顺磁性抗磁性铁磁性

顺磁性抗磁性铁磁性
顺磁性抗磁性铁磁性

原子物理学

顺磁性,抗磁性,铁磁性

指导教师:XXX

专业:XXXX

学号:XXXXXXXXXX

姓名:XXX

XXXX大学

XXXX年X月X日

顺磁性,抗磁性,铁磁性

摘要:

一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相反,此类物质称为抗磁性的;另一些物质放在磁场中经过磁化后,它的宏观磁矩方向同磁场方向相同,此类物质称为顺磁性的;而某些物质,如铁、钴、镍以及一些稀土元素和许多氧化物,在受到外磁场磁化后,显出比顺磁性强的很多的磁性,在失去磁场后,还保留磁性,这种现象称为铁磁性。

关键词:顺磁性,抗磁性,铁磁性

一、顺磁性

简介:顺磁性物质的磁化率为正值,比反磁性大1~3个数量级,X约10^-5~10^-3,遵守Curie定律或Curie-Weiss定律。物质中具有不成对电子的离子、原子或分子时,存在电子的自旋角动量和轨道角动量,也就存在自旋磁矩和轨道磁矩。在外磁场作用下,原来取向杂乱的磁矩将定向,从而表现出顺磁性。

定义:顺磁性是一种弱磁性。当分子轨道或原子轨道上有落单的原子或电子时,就会产生顺磁性。顺磁(性)物质的主要特点是原子或分子中含有没有完全抵消的电子磁矩,因而具有原子或分子磁矩。但是原子(或分子)磁矩之间并无强的相互作用(一般为交换作用),因此原子磁矩在热骚动的影响下处于无规(混乱)排列状态,原子磁矩互相抵消而无合磁矩。但是当受到外加磁场作用时,这些原来在热骚动下混乱排列的原子磁矩便同时受到磁场作用使其趋向磁场排列和热骚动作用使其趋向混乱排列,因此总的效果是在外加磁场方向有一定的磁矩分量。这样便使磁化率(磁化强度与磁场强度之比)成为正值,但数值也是很小,一般顺磁物质的磁化率约为十万分之一(10^-5),并且随温度的降低而增大。

原理:顺磁性物质可以被看作是由许多微小的磁棒组成的,这些磁棒可以旋转,但是无法移动。这样的物质受到外部磁场的影响后其磁棒主要顺磁力线方向排列,但是这些磁棒互相之间不影响。热振动不断地使得磁棒的方向重新排列,因此磁棒指向不排列比排列的可能性高。因此磁力线的强度越强顺磁性物质内磁棒的排列性就越强。以上模型当然只是一个简化的模型。实际上顺磁性物质内部并没有小磁棒,而是微观的磁矩。在顺磁性物质中这些磁矩互相之间不影响。然而与铁磁性不同的是在顺磁性物质中外部磁场消失后物质内的磁场立刻就由于热运动消失了。磁化向量与磁场强度成正比

,

物质的磁化率越高,它就越容易被磁化。因此磁化率是衡量顺磁性的强度的量。

由于磁化率和相对磁导率之间有以下简单关系磁导率往往也被看

作是衡量顺磁性的量。假如磁矩之间有耦合的话物质内就会产生磁性有序状态,在这种情况下磁化率会非常复杂,因此这样的物质不再是顺磁性的。总的来说这

样的物质的磁性有序状态在一个阈温度以上会被破坏,由于物质中依然有磁矩,因此在这个温度以上这样的物质呈顺磁性。铁磁性物质均拥有极大的磁化率,但是大的磁化率不一定就说明一个物质是铁磁性的。

分类:从经典物理学出发物质的顺磁性无法完全被解释,只有从量子力学出发这个特征才能被完全理解。对于磁学最重要的认识是一个原子状态的总角动量总是与其磁矩相连的:

在这里是电子自旋g因子,是玻尔磁子。原子的总角动量由以下三部分组成:

1自旋

2电子的角量子数

3核子的核自旋。

核自旋导致的磁矩非常弱,对磁化率基本上没有多少作用,因此这个量一般不被顾及,不过这个量还是可以被测量得到的,医学中使用的核磁共振成像就是测量这个量获得的。

种类:常见的顺磁物质有氧气、金属铂(白金)、一氧化氮、含掺杂原子的半导体{如掺磷(P)或砷(As)的硅(Si)}、由幅照产生位错和缺陷的物质等。还有含导电电子的金属如锂(Li)、钠(Na)等,这些顺磁(性)金属的顺磁磁化率却与温度无关,这种金属的特殊顺磁性是可以用量子力学解释的。

二、抗磁性

简介:抗磁性是一些物质的原子中电子磁矩互相抵消,合磁矩为零。但是当受到外加磁场作用时,电子轨道运动会发生变化,而且在与外加磁场的相反方向产生很小的合磁矩。这样表示物质磁性的磁化率便成为很小的负数(量)。磁化率是物质在外加磁场作用下的合磁矩(称为磁化强度)与磁场强度之比值,符号为κ。一般抗磁(性)物质的磁化率约为负百万分之一(-10^-6)。

定义:抗磁性是物质抗拒外磁场的趋向,因此,会被磁场排斥。所有物质都具有抗磁性。可是,对于具有顺磁性的物质,顺磁性通常比较显著,遮掩了抗磁性。

[17] 只有纯抗磁性物质才能明显地被观测到抗磁性。例如,惰性气体元素和抗腐蚀金属元素(金、银、铜等等)都具有显著的抗磁性。当外磁场存在时,抗磁性才会表现出来。假设外磁场被撤除,则抗磁性也会遁隐形迹。

原理:抗磁性的成因,是当物质处在外加磁场中,外加磁场使得物质电子轨道(更

精确的讲法:轨域)运动产生改变的连带效应。当施加一外源磁场B时,会对运动中的电子(电荷q)产生了磁力F:F= q v×B。此力改变了电子所受的向心力,使得电子轨道运动或是加速,或是减慢。电子速度因此受到改变,而连带改变了其与外加磁场相反方向上的轨道磁矩。

考虑两个电子轨域:一个顺时针运动,一个逆时针运动。一进入页面方向的外加磁场会使顺时针转动电子的向心力增加,而使其自页面出来方向上的磁矩增加。同样的外加磁场则会使逆时针转动电子的向心力减少,而使其进入页面方向上的磁矩减少。两者的改变都与进入页面方向的外加磁场相抗衡。然而,外加磁场对于多数日常物质所感生的磁矩却非常小,因此净效应会是一种斥力。

所有物质都会对外加磁场作出不同程度的抗磁性反应;但是对于同时拥有其他磁性性质的材料来说(如铁磁性和顺磁性),抗磁性可以完全忽略不计。那些仅仅或者很大程度显示抗磁性的物质被称之为抗磁性材料或者抗磁性子。那些被认为具有抗磁性的材料通常被非物理学家作为非磁性物质看待。它们包括水,DNA,绝大多数有机化合物如石油和一些塑料,和金属如水银(元素),金和铋。

朗之万抗磁性理论

朗之万抗磁性理论可用于解释闭壳层原子构成的物质的抗磁性。强度的磁场作用在电荷量为 e 质量为的电子上,电子受洛伦兹力作用将进行频率为

的拉莫尔进动。单位时间内转动速度为,含个电子的

原子所产生的环状电流为(采用国际单位制)

环状电流产生的磁矩等于电流强度与闭合环包含的面积。假定外场沿轴方

向。平均的环内面积为,其中为电子到轴的均方距离。可知

磁矩为

若电荷分布呈球对称, 可设,其中为电

子到核的均方距离。则。若为单位体

积原子数,抗磁性磁化率为

种类:常见的抗磁物质:水、金属铜、碳(C)和大多数有机物和生物组织。抗磁物质的一个重要特点是磁化率不随温度变化。

三、铁磁性

简介:指的是一种材料的磁性状态,具有自发性的磁化现象。各材料中以铁最广为人知,故名之。某些材料在外部磁场的作用下得而磁化后,即使外部磁场消失,依然能保持其磁化的状态而具有磁性,即所谓自发性的磁化现象。所有的永久磁铁均具有铁磁性或亚铁磁性。

原理:铁磁性的原理可由两个量子力学描述的现象成功的预测:自旋和泡利不相容原理。

电子的自旋加上其轨道角动量导致一个偶极子磁矩和形成一个磁场。在大多数物质中所有电子的总偶极磁矩为零。只有电子层不满的原子(电子不成对)可能在没有外部磁场的情况下表现一个净磁矩。铁磁性物质有许多这样的电子。假如它们排列在一起的话它们可以一起产生一个可观测得到的宏观场。

这些偶极趋于指向外部磁场的方向。这个现象被称为顺磁性。铁磁性物质的偶极趋于在没有外部磁场的情况下也指向同一方向。这是一个量子力学现象。

按照古典电磁学,两个临近的磁偶极趋于指向相反的方向,因此,它们的磁场会互相抗拒,互相抵销。但是,由于单独自旋产生的磁场很小,这效应很微弱,形成的排列很容易就会被热涨落摧毁。在有些物质里,由于一种称为交换相互作用的特别量子力学效应,自旋与自旋彼此之间方向的改变,会导致临近电子静电排斥力的改变。在近距离,交换相互作用会比偶极-偶极磁相互作用强劲很多。因此,对于铁磁性物质,临近电子的自旋趋于指向同样的方向。

根据包立不相容原理,两个自旋相同的电子不能占有同样的位置。因此,两个临近原子的位于最外电子层的不成对价电子,当它们的轨域相互重叠时,假若自旋方向相同(平行自旋),则电荷分布会比较分散,否则,电荷分布会比较集中。所以,促使自旋方向相同这动作会降低电势能,使得平行自旋态更为稳定。简言之,因库伦力而互相排斥的电子,借着平行自旋使得电荷分布更加分散,从而降低电势能。这能量差称为交换能。

在长距离上(数千离子)交换能的作用逐渐被经典偶极相对排列的趋势掩盖,这是在平衡(没有磁性的)情况下铁磁性物质的偶极总的来说不排列起来的原因。在没有磁性的铁磁性物质中其磁偶极被分割在外斯畴中。每个外斯畴内部短距离地磁偶极排列指向同一方向,但是在长距离上不同外斯畴的磁偶极的排列不一致。不同外斯畴之间的边界被称为畴壁,畴壁内原子之间的指向逐渐更改。

因此一块铁一般没有磁性,或者其磁性非常弱。但是在一个足够强的外部磁场中,所有外斯畴会沿着这个磁场排列,在外部磁场消失后这些外斯畴会继续保存其同一的指向。这个磁场与外部磁场之间的关系由一条磁滞曲线描写。虽然这个排列

整齐的外斯畴的能量不是最低的,但是它非常稳定。在海底的磁铁矿会上百万年地指向它形成时的地磁场方向。通过加热再在没有外部磁场的情况下冷却磁铁的磁场会消失。

温度升高后热振荡(或熵)与铁磁性的偶极排列竞争。温度高于居里点后晶体内发生二级相变,整个系统无法磁化,在有外部磁场的情况下这时铁磁性物质显示顺磁性。在居里点下对称破缺,外斯畴形成。居里点本身是一个阈值,理论上这里的磁化率为无穷大,虽然这里没有磁化,但是在任何长度范围内均有类似外斯畴的自旋波动。

种类:到目前为止,仅有四种金属元素在室温以上是铁磁性的,即铁,钴,镍和钆,极低低温下有五种元素是铁磁性的,即铽、镝、钬、铒和铥。

相关主题
相关文档
最新文档