生理学细胞膜
合集下载
生理学课件:细胞膜的物质转运功能

Adhesion Some glycoproteins attach to the cytoskeleton and
extracellular matrix.
Carbohydrates Glycoprotein
Glycolipid
• Proteins synthesized on endoplasmic reticulum membrane-bound ribosomes would be expected to end up in
concentration of molecules randomly move toward lower concentration.
At time B, some glucose has crossed into side 2 as some cross into side 1.
Note: the partition between the two compartments is a membrane that allows this solute to move through it.
Net flux accounts for solute movements in both directions.
Simple Diffusion
Relative to the concentration gradient movement is DOWN the concentration gradient ONLY (higher concentration to lower concentration)
A Mitochondria B Cytoplasm C Golgi apparatus D Nucleolus E Centrioles
extracellular matrix.
Carbohydrates Glycoprotein
Glycolipid
• Proteins synthesized on endoplasmic reticulum membrane-bound ribosomes would be expected to end up in
concentration of molecules randomly move toward lower concentration.
At time B, some glucose has crossed into side 2 as some cross into side 1.
Note: the partition between the two compartments is a membrane that allows this solute to move through it.
Net flux accounts for solute movements in both directions.
Simple Diffusion
Relative to the concentration gradient movement is DOWN the concentration gradient ONLY (higher concentration to lower concentration)
A Mitochondria B Cytoplasm C Golgi apparatus D Nucleolus E Centrioles
《生理学》细胞的基本功能——1细胞的跨膜运输方式

亲水性极性基团 磷酸和碱基) (磷酸和碱基)
二、细胞膜的物质转运功能 半透膜
哪些物质可以通过细胞膜 哪些物质可以通过细胞膜? 物质可以通过细胞膜 这些物质是如何通过细胞膜的? 如何通过细胞膜的 这些物质是如何通过细胞膜的?
O2 , 能源物质 氨基酸 脂类 各种离子等
细
胞
CO2 CO2 代谢尾产物
水的跨膜转运
单纯扩散——水虽是极性分子 水虽是极性分子 单纯扩散 但分子极小,又不带电荷。 但分子极小,又不带电荷。 渗透 (osmosis) 溶液拖曳 (solvent drag) 易化扩散——水通道 (water channel) 易化扩散 水通道 水孔蛋白 (aquaporin, AQP)
Water channel
单纯扩散( (一)单纯扩散(simple diffusion)
一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。 一些脂溶性物质由膜的高浓度一侧向低浓度一侧移动的过程。
特点: 特点:
1、顺浓度差 2、不需要膜蛋白帮助 3、不消耗能量 4、转运脂溶性物质(非极性分子)如O2和CO2 转运脂溶性物质(非极性分子)
细胞膜结构 液态镶嵌模型 (fluid mosaic model)
以液态的脂质双分子层为基本框架, 以液态的脂质双分子层为基本框架 , 其中镶嵌有不同生理 功能的蛋白质和少量多糖。 功能的蛋白质和少量多糖。
基架: 基架:液态的脂质双分子层 中间: 中间:镶嵌许多结构和功能 不同的蛋白质
疏水性非极性基团 长烃链) (长烃链)
2. 继发性主动转运
Secondary Active Transport
1)概念:利用原发性主动转运所造成的某种物质的势 概念: 能贮备而对其它物质进行逆浓度差跨膜转运的过程。 能贮备而对其它物质进行逆浓度差跨膜转运的过程。 如肾小管和肠黏膜处的葡萄糖和氨基酸的转运。 如肾小管和肠黏膜处的葡萄糖和氨基酸的转运。 转运体蛋白(转运体, 转运体蛋白(转运体,transporter) 2)特点 间接耗能(钠泵) 间接耗能(钠泵) 膜转运体(特殊蛋白质) 膜转运体(特殊蛋白质)
细胞膜的结构与功能

金属离子:主要是钙离子。
细胞膜结构模型
三、细胞膜的基本结构
目前细胞膜结构主要用Singer 和 Nicolson于1972年提出的流动镶嵌模型解释,下面我们以流动镶嵌模型为基础,总结细胞膜的结构的主要特征: 1. 脂类物质,主要是磷脂 构成生物膜的骨架,在膜中,磷脂以双分子层的形式存在,在双分子层中,磷脂的疏水基团(脂肪酸链),疏水基团向外。 2.生物膜中含有蛋白质,蛋白质有两种存在方式,一种吸附在脂类双层两侧,称为外在蛋白或周边蛋白,另一种镶嵌在脂类双层中,称为内在蛋白或整合蛋白,内在蛋白有的部分嵌入膜脂双层中,有的贯穿脂类双层。
3.膜中各种组分在膜上的分布是不对称的,具体表现在: (1) 膜脂分布的不对称性,脂质双层组成的不对称性。脂类双层的外层往往含有较多的磷脂酰胆碱(也称为卵磷脂),内层含磷脂酰乙醇胺(脑磷脂)和磷脂酰丝氨酸较多。 在脂类双层的不同区域所含有的脂类种类不完全相同,脂类两个单分子层中所含有的脂类的数量也不相同。 (2) 膜蛋白发布的不对称性: (3) 膜糖分布的不对称性,在质膜上主要分布在膜的外侧。
调节功能
调节细胞水势和维持细胞膨压 大多数植物细胞在生长时主要靠液泡大量地积累水分。中央液泡的出现使细胞与外界环境之间构成一个渗透系统,从而可调节细胞的吸水机能,维持细胞的挺度。
01
调节细胞的pH和离子稳态 液泡膜上存在的离子泵(proton pump,如H+-ATPase)可调节细胞内的pH和离子浓度,以维持细胞的正常代谢。
膜的流动性受很多因素的影响
膜的流动性受很多因素的影响 ① 脂肪酸种类的影响,含不饱和脂肪酸(亚油酸,亚麻酸)较多,流动性大,含饱和脂肪酸(软脂酸,硬脂酸)较多,流动性变小。 ② 蛋白质含量大流动性变小 ③ 胆固醇含量高,流动性变小。 ④ 缺少Ca2+,流动性变大 ⑤ 外界的温度 温度降低 温度升高 固态 液晶态 液态 流动性变小 流动性变大
生理学细胞的基本功能

单纯扩散:脂溶性小分子物质由高浓度 向低浓度跨膜移动的过程。
2. 扩散通量: Mmol/s.cm2 影响因素:膜内外物质浓度差、电压差 膜的通透性
3. 转运的物质:O2 ,CO2 4 .特点:① 高浓度→低浓度
② 不耗能
(二)膜蛋白介导的跨膜转运
易化扩散 1.定义
非脂溶性小分子物质,在特殊膜蛋白质 帮助下,由高浓度向低浓度一侧转运的过程。
2021/3/27
CHENLI
14
第二节 细胞的跨膜信号传递功能
◆ 跨膜信号转导概念
指外界信号(化学分子、光、声音等) 作用于细胞膜表面的受体,引起膜结构中 一种或多种特殊蛋白质构型改变,将外界 环境变化的信息以新的信号形式传递到膜 内,再引发靶细胞功能改变。
◆几种主要的跨膜信号转导方式
由离子通道完成的跨膜信号传递 刺激信号→膜通道蛋白开放→离子
单纯扩散(simple diffusion)
易化扩散(facilitated diffusion)
化学门控通道(chemiscally-gated channel)
电压门控通道(voltage-gated channel)
载体(carrier)
主动转运(active transport)
被动转运(passive transport)
主讲人 黄志华
第二章 细胞的基本功能
CHAPTER 2 THE BISIC FUNCTIONS OF CELL
邱春復 主讲
2021/3/27
医学生CH理ENLI 学教研室
2
第一节 细胞膜的结构和物质转运功能
细胞:构成机体的最基本的结构和功 能单位。
一、细胞膜的基本结构 液态镶嵌模型 (图)
2. 扩散通量: Mmol/s.cm2 影响因素:膜内外物质浓度差、电压差 膜的通透性
3. 转运的物质:O2 ,CO2 4 .特点:① 高浓度→低浓度
② 不耗能
(二)膜蛋白介导的跨膜转运
易化扩散 1.定义
非脂溶性小分子物质,在特殊膜蛋白质 帮助下,由高浓度向低浓度一侧转运的过程。
2021/3/27
CHENLI
14
第二节 细胞的跨膜信号传递功能
◆ 跨膜信号转导概念
指外界信号(化学分子、光、声音等) 作用于细胞膜表面的受体,引起膜结构中 一种或多种特殊蛋白质构型改变,将外界 环境变化的信息以新的信号形式传递到膜 内,再引发靶细胞功能改变。
◆几种主要的跨膜信号转导方式
由离子通道完成的跨膜信号传递 刺激信号→膜通道蛋白开放→离子
单纯扩散(simple diffusion)
易化扩散(facilitated diffusion)
化学门控通道(chemiscally-gated channel)
电压门控通道(voltage-gated channel)
载体(carrier)
主动转运(active transport)
被动转运(passive transport)
主讲人 黄志华
第二章 细胞的基本功能
CHAPTER 2 THE BISIC FUNCTIONS OF CELL
邱春復 主讲
2021/3/27
医学生CH理ENLI 学教研室
2
第一节 细胞膜的结构和物质转运功能
细胞:构成机体的最基本的结构和功 能单位。
一、细胞膜的基本结构 液态镶嵌模型 (图)
02生理学-细胞

跳跃式传导
局部电流发生在相邻的郎飞氏结之间 传导速度快
第三节 肌细胞的收缩功能
一、神经—肌接头处的兴奋传递
(一)神经—肌接头处的结构
囊泡内含乙酰胆碱(ACh) 电压依从式钙通道 2、接头间隙: 细胞外液,50-60nm 3、接头后膜(终板膜):
1、接头前膜(轴突末梢膜):
皱褶
N2型ACh受体阳离子通道 胆碱酯酶
(三)动作电位的特征
1.“全或无”现象(all or none) 2.不衰减性传导 3.脉冲式
(四)动作电位的传导
在一般可兴奋细胞和无髓神经纤维:
—
局部电流
在有髓神经纤维:
—
跳跃式传导
局部电流
静息部位膜内 负外正,兴奋 部位膜极性反 转,兴奋区与 未兴奋区之间 存在电位差, 形成局部电流, 使邻近未兴奋 膜去极化达阈 电位而产生动 作电位。
概念 : 水溶性或脂溶性很小的小分子物质或离子,借助细胞 膜上特殊蛋白质的帮助,从细胞膜的高浓度一侧向低 浓度一侧转运的过程。
特点 : ⑴ 转运非脂溶性或脂溶性很小的物质 ⑵ 不耗能,顺浓度差转运,属被动转运 ⑶ 需要膜蛋白的帮助 分类 : ⑴ 载体转运 转运对象:葡萄糖(Glu) 氨基酸(AA) 特点:特异性 饱和性现象 竞争性抑制
eg.氧气(O2)、二氧化碳(CO2)、氮气(N2)等 脂溶性小分子 水、乙醇、尿素、甘油等分子量小的极性分子
影响因素:⑴ 细胞膜两侧浓度差(正比) ⑵ 细胞膜对该物质的通透性(正比)
一、细胞膜的物质转运功能
常见的物质跨膜物质转运形式:
单纯扩散 易化扩散
主动转运
入胞和出胞
(二)易化扩散
生理学 第2章细胞

(1)不是“全或无”的,而是随着阈下刺激的增大而增 大,呈等级性反应; (2)衰减性传播(电紧张性扩布):局部电位可向周围
传播,但随着传播距离的增加,其电位变化幅度减
小最后消失故不能在膜上作远距离的传播; (3)可以总和 ①空间性总和 ②时间性总和
01:04
小结:局部反应与动作电位之比较
项 目 局 部 反 阈下刺激 较少 小(在阈电位以下波动) 有(时间或空间总和) 无 呈电紧张性扩布,随时间 和距离的延长迅速衰减, 不能连续向远处传播 应 动 作 电 多 大(达阈电位以上) 无 有 能以局部电流的形式 连续而不衰减地向远 处传播 位
01:04
(三)产生机制
产生条件主要有两个: • ①细胞内外各种离子的浓度分布不均(外Na+内K+状态), 即存在浓度差; • ②在不同状态下,细胞膜对各种离子的通透性不同。 安静状态时,细胞膜主要对K+通透,K+顺浓度差外流, 随着K+外流,膜内外K+浓度差(化学驱动力)↓ , K+外 流引起的由细胞外向细胞内的电场力(阻力)↑,当动 力和阻力相等时,K+净移动为0,此时膜两侧的电位差 也稳定于某一数值,称为K+平衡电位。
01:04
受体是指细胞膜或细胞内一些能与某些化学物质特异 性结合并产生特定生理效应的蛋白质。可分为膜受体和胞 内受体,通常指膜受体。 受体基本功能: 1.能识别和结合体液中的特殊物质,具有高度特异性,
保证信息传递准确、可靠。
2.能转导各种化学信号,激发细胞内产生相应的生理 效应。
01:04
第三节 细胞的生物电现象
门控离子通道分为三类: 1) 电压门控通道:在膜去极化到一定电位时开放,如神经 元上的Na+ 通道;K+ 通道等。
传播,但随着传播距离的增加,其电位变化幅度减
小最后消失故不能在膜上作远距离的传播; (3)可以总和 ①空间性总和 ②时间性总和
01:04
小结:局部反应与动作电位之比较
项 目 局 部 反 阈下刺激 较少 小(在阈电位以下波动) 有(时间或空间总和) 无 呈电紧张性扩布,随时间 和距离的延长迅速衰减, 不能连续向远处传播 应 动 作 电 多 大(达阈电位以上) 无 有 能以局部电流的形式 连续而不衰减地向远 处传播 位
01:04
(三)产生机制
产生条件主要有两个: • ①细胞内外各种离子的浓度分布不均(外Na+内K+状态), 即存在浓度差; • ②在不同状态下,细胞膜对各种离子的通透性不同。 安静状态时,细胞膜主要对K+通透,K+顺浓度差外流, 随着K+外流,膜内外K+浓度差(化学驱动力)↓ , K+外 流引起的由细胞外向细胞内的电场力(阻力)↑,当动 力和阻力相等时,K+净移动为0,此时膜两侧的电位差 也稳定于某一数值,称为K+平衡电位。
01:04
受体是指细胞膜或细胞内一些能与某些化学物质特异 性结合并产生特定生理效应的蛋白质。可分为膜受体和胞 内受体,通常指膜受体。 受体基本功能: 1.能识别和结合体液中的特殊物质,具有高度特异性,
保证信息传递准确、可靠。
2.能转导各种化学信号,激发细胞内产生相应的生理 效应。
01:04
第三节 细胞的生物电现象
门控离子通道分为三类: 1) 电压门控通道:在膜去极化到一定电位时开放,如神经 元上的Na+ 通道;K+ 通道等。
生理学第二章细胞

阴极射线示波器(一条神经干)
微电极(单一神经纤维)
电压钳技术(细胞膜上的离子通道)
膜片钳技术(单一离子通道)
膜片钳技术:可记录细胞膜结构中单一离子通道的电流 和电导。生物电现象的观察分析进入分子水平的新阶段。
39
静息电位(resting potential)及其产生原理
(一)静息电位(resting potential RP) 细胞安静状态时,存在于细胞膜内外两侧的电位差。
2.RP实验现象:
40
41
证明RP的实验:
(甲)当A、B电极都位
性质:
于细胞膜外,无电位改变,内负外正(极化)
证明膜外无电位差。
(乙)当A电极位于细胞 膜外, B电极插入膜内时, 有电位改变,证明膜内、 外间有电位差。
(丙)当A、B电极都位
于细胞膜内,无电位改变,
证明膜内无电位差。
42
➢ 膜电位变化中的几种状态
a⑧f①t正eR⑥r后e-Ksp电+to从it位ne细gn(pt胞oiptao内elsn)i转ttii移avle到细胞 a化ft③e外r膜-液p去o使t极e细n化t胞i达a复l阈)极:电超化位级水平,
电⑤④压N去门a②+极通控阈化道N刺a:关+激通N闭a道+,迅开K速放+通进。道入 Na开细+进放胞入细胞。
复极化(repolarization) : depolarization→ polarization
43
(二)静息电位(RP)的产生机制
1. 细胞膜内外离子分布及膜对离子的通透性
(1) 细胞膜内、外离子分布不匀 [Na+] o >[Na+] i ≈ 10∶1, [K+]i>[K+]o≈30∶1 [Cl-] o >[Cl-] i ≈ 14∶1, [A-]i>[A-]o≈ 4∶1
微电极(单一神经纤维)
电压钳技术(细胞膜上的离子通道)
膜片钳技术(单一离子通道)
膜片钳技术:可记录细胞膜结构中单一离子通道的电流 和电导。生物电现象的观察分析进入分子水平的新阶段。
39
静息电位(resting potential)及其产生原理
(一)静息电位(resting potential RP) 细胞安静状态时,存在于细胞膜内外两侧的电位差。
2.RP实验现象:
40
41
证明RP的实验:
(甲)当A、B电极都位
性质:
于细胞膜外,无电位改变,内负外正(极化)
证明膜外无电位差。
(乙)当A电极位于细胞 膜外, B电极插入膜内时, 有电位改变,证明膜内、 外间有电位差。
(丙)当A、B电极都位
于细胞膜内,无电位改变,
证明膜内无电位差。
42
➢ 膜电位变化中的几种状态
a⑧f①t正eR⑥r后e-Ksp电+to从it位ne细gn(pt胞oiptao内elsn)i转ttii移avle到细胞 a化ft③e外r膜-液p去o使t极e细n化t胞i达a复l阈)极:电超化位级水平,
电⑤④压N去门a②+极通控阈化道N刺a:关+激通N闭a道+,迅开K速放+通进。道入 Na开细+进放胞入细胞。
复极化(repolarization) : depolarization→ polarization
43
(二)静息电位(RP)的产生机制
1. 细胞膜内外离子分布及膜对离子的通透性
(1) 细胞膜内、外离子分布不匀 [Na+] o >[Na+] i ≈ 10∶1, [K+]i>[K+]o≈30∶1 [Cl-] o >[Cl-] i ≈ 14∶1, [A-]i>[A-]o≈ 4∶1
《生理学》学习难点剖析—谈谈“细胞膜物质转运功能”

运 , 现物 质 交换 。 实
膜 . 允许 某些 物 质 选 择 性 透 过 , 是 维 持 生 物 体 能 这 正 常 新 陈代 谢 、 保持 生 命 活动 正 常进 行 的结 构和 功
能 基 础 。有 关细 胞 膜 物质 转 运功 能 . 生理 学学 习 是
的 重 点 和 难 点 . 是 要 求 学 生 重 点 掌 握 的 内 容 。 前 也 面有 关 文章 谈 了细 胞 生 物 电 的学 习 , 家 知 道 , 大 生 物 电 的 产 生 与 细 胞 膜 物 质 转 运 密 切 相 关 , 此 之 除
运 功能 的基 础
有 关细 胞 膜 的基 本结 构 , 人们通 过 大量 的 观 察 和研 究 , 对细 胞 膜 中 的各 种物 质 分 子排 列提 出了许 多模 型或 学说 , 中 被 广 泛 接 受 的是 “ 态 镶 嵌 模 其 液
型 ” 其 主 要 内 容 是 : 胞 膜 是 以 液 态 脂 质 双 分 子 。 细
醇、 某些 激 素等 可 直 接 通 过 细 胞 膜 进 行 转运 , 之 称 为单 纯 扩 散 。非 脂 溶 性 物 质 如 葡 萄 糖 、 基 酸 、 氨 离 子等, 在膜 蛋 白的 协 助下 进 行 的跨 膜转 运 称 为 易化 扩 散 。葡 萄 糖 、 氨基 酸 等 物 质 只具 有 水溶 性 . 无 而 脂溶 性 , 不能直 接 进 入 膜 内 , 须 在 载 体 蛋 白的 协 必 助下 . 能 由膜 外 进 入 膜 内( 红 细 胞 内 ) 这 种 转 才 如 , 运 方式 称 为载 体 介导 的 易化 扩 散 ; 、 等 离 子 Na K 也 不能 直接 通 过细胞 膜 , 须 通 过纵 贯 脂质 双 分 子 必
质 与 物 质 转 运 有 关 , 载 体 蛋 白 、 道 蛋 白 、 子 泵 如 通 离
膜 . 允许 某些 物 质 选 择 性 透 过 , 是 维 持 生 物 体 能 这 正 常 新 陈代 谢 、 保持 生 命 活动 正 常进 行 的结 构和 功
能 基 础 。有 关细 胞 膜 物质 转 运功 能 . 生理 学学 习 是
的 重 点 和 难 点 . 是 要 求 学 生 重 点 掌 握 的 内 容 。 前 也 面有 关 文章 谈 了细 胞 生 物 电 的学 习 , 家 知 道 , 大 生 物 电 的 产 生 与 细 胞 膜 物 质 转 运 密 切 相 关 , 此 之 除
运 功能 的基 础
有 关细 胞 膜 的基 本结 构 , 人们通 过 大量 的 观 察 和研 究 , 对细 胞 膜 中 的各 种物 质 分 子排 列提 出了许 多模 型或 学说 , 中 被 广 泛 接 受 的是 “ 态 镶 嵌 模 其 液
型 ” 其 主 要 内 容 是 : 胞 膜 是 以 液 态 脂 质 双 分 子 。 细
醇、 某些 激 素等 可 直 接 通 过 细 胞 膜 进 行 转运 , 之 称 为单 纯 扩 散 。非 脂 溶 性 物 质 如 葡 萄 糖 、 基 酸 、 氨 离 子等, 在膜 蛋 白的 协 助下 进 行 的跨 膜转 运 称 为 易化 扩 散 。葡 萄 糖 、 氨基 酸 等 物 质 只具 有 水溶 性 . 无 而 脂溶 性 , 不能直 接 进 入 膜 内 , 须 在 载 体 蛋 白的 协 必 助下 . 能 由膜 外 进 入 膜 内( 红 细 胞 内 ) 这 种 转 才 如 , 运 方式 称 为载 体 介导 的 易化 扩 散 ; 、 等 离 子 Na K 也 不能 直接 通 过细胞 膜 , 须 通 过纵 贯 脂质 双 分 子 必
质 与 物 质 转 运 有 关 , 载 体 蛋 白 、 道 蛋 白 、 子 泵 如 通 离