倒虹吸管的水力计算

倒虹吸管的水力计算
倒虹吸管的水力计算

倒虹吸管的水力计算倒虹吸水力计算(钢管D=1.8m)

1、初拟管道直径

设计流量Q 6.710

倒虹吸总长度L 334.410

材料糙率n 0.012

初选流速v' 2.650

初选过水断面面积w' 2.532

初选管道直径D' 1.796

确定出管道直径D 1.800

设计流速v 2.637

相应过水断面面积w 2.543

2、水头损失R=D/4 0.450

(1)沿程水头损失

2λ=8g/c 0.015

2 hf,λL*v/(4R*2g) 0.971

(2)局部水头损ζ0.250 j进口失

ζ0.100门槽

拦污栅栅条厚度s 0.030

拦污栅间距b 0.100

拦污栅与水平面夹角a 80.000

栅条形状系数β0.760

ζ,β(s/b)sina 0.150拦污栅

弯道损失:ζ弯道0.324 =0.073+0.073+0.073+0.071+0.034 ζ0.100旁通管(单个为0.1)

w 9.560渠

w/w 0.266管渠

ζ0.540出口

ζ0.100进人孔

总局部水头损失系数?ζj 1.564

2总局部水头损失hj,?ζv/2g 0.554 j

总水头损失z,hj+hf 1.525

允许水头损失1.990

0.53、校核流量Q,w(2gz)/(λL/D+?ζ) 6.707 j

所选管径能满足要求

倒虹吸水力计算(预应力砼管D=1.8m)

1、初拟管道直径

设计流量Q 6.710

倒虹吸总长度L 334.410

材料糙率n 0.015

初选流速v' 2.650

初选过水断面面积w' 2.532

初选管道直径D' 1.796

确定出管道直径D 1.800

设计流速v 2.637

相应过水断面面积w 2.543

2、水头损失R=D/4 0.450

沿程水头损失C=R/n 58.359

2λ=8g/c 0.023

2 hf,λL*v/(4R*2g) 1.517

(2)局部水头损失ζ0.250 j进口

ζ0.100门槽

拦污栅栅条厚度s 0.030

拦污栅间距b 0.100

拦污栅与水平面夹角a 80.000

栅条形状系数β0.760

ζ,β(s/b)sina 0.150拦污栅

弯道损失:ζ弯道0.324 =0.073+0.073+0.073+0.071+0.034 ζ0.100旁通管(单个为0.1)

w 9.560渠

w/w 0.266管渠

ζ0.540出口

ζ0.100进人孔

总局部水头损失系数?ζj 1.564

2总局部水头损失hj,?ζv/2g 0.554 j

总水头损失z,hj+hf 2.071

允许水头损失1.990

所选管径不能满足要求

倒虹吸水力计算(预应力砼管D=1.9m) 1、初拟管道直径

设计流量Q 6.710

倒虹吸总长度L 334.410

材料糙率n 0.015

初选流速v' 2.650

初选过水断面面积w' 2.532

初选管道直径D' 1.796

确定出管道直径D 1.900

设计流速v 2.367

相应过水断面面积w 2.834

2、水头损失R=D/4 0.475

沿程水头损失C=R/n 58.888

2λ=8g/c 0.023

2 hf,λL*v/(4R*2g) 1.137

(2)局部水头损失ζ0.250 j进口

ζ0.100门槽

拦污栅栅条厚度s 0.030

拦污栅间距b 0.100

拦污栅与水平面夹角a 80.000

栅条形状系数β0.760

ζ,β(s/b)sina 0.150拦污栅

弯道损失:ζ弯道0.324 =0.073+0.073+0.073+0.071+0.034 ζ0.100旁通管(单个为0.1)

w 9.560渠

w/w 0.296管渠

ζ0.540出口

ζ0.100进人孔

总局部水头损失系数?ζj 1.564

2总局部水头损失hj,?ζv/2g 0.447 j

总水头损失z,hj+hf 1.584

允许水头损失1.990

0.53、校核流量Q,w(2gz)/(λL/D+?ζ) 6.707 j

所选管径能满足要求

倒虹吸水力计算(预应力砼管D=2.0m)

1、初拟管道直径

设计流量Q 6.710

倒虹吸总长度L 334.410

材料糙率n 0.015

初选流速v' 2.650

初选过水断面面积w' 2.532

初选管道直径D' 1.796

确定出管道直径D 2.000

设计流速v 2.136

相应过水断面面积w 3.140

2、水头损失R=D/4 0.500

沿程水头损失C=R/n 59.393

2λ=8g/c 0.022

2 hf,λL*v/(4R*2g) 0.865

(2)局部水头损失ζ0.250 j进口

ζ0.100门槽

拦污栅栅条厚度s 0.030

拦污栅间距b 0.100

拦污栅与水平面夹角a 80.000

栅条形状系数β0.760

ζ,β(s/b)sina 0.150拦污栅

弯道损失:ζ弯道0.324 =0.073+0.073+0.073+0.071+0.034 ζ0.100旁通管(单个为0.1)

w 9.560渠

w/w 0.328管渠

ζ0.540出口

ζ0.100进人孔

总局部水头损失系数?ζj 1.564

2总局部水头损失hj,?ζv/2g 0.364 j

总水头损失z,hj+hf 1.229

允许水头损失1.990

0.53、校核流量Q,w(2gz)/(λL/D+?ζ) 6.707 j

所选管径能满足要求

管壁确定:

管壁厚度公式计算:

50HD,,,,,,

式中δ—管壁厚度(mm)

H—包括水击压力值的设计水头(m);

D—钢管内径(m);

2 [σ]—钢材允许应力,[σ]=0.55σ×75% (kg/cm), s

2σ=2400kg/cm;s

φ—接缝坚固系数,φ取0.9。

经计算,钢管计算厚度为12mm,再加上2mm的锈蚀及磨损厚度,钢管能满足结构强度要求,故选择壁厚为δ=14mm的钢管。

钢管管壁厚度除应满足强度要求外,还需满足稳定性要求,管壁维持稳定的最小厚度为:

D,,130

对于φ1800管径

1800,,14,,13.84130

故所选壁厚满足抗外压稳定要求,即钢管在外部压力作用,若管内出现负压也不会失稳。

连续管钻井水力参数计算软件计算公式

N2 =$L$2-2*$M$2 Q2=$P$2/$N$2 R2=59.7/(2*Q2)^(8/7) 第一种情况 直段长度盘管长度密度P n k a b △Pg 情况1 3500 0 清水1006 1 0.001 0.0786 0.25 0.024 R5=(LOG10(P5)+3.93)/50 R6 S5=(1.75-LOG10(P5))/7 S6 T5=0.0003767*($O5/1000)^0.8*($Q5*1000)^0.2*($S$2/60)^1.8 T6 C16=PI()*(($A16-2*$B16)^2-$L$2^2)/4 C17 D16=36/3600/$C16 D17 G16=$O$5*($A16-2*$B16-$L$2)*$D16/$Q$5 G17 H16=(1/(2*(1.8*LOG10($G16)-1.53)))^2 H17 E16=2*$H$16*$L$5*$O$5*$D16^2/($A16-2*$B16-$L$2)/1000000 E17 F16 =2*$H$16*$L$6*$O$5*$D16^2/($A16-2*$B16-$L$2)/1000000 F17 G20=($O$6*$D16^(2-$P$6)*($A16-2*$B16-$L$2)^$P$6/($Q$6*12^($P$6-1)))*( 4*$P$6/(3*$P$6+1))^$P$6 H20=16/G20 E20=2*$H20*$L$5*$O$6*$D16^2/($A16-2*$B16-$L$2)/1000000 F20=2*$H20*$L$6*$O$6*$D16^2/($A16-2*$B16-$L$2)/1000000 G2=($S$2/60000)/(PI()*$N$2^2/4) H2=$O$5*$N$2*$G2/$Q$5 K2=H2*($N$2/2/1.3)^0.5 K3=H3*($N$2/2/1.441)^0.5

对照表之水泵管径流速流量

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Q——断面水流量(m3/s) C——Chezy糙率系数(m1/2/s) A——断面面积(m2) R——水力半径(m) S——水力坡度(m/m) Darcy-Weisbach公式 h f——沿程水头损失(mm3/s)

f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1

蜗壳及尾水管的水力计算

第二章 蜗壳及尾水管的水力计算 第1节 蜗壳水力计算 一.蜗壳尺寸确定 水轮机的引水室是水流进入水轮机的第一个部件,是反击式水轮机的重要组成部分。引水室的作用是将水流顺畅且轴对称的引向导水机构。引水室有开敞式、罐式和蜗壳式三种。蜗壳式是反击式水轮机中应用最普遍的一种引水室。它是用钢筋混凝土或者金属制造的封闭式布置,可以适应各种水头和流量的要求。水轮机的蜗壳可分为金属蜗壳和混凝土蜗壳两种。 1.蜗壳形式 蜗壳自鼻端到进口断面所包围的角度称为蜗壳的包角,水头大于40m 时一般采用混凝土蜗壳,包角 ;当水头较高时需要在混凝土中布置大量的钢筋,造价可能 比混凝土蜗壳还要高,同时钢筋布置过密会造成施工困难,因此多采用金属蜗壳,包角 。本电站最高水头为174m ,故采用金属蜗壳。 2.座环参数 根据水轮机转轮直径D 1查[1].P 128页表2—16得: 座环出口直径: ()()mm D b 27252600180019001800 20002600 2850=+---= 座环进口直径: ()()mm D a 32503100180019001800 20003100 3400=+---= 蜗壳常数K =100(mm )、r =200(mm ) 3.蝶形边锥角ɑ 取 4.蝶形边座环半径 ()m k D r a D 725.11.02 25 .32=+=+= 5.蝶形边高度h ()m k b h 29.055tan 1.02 76.0tan 20=+=+= ? 6.蜗壳圆形断面和椭圆形断面界定值s ()m h s 51.055 cos 29 .055cos == 7.座环蝶形边斜线L ()m h L 354.055sin == 8.座环蝶形边锥角顶点至水轮机轴线的距离

鸿业暖通-风管水力计算使用说明

目录 目录 目录 (1) 第 1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第 2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

鸿业暖通空调软件 第 1 章 风管水力计算使用说明 1.1 功能简介 命令名称: FGJS 功 能: 风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

第 1 章风管水力计算使用说明 如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。

热力管道水力计算表

热力管道水力计算表

————————————————————————————————作者:————————————————————————————————日期: ?

热力管道水力计算表(一) Kd=0.5mm r=958.4kg/m3 DN 25 32 4050 DN 253240 50 70 D w×δ32×25 38×2.545×2.557×3.5D w×δ32×2.538×2.545×2.557×3.573×3.5 G(t/h) W R W R W R WR G(t/h)W RW R W R W R WR 0.20.1 0. 95 1.250.63 34.2 0.4 2 1 1.6 0.2 9 4.2 0.1 8 1. 34 0.22 0.11 1.1 4 1.3 0. 66 37 0. 44 1 2.6 0.3 4.5 1 0.1 9 1.4 4 0. 11 0. 34 0.24 0.1 2 1.3 5 1.35 0.68 39. 9 0.46 13.6 0.3 1 4. 86 0.2 1 .55 0 .1 1 0.37 0.26 0.13 1.59 1.40 0.7 1 42.9 0. 47 1 4 .6 0.3 2 5.2 1 0.2 1 1. 6 7 0.1 2 0.3 9 0.28 0.1 4 1. 82 1.450.73 46 0.49 15 .7 0.33 5.5 9 0.2 1 1.78 0. 12 0.42 0.30 0. 15 2.0 8 1.50 0. 76 49.2 0 .5 1 16.8 0.3 5 5.9 8 0.2 2 1.91 0.1 3 0.4 5 0.320.1 6 2.3 7 1.55 0.7 9 52.6 0.53 17 .9 0.3 6 6 .3 8 0 .23 2.02 0.13 0.48 0.340.17 2.7 1 1.6 0.8 1 56 0.5 4 19.1 0.3 7 6.8 0.2 4 2.14 0. 13 0.5

连续油管钻井水力参数理论计算

连续油管钻井水力计算实例分析 一、计算原始参数 CT 规格:" 78 73 4.8(20.188")3500mm m φ???,级别CT80。 滚筒尺寸(底径x 内宽x 轮缘):260024504200mm φφ?? 采用老井加深工艺,原井筒1500m (5-1/2”和7”套管)加深钻井1000m 和2000m ,参考大量实例,钻头采用4-3/4”和6-1/8’牙轮钻头或PDC 钻头,螺杆马达采用3-3/4”和4-3/4”规格。 钻井液采用清水和一种水基泥浆(ULTRADRIL 钻井液),其流体参数为: ρl =1180kg/m 3,n=0.52564,k=0.8213Pa.s n ,粘度为45.5mPa.s 。 二、泵压计算 P P P P P P P =?+?+?+?+?+?泵工具CT 直管汇钻头环空CT 盘 (一)管内压降计算模型 CT 内流体的摩阻损失通常表示为压力降低的形式,即: 2 2f L v P f d ρ?= 中L 和d 分别是管长和管径,v 是管内的平均速度,f 是范宁Fanning 摩擦因子,它与流体的雷诺数、管壁的粗糙度等因素有关。 (二)清水(牛顿流)介质管内摩阻计算 1.雷诺数计算及狄恩数计算 e R d N ρν μ = 式中,N Re 为雷诺数,无量纲; ρ为液体密度,kg/m 3; ν为循环介质在管路中的平均流速,m/s ; d 为模拟连续油管内径,m ; μ为牛顿流体的动力粘度,Pa*s ; 狄恩数(Dean)是研究弯管流动阻力的基本无量纲数:

De N N = 其中r 0为连续油管内径,R 为连续油管弯曲半径,N Re 为雷诺数。 2.直管摩阻系数计算模型 (1)层流 对于直管,范宁摩阻系数可用如下公式计算: Re 16 SL f N = (2)紊流 对管内单向流摩阻系数公式进行了分析,当不考虑管粗糙度,在紊流光滑区(3*103

通风管道设计计算

通风管道系统的设计计算 在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。 进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。在一般的通风系统中用得最普遍的是等压法和假定流速法。 等压损法是以单位长度风管有相等的压力损失为前提的。在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。对于大的通风系统,可利用等压损法进行支管的压力平衡。 假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。这是目前最常用的计算方法。 一、通风管道系统的设计计算步骤 800m /h 3 1500m /h 31 2 3 4000m /h 3 4 除尘器 6 5 7

图6-8 通风除尘系统图 一般通风系统风倌管内的风速(m/s)表6-10 除尘通风管道最低空气流速(m/s)表6-11 1、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。以风量和风速不变的风管为一管段。一般从距风机最远的一段开始。由远而近顺序编号。管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。 2、选择合理的空气流速。风管内的风速对系统的经济性有较大影响。流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消

第6章 水力计算及管径的确定

第6章 水力计算及管径的确定 1、画出水力计算简图,进行管段编号,立管编号并注明各管段的热负荷和管长,如附录3所示。 2、选择最不利环路 本系统为单管异程式系统,取最远立管的环路作为最不利环路。由附录中水力简图可见,水力计算分为两部分分别计算,左半部分和右半部分,其中左半部分的最不利环路是从入口到立管6的环路。这个环路包括管段1、2、3、4、5、6、7、8、9,10, 11, 12, 13, 14, 15;右半部分的最不利环路是从入口到立管11的环路,这个环路包括管段1、20、21、22、23、24、25、26、27、36、9。 3、计算各管段流量 G=0.86∑Q/(t g ′-t h ′) Q ——管段的热负荷,W 'g t ——系统的设计供水温度,℃ 'h t ——系统的设计回水温度,℃ 4、计算最不利环路各管段管径 虽本设计中引入口处外网的供回水压差较大,但考虑系统中各环路的压力损失易于平衡,采用推荐的平均比摩阻R pj 大致为60~120Pa/m 来确定最不利环路各管段的管径。 首先根据上式确定各管段的流量,根据G 和选用的R pj 值,查出各管段d 、R 、v 值,填入表中,然后计算沿程压力损失,局部压力损失,各管段的压力损失,最后算出最不利环路的总压力损失,并将不平衡率控制在15%以内,若有剩余循环压力,用调节阀消耗掉。本系统有左右两部分,故需要计算两部分的最不利环路的阻力。 5、同上述方法,以左半部为例,计算通过除最不利环路立管外离供水立管最远的立管5的环路,从而确定出立管16,17的管径及其压力损失。 如计算立管5的管径: 根据并联环路节点压力平衡原理,立管3的资用压力△P IV =△P 7~10=Pa 立管5包括,管16和17,分别根据G 值确定,查出各管段d,R,v 值,方法如第4步所说,计算出两管路的压力总损失后,与资用压力相比,将不平衡率控制在15%以内,,并校验不平衡率,多余的循环压力用调节阀调节。 6、计算其余各管段管径 与上述方法类似继续计算剩余立管的压力损失,根据各立管的资用压力和立管各管段的流量,选用合适的立管管径,计算压力损失并校验。

鸿业暖通_风管水力计算使用说明

目录 目录 (1) 第1 章风管水力计算使用说明 (2) 1.1 功能简介 (2) 1.2 使用说明 (3) 1.3 注意 (8) 第2 章分段静压复得法 (9) 2.1 传统分段静压复得法的缺陷 (9) 2.2 分段静压复得法的特点 (10) 2.3 分段静压复得法程序计算步骤 (11) 2.4 分段静压复得法程序计算例题 (11)

第 1 章风管水力计算使用说明 1.1功能简介 命令名称:FGJS 功能:风管水力计算 命令交互: 单击【单线风管】【水力计算】,弹出【风管水力计算】对话框,如图1-1所示: 图1-1 风管水力计算对话框 如果主管固定高度值大于0,程序会调整风系统中最长环路 的管径的高度为设置值。

如果支管固定高度值大于0,程序会调整风系统中除开最长 环路管段外的所有管段的管径的高度为设置值。 控制最不利环路的压力损失的最大值,如果程序算出的最不 利环路的阻力损失大于端口余压,程序会提醒用户。 当用户需要从图面上提取数据时,点取搜索分支按钮,根据 程序提示选取单线风管。当成功搜索出图面管道系统后,最 长环路按钮可用,单击可以得到最长的管段组。 计算方法程序提供的三种计算方法,静压复得法、阻力平衡法、假定 流速法,可以改变当前的选项卡,就会改变下一步计算所用 的方法,而且在标题栏上会有相应的提示。 计算结果显示包含搜索分支里面选取的管段的一条回路的各个管段数 据。 1.2使用说明 1.从图面上提取数据 单击按钮 2.从文件中提取数据(如果是从图面上提取数据则这步可以跳过) 单击按钮 从打开文件对话框从选取要计算的文件,确定即可。 3.选择要计算的方法,设置好相应的参数 静压复得法: 是最不利环路最末端的分支管(不是从最 后一根支管)的风速。

钻井常用计算公式

第四节 钻井常用计算公式 一、井架基础的计算公式 (一)基础面上的压力 P 基= 式中: P 基——基础面上的压力,MPa ; n ——动负荷系数(一般取1.25~1.40); Q O ——天车台的负荷=天车最大负荷+天车重 量,t ; Q B ——井架重量,t ; (二)土地面上的压力 P 地=P 基+W 式中:P 地——土地面上的压力,MPa; P 基——基础面上的压力,MPa; W ——基础重量,t (常略不计)。 (三)基础尺寸 1、顶面积F 1= 式中:F 1——基础顶面积,cm2; B 1——混凝土抗压强度(通常为 28.1kg/cm2=0.281MPa) 2、底面积F 2= 式中:F 2——基础底面积,cm 2; B 2——土地抗压强度,MPa ; P 地——土地面上的压力,MPa 。 3、基础高度 式中:H ——基础高度,m ; F2、F1分别为基础的底面积和顶面积,cm 2; P 基——基础面上的压力,MPa ; nQ O +Q B 4 P B P B

B3——混凝土抗剪切强度(通常为3.51kg/cm2=0.351MPa)。 (二)混凝土体积配合比用料计算 1、计算公式 配合比为1∶m∶n=水泥∶砂子∶卵石。根据经验公式求每1m3混凝土所需的各种材料如下: 2、混凝土常用体积配合比及用料量,见表1-69。 混凝土 用途 体积 配合比 每立方米混凝 土 每立方米砂子每立方米石子 每1000公斤水 尼 水泥 kg 砂子 m3 石子 m3 水泥 kg 石子 m3 混凝 土 m3 水泥 kg 砂子 m3 混凝 土 m3 砂子 m3 石子 m3 混凝 土 m3 1.坚硬土壤上的井 架脚,小基墩井架 脚,基墩的上部 分。 1∶2∶4 335 0.45 0.90 744 2 2.22 372 0.5 1.11 1.35 2.70 2.99 2.厚而大的突出基 墩。 1∶2.5∶5 276 0.46 0.91 608 2 2.20 304 0.5 1.10 1.57 3.10 3.63 3.支承台、浇灌坑 穴及其他。 1∶3∶6 234 0.46 0.93 504 2 2.15 253 0.5 1.08 2.0 4.0 4.27 4.承受很大负荷和 冲击力的小基墩。 1∶1∶2 585 0.39 0.78 1500 2 2.56 750 0.5 1.28 0.67 1.34 1.71 5.承受负荷不大的 基墩。 1∶4∶8 180 0.48 0.96 375 2 2.08 188 0.5 1.04 2.70 5.40 5.60 二、井身质量计算公式 (一)直井井身质量计算 1、井斜角全角变化率

连续管钻井水力参数计算软件公式2

A B C D E F G H I J 1 油 管层数油管增加的 径向长度 每层 长度 总长 度 弯曲 半径 r0/ R v 管 雷 诺 管 f管 管内 摩阻 2 1 0.0365 260. 32 260. 32 1.33 7 0.0 237 3. 17 202 031 0.00 6159 0.51 3 2 0.1059 273. 83 534. 15 1.40 6 0.0 225 3. 17 202 031 0.00 6130 0.53 4 3 0.1752 287. 34 821. 49 1.47 5 0.0 215 3. 17 202 031 0.00 6103 0.56 5 4 0.2446 300. 85 1122 .33 1.54 5 0.0 205 3. 17 202 031 0.00 6078 0.58 6 5 0.3139 314. 35 1436 .69 1.61 4 0.0 196 3. 17 202 031 0.00 6055 0.61 7 6 0.3833 327. 86 1764 .55 1.68 3 0.0 188 3. 17 202 031 0.00 6033 0.63 8 7 0.4526 341. 37 2105 .92 1.75 3 0.0 181 3. 17 202 031 0.00 6012 0.65 9 8 0.5220 354. 88 2460 .80 1.82 2 0.0 174 3. 17 202 031 0.00 5993 0.68 10 9 0.5913 368. 39 2829 .18 1.89 1 0.0 168 3. 17 202 031 0.00 5975 0.70 11 10 0.6607 381. 89 3211 .07 1.96 1 0.0 162 3. 17 202 031 0.00 5957 0.72 12 11 0.7300 288. 93 3500 .00 2.03 0.0 156 3. 17 202 031 0.00 5941 0.55 13 总摩 阻 6.72

风管的水力计算

风管的水力计算 1、对各管段进行编号,标注管段长度和风量 2、选到管段1-2-3-4-5-6为最不利环路,逐步计算摩擦阻力和局部阻力管段 1-2: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.88Pa,?Pm1-2=0.88*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩 三通 双层百叶送风口:查得ζ=3, 渐扩口:查得ζ=0.6 弯头:ζ=0.39 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=3.47m/s 汇总的1-2段的局部阻力为=(3+0.6+0.39+0.5+0.4)*1.2*3.47*3.47/2=35.3Pa 所以1-2段的总阻力为:35.3+2=37.3Pa 管段2-3: 摩擦阻力部分: L=2250,单位长度摩擦阻力Rm=1.0Pa,?Pm1-2=1.0*2.25=2.25Pa 局部阻力部分: 该段的局部阻力的部件有多页调节阀、裤衩三通 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=4.34m/s

汇总的2-3段的局部阻力为=(0.5+0.4)*1.2*4.34*4.34/2=10.2Pa 所以2-3段的总阻力为:2.25+10.2=12.5Pa 管段3-4: 摩擦阻力部分: L=8400,单位长度摩擦阻力Rm=1.33Pa,?Pm1-2=1.33*8.4=11.2Pa 局部阻力部分: 该段的局部阻力的部件有四通:ζ=1,V=5.56m/s 局部阻力=1*1.2*5.56*5.56/2=18.5Pa 所以管段3-4的总阻力 为:11.2+18.5=29.7Pa 管段4-5: 摩擦阻力部分: L=1100,单位长度摩擦阻力Rm=0.93Pa,?Pm1-2=0.93*1.1=1.023Pa 局部阻力部分: 该段的局部阻力的部件有70?防火阀、静压箱 70?多页调节阀:ζ=0.5,V=5.56m/s 静压箱的阻力约30Pa 局部阻力=0.5*1.2*5.56*5.56/2+30=39.25Pa 所以管段4-5的总阻力 为:1.023+9.25+30=40.25Pa 管段5-6: 单层百叶风口:ζ=3,V=3.17m/s 静压箱的阻力约30Pa 局部阻力=3*1.2*3.17*3.17/2+30=48Pa 所以管段5-6的总阻力为:48Pa 机外余压=机外静压+机外动压=沿程阻力+局部阻力+风管系统最远送风口的动压 =37.3+12.5+29.7+40.25+48+1.2*3.47*3.47/2=175Pa 机外静压=机外余压-设备出口处的动压

风管的水力计算

1、对各管段进行编号,标注管段长度和风量 2、选到管段1-2-3-4-5-6为最不利环路,逐步计算摩擦阻力和局部阻力 管段1-2: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.88Pa,△Pm1-2=0.88*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩三通 双层百叶送风口:查得ζ=3, 渐扩口:查得ζ=0.6 弯头:ζ=0.39 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=3.47m/s 汇总的1-2段的局部阻力为=(3+0.6+0.39+0.5+0.4)*1.2*3.47*3.47/2=35.3Pa 所以1-2段的总阻力为:35.3+2=37.3Pa 管段2-3: 摩擦阻力部分: L=2250,单位长度摩擦阻力Rm=1.0Pa,△Pm1-2=1.0*2.25=2.25Pa 局部阻力部分: 该段的局部阻力的部件有多页调节阀、裤衩三通 多页调节阀:ζ=0.5 裤衩三通:ζ=0.4,V=4.34m/s 汇总的2-3段的局部阻力为=(0.5+0.4)*1.2*4.34*4.34/2=10.2Pa 所以2-3段的总阻力为:2.25+10.2=12.5Pa 管段3-4: 摩擦阻力部分: L=8400,单位长度摩擦阻力Rm=1.33Pa,△Pm1-2=1.33*8.4=11.2Pa 局部阻力部分: 该段的局部阻力的部件有四通:ζ=1,V=5.56m/s

局部阻力=1*1.2*5.56*5.56/2=18.5Pa 所以管段3-4的总阻力为:11.2+18.5=29.7Pa 管段4-5: 摩擦阻力部分: L=1100,单位长度摩擦阻力Rm=0.93Pa,△Pm1-2=0.93*1.1=1.023Pa 局部阻力部分: 该段的局部阻力的部件有70℃防火阀、静压箱 70℃多页调节阀:ζ=0.5,V=5.56m/s 静压箱的阻力约30Pa 局部阻力=0.5*1.2*5.56*5.56/2+30=39.25Pa 所以管段4-5的总阻力为:1.023+9.25+30=40.25Pa 管段5-6: 单层百叶风口:ζ=3,V=3.17m/s 静压箱的阻力约30Pa 局部阻力=3*1.2*3.17*3.17/2+30=48Pa 所以管段5-6的总阻力为:48Pa 机外余压=机外静压+机外动压=沿程阻力+局部阻力+风管系统最远送风口的动压 =37.3+12.5+29.7+40.25+48+1.2*3.47*3.47/2=175Pa 机外静压=机外余压-设备出口处的动压 =175-1.2*5.56*5.56/2=156.5Pa 风管不平衡率的计算: 风管4-7-8的总阻力为: 管段8-7: 摩擦阻力部分: L=2300,单位长度摩擦阻力Rm=0.89Pa,△Pm1-2=0.89*2.3=2Pa 局部阻力部分: 该段的局部阻力的部件有双层百叶送风口、渐扩口、弯头、多页调节阀、裤衩三通

钻井常用计算公式

第四节钻井常用计算公式一、井架基础的计算公式 (一)基础面上的压力 P基= 式中:P基——基础面上的压力,MPa; n——动负荷系数(一般取1.25~1.40); Q O——天车台的负荷=天车最大负荷+天车重量,t; Q B——井架重量,t; (二)土地面上的压力 P地=P基+W 式中:P地——土地面上的压力,MPa; P基——基础面上的压力,MPa; W——基础重量,t(常略不计)。 (三)基础尺寸 1、顶面积F1= 式中:F1——基础顶面积,cm2; B1——混凝土抗压强度(通常为28.1kg/cm2=0.281MPa) 2、底面积F2= 式中:F2——基础底面积,cm2; B2——土地抗压强度,MPa; P地——土地面上的压力,MPa。 3、基础高度 式中:H——基础高度,m; F2、F1分别为基础的底面积和顶面积,cm2; P基——基础面上的压力,MPa; B3——混凝土抗剪切强度(通常为3.51kg/cm2=0.351MPa)。(二)混凝土体积配合比用料计算 1、计算公式 nQ O +Q B 4 P 基 B 1 P 地 B 2

配合比为1∶m∶n=水泥∶砂子∶卵石。根据经验公式求每1m3混凝土所需的各种材料如下: 2、混凝土常用体积配合比及用料量,见表1-69。 表1-69 混凝土常用体积配合比及用料量 混凝土 用途 体积 配合比 每立方米混凝 土 每立方米砂子每立方米石子 每1000公斤水 尼 水泥 kg 砂子 m3 石子 m3 水泥 kg 石子 m3 混凝 土 m3 水泥 kg 砂子 m3 混凝 土 m3 砂子 m3 石子 m3 混凝 土 m3 1.坚硬土壤上的 井架脚,小基墩井 架脚,基墩的上部 分。 1∶2∶4335 0.45 0.90 744 2 2.22 372 0.5 1.11 1.35 2.70 2.99 2.厚而大的突出 基墩。 1∶2.5∶5 276 0.46 0.91 608 2 2.20 304 0.5 1.10 1.57 3.10 3.63 3.支承台、浇灌坑 穴及其他。 1∶3∶6234 0.46 0.93 504 2 2.15 253 0.5 1.08 2.0 4.0 4.27 4.承受很大负荷 和冲击力的小基 墩。 1∶1∶2585 0.39 0.78 1500 2 2.56 750 0.5 1.28 0.67 1.34 1.71 5.承受负荷不大 的基墩。 1∶4∶8180 0.48 0.96 375 2 2.08 188 0.5 1.04 2.70 5.40 5.60 二、井身质量计算公式 (一)直井井身质量计算 1、井斜角全角变化率

喷射钻井水力参数计算方法

SY/T5234-91 喷射钻井水力参数计算方法 1主题内容与适用范围 本标准规定了石油及天然气钻井中喷射钻井水力参数的计算方法。 本标准适用于石油及天然气钻井中喷钻井水力参数计算。 2计算公式中的符号、名称及单位(见表1) 表1 序号符号名称单位 1 A b井底面积mm2 2 A J喷嘴面积mm2 3 D 钻柱外径mm 4 D b钻头直径mm 5 D h井径mm 6 D p 钻杆外径mm 7 D ro 岩屑直径mm 8 d 钻柱内径mm 9 F J 射流冲击力N 10 f o 环空净化系数—— 11 H 井深m 12 H o 临界井深m 13 K 钻井液稠度系数Pa·s n 14 k a 环空压耗系数—— 15 k b 钻头压降系数—— 16 k c 钻铤压耗系数—— 17 k ci 钻铤内压耗系数—— 18 k i 管内压耗系数—— 19 k p 钻杆压耗系数—— 20 k pi 钻杆内压耗系数—— 21 k tp 地面管汇压耗系数—— 22 L 钻柱长度m 23 L e钻铤长度m 24 L p钻杆长度m 25 N b钻头水功率kW 26 N S钻井泵实际水功率kW 27 N r钻井泵额定水功率kW 28 n 钻井液流性指数——

序号符号名称单位 29 P a环空压耗Mpa 30 P b钻头压降Mpa 31 p c 钻铤压耗Mpa 32 p i 钻柱内压耗Mpa 33 p p 钻杆压耗Mpa 34 p po 钻井循环压耗Mpa 35 p r 钻井泵额定泵压Mpa 36 p s 钻井泵工作压力Mpa 37 p sp地面管汇压耗MPa 38 Q 排量L/s 39 Q opt 最优排量L/s 40 Q r 额定排量L/s 41 Re 环空雷诺数--- 42 N u 钻头单位面积水功率W/mm2 43 νa环空返速m/s 44 ν c 临界返喷m/s 45 νj射流喷速m/s 46 νsi岩屑滑落速度m/s 47 μp塑性粘度mPa·s 48 μf钻井液粘度mPa·s 49 ρm钻井液密度g/cm3 50 ρro 岩屑密度g/cm3 51 τy屈服值Pa 52 η钻井泵水功率利用率—— 53 θ600旋转粘度计600r/min读数—— 54 θ300旋转粘度计300r/min读数—— 55 θ200旋转粘度计200r/min读数—— 56 θ100旋转粘度计100r/min读数—— 3 喷射钻井水力参数计算公式 3.1塑性粘度 μp=θ600-θ300 (1) 3.2屈服值 τy=0.479(2θ300-θ600) (2) 3.3流性指数 n=3.32log θ600 (3) θ300

连续管钻井水力参数计算软件

Dim t As Integer Private Sub Frame1_DragDrop(Source As Control, X As Single, Y As Single) End Sub Private Sub Form_Load() t = 1 End Sub Private Sub Timer1_Timer() t = t - 1 If (t = 0) Then Timer1.Enabled = False Me.Hide Form2.Show End If End Sub

VERSION 5.00 Begin VB.Form Form1 Caption = "连续油管钻井水力参数计算软件" ClientHeight = 8160 ClientLeft = 120 ClientTop = 450 ClientWidth = 15435 FillColor = &H000080FF& LinkTopic = "Form1" LockControls = -1 'True ScaleHeight = 8160 ScaleWidth = 15435 StartUpPosition = 3 '窗口缺省 WindowState = 2 'Maximized Begin VB.Timer Timer1 Interval = 1000 Left = 9600 Top = 7560 End Begin https://www.360docs.net/doc/0f15084629.html,bel Label2 Caption = " 欢迎使用 CT钻井水力参 BeginProperty Font Name = "宋体" Size = 21.75 Charset = 134 Weight = 700 Underline = 0 'False Italic = 0 'False Strikethrough = 0 'False EndProperty ForeColor = &H8000000D& Height = 2535 Left = 3480 TabIndex = 1 Top = 1680 Width = 9015 End Begin https://www.360docs.net/doc/0f15084629.html,bel Label1 Caption = " 联系方式:948453545@https://www.360docs.net/doc/0f15084629.html," BeginProperty Font Name = "宋体" Size = 15.75 Charset = 134 Weight = 400 Underline = 0 'False Italic = 0 'False Strikethrough = 0 'False EndProperty Height = 975 Left = 10920 TabIndex = 0 Top = 7200 Width = 4455 End End

钻井水力参数计算

已知:某216mm 井眼,井深3005m ,钻具组合为216mmbit+177.8mmDC(309m ,内径71.44mm)+ +127mmDP(内径108.6mm ,2696m),钻井液密度1.35g/cm 3,Φ600=47,Φ300=32,Φ3=4,泵的排量为34.55l/s ,最大泵压 18MPa ,试设计本井段的水力参数。流量系数C=0.98 1.流变参数计算 钻杆内流型指数: 5546.0)32/47log(322.3)/log(322.3300600==ΦΦ=p n 钻杆内稠度系数: )(5146.01022 /47511.01022 /511.05546 .0600n n p Pas K p =?=Φ= 环空流型指数: 4515.0)4/32log(5.0)/log(5.03300==ΦΦ=a n 环空稠度系数: 9786.0511 /511.0511 /511.04515 .0300=?=Φ=a n a K 2.计算钻柱内压力损失 钻杆内分两段,分别是177.8mm 钻铤(309m ,内径71.44mm ),2696mm 钻杆2800米,先分别计算钻柱内水力压力损失。 (1)钻杆内 1)钻杆内流速 s m d Q V i p /725.3) 1086.0(*1415.310 *55.34*442 3 2 == = -π 2)计算管内雷诺数 5.11693554 6.0415546.035146.08 7 .21086 .01035.14138 Re 5546 .01 5546.05546 .025546 .031 2=? ? ? ???+????=? ?? ? ??+= ----p p p p n p p p n n p n i n n K V d ρ 3)判别流态 若n 13703470Re -<,则为层流 若n 13704270Re ->,则为紊流

钻井常用计算公式

第四节 钻井常用计算公式 一、井架基础的计算公式 (一)基础面上的压力 P 基= 式中:P 基——基础面上的压力,MPa ; n ——动负荷系数(一般取1.25~1.40); Q O ——天车台的负荷=天车最大负荷+天车重量,t ; Q B ——井架重量,t ; (二)土地面上的压力 P 地=P 基+W 式中:P 地——土地面上的压力,MPa; P 基——基础面上的压力,MPa; W ——基础重量,t (常略不计)。 (三)基础尺寸 1、顶面积F 1= 式中:F 1——基础顶面积,cm2; B 1——混凝土抗压强度(通常为28.1kg/cm2=0.281MPa) 2、底面积F 2= 式中:F 2——基础底面积,cm 2; B 2——土地抗压强度,MPa ; P 地——土地面上的压力,MPa 。 3、基础高度 式中:H ——基础高度,m ; F2、F1分别为基础的底面积和顶面积,cm 2; P 基——基础面上的压力,MPa ; B 3——混凝土抗剪切强度(通常为3.51kg/cm 2=0.351MPa )。 (二)混凝土体积配合比用料计算 1、计算公式 nQ O +Q B 4 P 基 B 1 P 地 B 2

配合比为1∶m ∶n=水泥∶砂子∶卵石。根据经验公式求每1m 3混凝土所需的各种材料如下: 2、混凝土常用体积配合比及用料量,见表1-69。 表1-69 混凝土常用体积配合比及用料量 二、井身质量计算公式 (一)直井井身质量计算 1、井斜角全角变化率 式中:G ab ——测量点a 和b 间井段的井斜全角变化率,(°)/30m ;

△L ab——测量点a和b间的井段长度,m; αa——测量点a点处的井斜角,°; αb——测量点b点处的井斜角,°; △Φab——测量点a和b之间的方位差,△Φab=Φb-Φa,°。 2、井底水平位移 式中:S Z——井底水平位移,m; N O——井口N座标值,m; N n——实际井底N座标值,m; E O——井口E座标值,m; E n——实际井底E座标值,m。 3、最大井斜角 根据井深井斜测量数据获取或井斜测井资料获得。 4、平均井径扩大系数 式中:C p——平均井径扩大系数,无因次量 D实——实际平均井径,mm; D b——钻头名义直径,mm。 5、最大井径扩大系数 式中:C max——最大井径扩大系数,无因次量; D max——实际最大井径,mm; D b——钻头名义直径,mm。 (二)定向井井身质量计算 1、井斜全角变化率计算公式同(一) 2、定向井井底水平偏差距 式中:S s——定向井井底水平偏差距,m; N d——设计井底座标,m; N n——实际井底的N座标,m;

水力计算说明书

水力计算说明书 一.风管水力计算 风管压力损失计算的根本任务是解决如下两个问题:设计计算和校核计算。确定好设备布置、风量、管道走向等之后,应经济合理地确定风管的断面尺寸,以保证实际风量符合设计要求;计算系统总阻力,以确定风机的型号及相应的电机;计算风机及相应电机是否满足要求。 本设计中,风管压力损失计算根据《实用供热空调设计手册》风管计算方法来确定。水力计算的方法及步骤如下: (1)计算步骤: ①绘制空调系统轴测图,并对各段风管进行编号,标注。 ②设定风管内的合理流速。 ③根据各风管的风量和选择的流速确定各管段的断面尺寸,计算沿程阻力和局部阻力。 ④与最不利环路并联的管路的阻力平衡计算。 为了保证各送风点达到预期的风量,必须进行阻力平衡计算。一般的空调系统要求并联管路之间的不平衡率应不超过15%。若超出上述规定,则应采用下面几种方法使其阻力平衡。 ①在风量不变的情况下,调整支管管径; ②在支管断面尺寸不变情况下,适当调整支管风量; ③在风量不变的情况下,在支管加平衡阀。 (2)系统总阻力的计算 计算风管的压力损失:通过对风管的沿程压力损失和局部压力损失的计算,最终确定风管的尺寸。 ①矩形风管截面积: 3600 ×= V L S 其中:L 为风管的流量,单位:m3/h V 为风管假定的流速,单位:m/s ,本设计中取V=9m/s ②沿程压力损失: L R P m m =Δ 其中:R m 为单位长度的比摩阻, Pa/m L 为管长,m

③局部压力损失: 2 ρξp 2 m v = 其中:ξ为局部阻力系数; ρ为空气的密度,kg/m 3 ν与ξ对应的风道断面平均速度,m/s 。 ④风管的压力损失 s j m P P P P ΔΔΔΔ++= 其中, s P Δ为风系统设备阻力,Pa 。 (2)计算最不利环路的压力损失 计算结果如下: 各机组出口送风管管径汇总 风管管径 空调机组 楼层 设备型号 送风量m3/h 制冷量KW 机组管径 长*宽 实际流速 覆盖区域散流器个数 负一层 KBG50-4 8623.8 135 630*320 11.13 9 KBG80-6 8623.8 135 800*320 10.65 9 KBG120-4 11498.4 180 1000*400 9.98 12 KBG70-4 7665.6 120 800*320 10.45 8 KBG70-4 5749.2 90 630*320 11.09 6 KBG80-4 8623.8 135 800*320 10.87 9 KBG60-4 5749.2 90 630*320 11.02 6 KBG80-4 5749.2 90 630*320 10.78 6 KBG70-4 7665.6 120 630*320 10.34 8 KBG70-4 7665.6 120 630*320 10.75 8 KBG70-4 7665.6 120 630*320 10.35 8 KBG100M-4 14373 225 1000*400 9.57 15 KBG140-4 14373 225 1000*400 9.43 15 KBG70-4 7665.6 120 630*320 10.57 8 KBG70M-4 4791 75 630*320 11.01 5 一层 KBG120-6 15264.2 229.6 800*400 12.02 14 KBG120-4 15264.2 229.6 1000*400 11.93 14 KBG80-4 9812.7 147.6 1000*320 10.83 9 KBG80-4 11993.3 180.4 800*320 11.59 11 KBG80-4 10903 164 630*320 12.45 10 KBG80-4 9812.7 147.6 800*320 10.37 9

相关文档
最新文档