以下mm 40的一点处的最大及最小主应力,并求最大主应力与x 轴之间的夹角。

解:(1)求计算点的正应力与切应力MPa mm mm mm N bh My I My z 55.1016080401072.01012124363=⨯⨯⋅⨯⨯⨯===σMPa mm mm mm N bI QS z z 88.0801608012160)4080(10104333*-=⨯⨯⨯⨯⨯⨯⨯-==τ (2)写出坐标面应力 X (10.55,-0.88)Y (0,0.88)(3) 作应力圆求最大与最小主应力,并求最大主应力与x 轴的夹角 作应力圆如图所示。

从图中按比例尺量得:MPa 66.101=σ MPa 06.03-=σ 0075.4=α7-7[习题7-8] 各单元体面上的应力如图所示。

四种强度理论

四种强度理论
所以:
最后,要注意强度设计的全过程
要确定构件危险状态、危险截面、 危险点,危险点的应力状态。
例 题1
23 11 10
MPa
已知 : 铸铁构件上 危险点的应力状态。 铸铁拉伸许用应力 [st] =30MPa。
求:试校核该点的 强度。
例 题1
解:首先根据材料 和应力状态确定失效 形式,选择强度理论。
2. 利用强度理论建立强度条件 (1)对破坏形式分类; (2)同一种形式的破坏,可以认为是 由相同的原因造成的; (3)至于破坏的原因是什么,可由观 察提出假说,这些假说称为强度 理论; (4)利用简单拉伸实验建立强度条件。
§10-2 四个常
脆性断裂 塑性屈服
(一)脆性断裂理论
2. 最大伸长线应变理论
无论材料处于什么应力状态,只要最 大伸长线应变达到极限值,材料就发生脆 性断裂。
破坏原因:etmax (最大伸长线应变) 破坏条件:e1= eo
强度条件:s1-n(s2+s3) sb/n=[s]
适用范围:石、混凝土压; 铸铁二向拉-压(st sc)
(二)塑性屈服理论
1. 最大剪应力理论(第三强度理论)
一、两个概念:
1、极限应力圆:
t
ts
极限应力圆
O
s
s s3
s s2
s s1
2、极限曲线:
3、近似极限曲线:
二、莫尔强度理论:
任意一点的应力圆若与极限曲线相接触,则材料即 将屈服或剪断。
下面推导莫尔强度理论的破坏条件
整理 得破坏条件
强度条件:
相当应力:
适用范围:
考虑了材料拉压强度不等的情况,可以用于铸 铁等脆性材料,也可用于塑性材料。当材料的拉压强 度相同时,和第三强度理论相同。

13-3四个强度理论-材料力学

13-3四个强度理论-材料力学
体,求主应力。 4、强度分析:选择适当的强度理论,计算相当应力,进行
强度计算。
例1 图示几种单元体,分别按第三和第四强度理论 求相当应力(单位MPa)
60
100
(1)
40 100
40
(2)
10
60
30 (3)
例2 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, 为铸铁构
件,[]=40MPa,试用第一强度理论校核杆的强度。

7.7
0
0
所以,此容器不满足第三强度理论。不安全。
第三强度理论(第三相当应力) xd3 1 3
第四强度理论(第四相当应力)
xd 4
1 2
1
2
2

2
3
2

3
1
2

三、强度计算的步骤:
1、外力分析:确定所需的外力。 2、内力分析:画内力图,确定可能的危险面。 3、应力分析:画危险截面应力分布图,确定危险点并画出单元
2
1
2 2
2
3 2
3
1 2

3、实用范围:实用于破坏形式为屈服的构件。
第一、第二强度理论适合于脆性材料; 第三、第四强度理论适合于塑性材料。 1、伽利略1638年提出了第一强度理论; 2、马里奥特1682年提出了第二强度理论;
3、杜奎特(C.Duguet)提出了最大剪应力理论;也有一说是库 伦1773年提出,特雷斯卡1868完善的。
到单向拉伸的强度极限时,构件就发生断裂。
1、破坏判据: 1 b ;( 1 0)
2、强度准则: 1 ; ( 1 0)
3、实用范围:实用于破坏形式为脆断的构件。

第四强度理论校核

第四强度理论校核

第四强度理论校核 Revised by Petrel at 2021
强度校核(第四强度理论)取最危险的截面,合成截面所受正应力、切应力、扭矩,再合成校核强度
,故公式:
:屈服强度:正应力:切应力:挤压强度(起重轨道用)
W可查询机械设计手册(第五版)1-113
...
[:许用屈服强度=[=0.58:许用剪切强度
安全系数:
1.5-2倍(交变应力小,如门铰链)
5-6倍(交变应力大,如电机轴,普通材料取6倍,不锈钢软材料取5倍)
计算实例:
1Cr18Ni9材质的实心轴,轴向力16kN,径向力21kN,截面积1965mm2,无弯矩、转矩,无交变
1Cr18Ni9

<
圆轴刚度计算(扭转角度)
G:切变模量E:弹性模量:泊松比:极惯性矩。

四大强度理论

四大强度理论

六、例题: 例题1、薄壁容器,厚度 δ<< 平均直径D,在容器中贮满
水,水结冰后,将容器涨破,而冰不碎,解释原因。
解:⑴、水结冰时,发生膨胀,容器将受到内压作用,其单 元体的应力状态为二向拉应力状态。
15
p
李禄昌
p
1
p
1
2
1
由纵向截面上的静力平衡条件
Y 0 2 l p D l 0
轴向拉伸时
1 s , 2 3 0 ud 1 2 s2
6E
11
李禄昌
3、强度条件:
1 s 2 1 1 2 2 2 2 22 2 s uf (21 3 3 ) (3 ) u 1 2( 2 6 f 2) 3 11 E n 2 6E s
1
b
n
4、存在问题:⑴、该理论只考虑σ1 ,而没有考虑σ2 、σ3的 影响。⑵、当σ1<0,即没有拉应力的应力状态时,它不能对 材料的压缩破坏作出合理解释。⑶、 σ1必须是拉应力。
4
李禄昌 试验证明,这一理论与铸铁、岩石、砼、陶瓷、玻璃等脆 性材料的拉断试验结果相符,这些材料在轴向拉伸时的断裂 破坏发生于拉应力最大的横截面上。 脆性材料的扭转破坏,也是沿拉应力最大的斜面发生断裂, 这些都与最大拉应力理论相符。
x
x
得主应力
1 =14.5 103 F ( MPa) 2 0 3 1.8 10 F ( MPa)
3
19
李禄昌
⑶、对于钢材,利用第三强度理论强度条件:
r 3 1 3 [ ]
代入有关参数得:
[ ] F 9.8 KN 3 16.3 10

周建方版材料力学习题解答[第八章9]分析

周建方版材料力学习题解答[第八章9]分析

8-49现用某种黄铜材料制成的标准圆柱形试件做拉伸试验。

已知临近破坏时,颈缩中心部位的主应力比值为113321::::=σσσ;并已知这种材料当最大拉应力达到770MPa 时发生脆性断裂,最大切应力达到313MPa 时发生塑性破坏。

若对塑性破坏采用第三强度理论,试问现在试件将发生何种形式的破坏?并给出破坏时各主应力之值。

解: 令主应力分别为:σσ31=,σσσ==32脆性断裂时,由第一强度理论=1r σσσ31==770MPa所以,塑性破坏时,由第三强度理论 所以故,试件将发生脆性断裂。

破坏时MPa 7701=σ,MPa 25732==σσ8-50 钢制圆柱形薄壁压力容器(参见图8-13),其平均直径mm d 800=,壁厚mm 4=δ,材料的M P a ][120=σ,试根据强度理论确定容器的许可内压p 。

解:在压力容器壁上取一单元体,其应力状态为二向应力状态。

p pd 504'==δσ ,p pd1002"==δσ 其三个主应力为p 100"1==σσ, p 50'2==σσ,03=σ据第三强度理论所以 ,MPa p 2.13≤,许可内压MPa p 2.13= 据第四强度理论所以,MPa p 39.14≤,许可内压MPa p 39.14=8-51 空心薄壁钢球,其平均内径mm d 200=,承受内压MPa p 15=,钢的MPa ][160=σ。

试根据第三强度理论确定钢球的壁厚δ。

解:钢球上任一点应力状态如图示 其三个主应力为:σσσ==21,03=σ而 MPa MPa d p R R p δδδδππσ4342.0152222=⨯=⋅=⋅⋅=据第三强度理论 所以 mm m 69.41069.41601433=⨯=⨯≥-δ 8-52 图8-77所示两端封闭的铸铁圆筒,其直径mm d 100=,壁厚mm 10=δ,承受内压MPa p 5=,且在两端受压力kN F 100=和外扭矩m kN T ⋅=3作用,材料的许用拉应力MPa ][40=+σ,许用压应力MPa ][160=-σ,泊松比250.=ν,试用莫尔强度理论校核其强度。

第四强度理论的适用范围

第四强度理论的适用范围

2 0
3


2


2
t 2

27.7
MPa
2
由于梁的材料Q235钢为塑性材料,故用第三或第四 强度理论校核a点的强度。
9
按第三度理论校核
r3 1 3 150 .4 MPa 27.7 MPa 178 .1 MPa
170 MPa r3 178 .1 MPa 1.05 178 .5MPa

M max ya Iz

80103 N m 135103 m 88106 m4
122.7 MPa
t

FS,m
ax

S
* z,a
64.6 MPa
8
Izd
点a处的主应力为
1

2
150.4 MPa
2
x 122.7MPa y 0 t x t 64.6MPa
适用范围: 塑性破坏,拉压屈服极限相同的塑性材料。
应用条件:常温(室温),静荷载(徐加荷载),材料 接近于均匀,连续和各向同性。
2
二、第四强度理论的适用范围
第四强度理论即形状改变能密度理论
第四强度理论属于第二类强度理论
研究塑性屈服力学因素
相应的强度条件是:
r4
1 2
1
2 2
(e)
tmax

F S* S,max z,max Izd

200103 N 338106 m3 88106 m4 9103 m
85.4 MPa
t max 85.4 MPa t 100 MPa
所以梁满足切应力强度条件。

材料力学精选练习题

材料力学精选练习题

材料力学精选练习题1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。

42.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。

已知Iz=60125000mm,yC=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。

试求:①画梁的剪力图、弯矩图。

②按正应力强度条件校核梁的强度。

3.传动轴如图所示。

已知Fr=2KN,Ft=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。

试求:①力偶M的大小;②作AB轴各基本变形的内力图。

③用第三强度理论设计轴AB的直径d。

4.图示外伸梁由铸铁制成,截面形状如图示。

已知Iz=4500cm,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,4许用拉应力[σt]=35MPa,a=1m。

试求:①画梁的剪力图、弯矩图。

②按正应力强度条件确定梁截荷P。

5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。

试求:①作AB轴各基本变形的内力图。

②计算AB轴危险点的第三强度理论相当应力。

6.图所示结构,载荷P=50KkN,AB?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说闹本禿=40mm,长度l=1000mm,两端铰支。

已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数nst=2.0,[σ]=140MPa。

试校核AB杆是否安全。

7.铸铁梁如图5,单位为mm,已知Iz=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。

②按正应力强度条件确定梁截荷P。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W 可查询机械设计手册(第五版)1-113
...
[
:许用屈服强度 =[
=0.58 :许用剪切强度
安全系数:
1.5-2 倍(交变应力小,如门铰链)
5-6 倍(交变应力大,如电机轴,普通材料取 6 倍,不锈钢软材料取 5 倍)
计算实例:
1Cr18Ni9 材质的实心轴,轴向力 16kN,径向力 21kN,截面积 1965mm2,无弯矩、转矩,
第四强度理论校核
SANY GROUP system office room 【SANYUA16HSANYHUASANYUA8Q8-SANYUA1688】
Hale Waihona Puke 强度校核(第四强度理论)取最危险的截面,合成截面所受正应力、切应力、扭矩,再合成校核强度 ,故公式:
:屈服强度 :正应力 :切应力 :挤压强度(起重轨道用)
无交变
1Cr18Ni9 ,
< 圆轴刚度计算(扭转角度)
G:切变模量 E:弹性模量 :泊松比 :极惯性矩
相关文档
最新文档