重合闸说明及图

合集下载

电力系统继电保护课件-第5章-自动重合闸铭

电力系统继电保护课件-第5章-自动重合闸铭
b、在正常工作情况下,由于某种原因(保护误动、误碰跳闸机构 等)使检无压侧(M侧)误跳闸时,因线路上仍有电压,无法进 行重合(缺陷),为此,在检无压侧也同时投入同步检定继电器 ,使两者的触点并联工作。这样,在上述情况下,同步检定继电 器工作,可将误跳闸的QF重新合闸。
三、重合闸时间的整定
1、单侧电源线路的重合闸时间 原则上越快越好,但应力争重合成功。
四、 自动重合闸与继电保护的配合
重合闸前加速保护优缺点 优点: 快速切出故障; 保证发电厂重要变电所母线的电压在0.6~0.7的额定电压之上 使用设备少。
缺点: 永久性故障,再次切除故障的时间可能很长; 装ZCH的QF动作次数多; 若QF拒动,将扩大停电范围。 主要用于35KV以下的网络。
2 、重合闸后加速保护(简称“后加速”) 每条线路上均装有选择性的保护和ZCH。 第一次故障时,保护按有选择性的方式动作跳闸,若是永久性故
当重合于永久性故障上时,自动重合闸将带来哪些不利的影响?
(1)使电力系统又一次受到故障的冲击; (2)由于断路器在很短的时间内,连续切断两次短路电 流,而使其工作条件变得更加恶劣。
二、对自动重合闸装置的基本要求
正常运行时,当断路器由继电保护动作或其它原因而跳闸后, 自动重合闸装置均应动作 。 由运行人员将断路器断开时,自动重合闸不应起动。 手动重合于故障线路时,继电保护动作将断路器跳开,不允许 重合 继电保护动作切除故障后,自动重合闸装置应尽快发出合闸脉 冲 自动重合闸装置动作次数应符合预先的规定。 自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电 保护的动作 ,以便加速故障的切除 。 动作后应能自动复归。
障,重合后则加速保护动作,切除故障。
重合闸后加速保护优缺点
优点: 第一次跳闸时有选择性的,不会扩大停电范围; 再次切除故障的时间加快,有利于系统并联运行的稳定性。

对闭锁重合闸逻辑的说明

对闭锁重合闸逻辑的说明

对闭锁重合闸逻辑的说明
一、智能终端中闭锁重合闸逻辑如下图
图1闭锁重合闸判别
以下4种情况产生闭重信号:
1.在GOOSE遥跳或手跳情况下产生闭锁重合闸信号;
2.在GOOSE TJR(永跳)有效情况下产生闭锁重合闸信号;
3.在非电量直跳有效情况下产生闭锁重合闸信号;
4.在闭锁重合闸开入有效情况下产生闭锁重合闸信号;
二、GOOSE遥跳和手跳增加保持的逻辑说明
图2闭锁重合闸判别
如上图逻辑,增加GOOSE遥跳或手跳的保持,直至GOOSE遥合或手合有效解除保持;
三、闭锁重合闸信号的应用说明
过程层智能终端产生闭锁重合信号后,该信号上送给间隔层装置,间隔层装置使用该信号给重合闸放电,确保开关不会误合闸。

在工程实际应用中通过间隔层重合闸的放电来保证手跳和遥跳时对重合闸逻辑的闭锁,
而非通过保持GOOSE遥跳和手跳信号达到闭锁目的。

在现场调试过程中,有现场反馈南瑞继保该信号一直保持,其他厂家多为不保持。

目前SHR为不保持。

上海思源弘瑞自动化有限公司
2013-12-18。

线路重合闸的应用

线路重合闸的应用

线路重合闸的应用摘要:生产生活中对电力的需求很大,线路重合闸是保证电力系统能够正常运行的重要方式,重合闸保护在220kV线路保护中也是重要的保护之一,它对电力系统安全稳定地运行起着极为重要地作用,能够使电力系统更加稳定可靠运行。

本文主要分析重合闸在220kV线路保护中特点及其应用。

关键词:线路保护;重合闸;安全稳定;启动回路引言以某电厂220kV线路保护配置为例,该公司线路保护采用南瑞RCS-931A组成第一套线路保护和许继WXH-803A +WDLK-861A组成第二套线路保护的双套保护加 CZX-12R2 操作箱的保护配置。

本文将从线路保护重合闸的基本原理、二次回路配置等方面进行阐述,以使继电保护人员深入理解线路保护重合闸,进一步提高继电保护人员对重合闸的认识及事故判断的准确性。

1 输电线路装设重合闸的意义重合闸是为保证系统的安全稳定运行而设置的一种自动控制装置,当输电线路故障清除后,在短时间内再次将断路器合闸,称为重合闸。

由于实际上大多数输电线路故障为瞬时或暂时性的,因此重合闸是运行中线路常采用的自恢复供电的方法之一。

重合闸装置是将因故障跳开后的断路器按需要自动投入的一种自动装置,电力系统运行经验表明,输电线路绝大多数的故障都是“瞬时性”的,永久性的故障一般不到10%[1]。

因此,在由继电保护动作切除短路故障后,电弧将自动熄灭,绝大多数情况下短路处的绝缘可以自动恢复。

因此,断路器自动重合闸不仅提高了供电的安全性和可靠性,减少了停电损失,而且还提高了电力系统的暂态水平,增大了高压线路的送电容量,也可纠正由于断路器或继电保护装置的原因造成的误跳闸。

所以,输电线路经常会采用自动重合闸。

2 重合闸装置的作用与工作方式2.1 重合闸装置的作用重合闸装置在高压输电线路中的作用,大致分为以下四种:(1)提高供电的可靠性,减少因瞬时性故障停电造成的损失,对单侧电源的单回线的作用尤为显著。

(2)对于双端供电的高压输电线路,可提高系统并列运行的稳定性,因而,自动重合闸技术被列为提高电力系统暂态稳定的重要措施之一。

9.自动重合闸(共43张)

9.自动重合闸(共43张)
第10页,共43页。
五、装设重合(chónghé)闸的规定
第11页,共43页。
六、重合 闸的分类 (chónghé)
第12页,共43页。
9.2 单侧电源(diànyuán)线路三相一次自动重合 闸
三相一次自动重合闸就是在输电线路上发生任何故障, 继电保护装置将三相断路器断开时,自动重合闸起
动,经0.5~1s的延时,发出重合脉冲,将三相断路器
第27页,共43页。
9.3 双侧电源线路的三相(sān 一次重合 xiānɡ) 闸
一、 双侧电源线路重合闸的特点
(1)当线路上发生故障时,两侧的保护装置可能以不同的时 限动作于跳闸,例如一侧为第I段动作,而另一侧为第II段动作,
此时为了保证故障点电弧的熄灭和绝缘强度的恢复,以使重合闸有 可能成功,线路两侧的重合闸必须保证在两侧的断路器都跳闸以后, 再进行重合; (2)当线路上发生故障跳闸以后,常常存在着重合闸时两侧电源是否
制。
后加速保护的的缺点:
(1)每个断路器上都需要装设一套重合闸,与前加速 相比较为复杂。
(2)第一次切除故障可能带有延时。
应35用KV:以上的网络(wǎngluò)及对重要负荷供电的送电线
路。
第26页,共43页。
四、重合闸时间的整定原则
M1
2N
(1) 单侧电源(diànyuán)线路重合闸
k
▪故障点电弧熄灭及周围介质绝缘强度的恢复时间t u;
第九章 自动 重合闸 (zìdòng)
9.1 自动重合闸的作用及要求
9.2 单侧电源线路三相一次重合闸 9.3 双侧电源线路三相一次重合闸 9.4 单相自动重合闸与综合自动重合闸
第1页,共43页。
9.1 自动重合闸的作用及要求

自适应重合闸原理介绍

自适应重合闸原理介绍

在断开相上的电容 通过并联电抗器放电产生 电容电感的谐振,产生很 高的谐振过电压。
谐振频率不是工频,决定于电容和电感的数 值。工频的电源电压也作用于断开相。两个不同频率 的电压作用在同一个回路上必然产生拍频电压。
uh (t) = U1 ⋅ cos(ωt + θ ) + U 2 ⋅ cos(ω0t + ϕ)
电压判据 z 电压判据是建立在测定单相自动重合
闸过程中断开相两端电压的大小来区 分瞬时性故障和永久性故障的。 z 电压判据的公式为:
U > k k U xL
特高压线路一般都带有并联电抗器补偿,如果 并联电抗之间的电磁能量振荡,使得断开相恢复电压由 自由振荡分量与工频分量叠加而成。
(1)潜供电流的问题
所以潜供电流的纵分量除受对地电容的大小影响 之外,其大小和方向基本上取决于故障点的位置。显 然,当故障发生在线路中间点时,由于故障点两侧线 路对称,电流的纵分量接近于零。
(1)潜供电流的问题
在大部分无补偿情况下电容分量起主要作用。 当潜供电弧(电流)熄灭后,同样由于相间电容 和互感的作用,在原弧道间出现恢复电压,这就增加 了故障点自动熄弧的困难,以致单相重合闸失败。 为了提高单相自动重合闸的成功率,潜供电流和 恢复电压都应限制在较小值。
目前的自动重合闸装置都是在断路器 跳闸后盲目进行重合的,因此,当重合于 永久性故障时,不仅不能恢复系统的正常 供电,而且对系统稳定和电气设备所造成 的危害将超过正常运行状态下发生短路时 对系统的危害。
1.故障点通过很大的短路电流和再次燃起的电 弧,使故障元件遭到破坏。 2.由于发热和电动力的作用,将引起非故障元 件的损坏。 3.破坏电力系统并列运行的稳定性,引起系统 振荡,甚至瓦解。 4.使断路器的工作条件变得更加严重。

线路重合闸的投退操作方法及顺序

线路重合闸的投退操作方法及顺序

线路重合闸的投退操作方法及顺序说明一、重合闸说明1、本装置重合闸为一次重合闸方式, 可实现单相重合闸、三相重合闸或综合重合闸;可根据故障的严重程度引入闭锁重合闸的方式。

重合闸的起动方式可以由保护动作起动或开关位置不对应起动方式;二套装置的重合闸可以同时投入,不会出现二次重合,正常时只允许投入两套保护中重合闸的一个出口压板即只投一个1LP4: 重合闸出口:2、重合闸方式由外部切换1QK把手决定,其功能表如下:开入量单重三重综重停用重合方式1 0 1 0 1重合方式2 0 0 1 1当线路重合闸投入单重或停用时,应分别将二套装置的外部切换1QK投在相应位置。

3、重合闸方式开关打在停用位置,仅表明本装置的重合闸停用,保护仍是选相跳闸。

要实现线路重合闸停用,即任何故障三跳且不重,则应将“闭重三跳”压板投入。

闭重三跳输入,其意义是:(1 )沟三跳,即单相故障保护也三跳;(2 )闭锁重合闸,如重合闸投入则放电。

4、本装置的重合闸起动方式有:(1 )位置(TWJ )接点确定的不对应起动(由整定控制字确定是否投入);(2 )本保护动作起动;(3 )其它保护动作起动;二、重合闸投退原则1、投入:先选择投入的重合闸方式,再投入重合闸出口,最后退出勾通三跳。

2、退出:先投入勾通三跳,再选择投入的重合闸方式,最后退出重合闸出口。

三、单相重合闸的投入步骤:(1)将RCS—902A、RCS—931A两套保护的重合闸方式开关1QK切换至单重位置,(在RCS—902A、RCS—931A保护装置#保护状态#进入#开入显示#菜单中检查重合方式1置0,重合方式2置0,确保单相重合闸方式内部生效)。

(2)投入 RCS—902A、RCS—931A两套保护的其中一套的1LP4合闸出口压板(3)退出RCS—902A、RCS—931A两套保护的1LP21勾通三跳压板,(在RCS—902A、RCS—931A保护装置#保护状态#进入#开入显示#菜单中检查沟通三跳变位置0,确保内部生效)。

自动重合闸的作用及要求

自动重合闸的作用及要求

第六章自动重合闸第一节自动重合闸的作用及要求一、自动重合闸在电力系统中的作用架空线路故障大都是“瞬时性”的故障,在线路被继电保护迅速动作控制断路器断开后,故障点的绝缘水平可自行恢复,故障随即消失。

此时,如果把断开的线路断路器重新合上,就能够恢复正常的供电。

此外,也有“永久性故障”,“永久性故障”在线路被断开之后,它们仍然是存在的,即使合上电源,也不能恢复正常供电。

因此,在电力系统中采用了自动重合闸装置,即是当断路器由继电保护动作或其它非人工操作而跳闸后,能够自动控制断路器重新合上的一种装置。

二、重合闸在电力系统中的作用•大大提高供电的可靠性,减少线路停电的次数。

•在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳定性。

•在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。

•对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。

但是,当重合于永久性故障上时,它也将带来一些不利的影响,如:(1)使电力系统又一次受到故障的冲击;(2)由于断路器在很短的时间内,连续切断两次短路电流,而使其工作条件变得更加恶劣。

三、对自动重合闸装置的基本要求•正常运行时,当断路器由继电保护动作或其它原因而跳闸后,自动重合闸装置均应动作。

•由运行人员手动操作或通过遥控装置将断路器断开时,自动重合闸不应起动。

•继电保护动作切除故障后,自动重合闸装置应尽快发出重合闸脉冲。

•自动重合闸装置动作次数应符合预先的规定。

•自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便加速故障的切除。

•在双侧电源的线路上实现重合闸时,重合闸应满足同期合闸条件。

•当断路器处于不正常状态而不允许实现重合闸时,应将自动重合闸装置闭锁。

第二节单侧电源线路的三相一次自动重合闸三相一次自动重合闸就是在输电线路上发生任何故障,继电保护装置将三相断路器断开时,自动重合闸起动,经0.5~1s的延时,发出重合脉冲,将三相断路器一起合上。

自动重合闸

自动重合闸

3、 U 的大小与相位(或频率)的关系: s t U 2U M sin 2U sin (6.7) 2 2
可见,U 将随着δ (角频率ω S)的增大而增大。
加于同步检查继电器上的电压△U与幅值和相位的关系 (a) 幅值不等但同相位; (b) 不同相位,但幅值相等
重合闸后加速
当线路发生故障后,保护有选择性地动作切除故障,重合闸进行—次重合 以恢复供电。若重合于永久性故障时,保护装臵即不带时限无选择性的动作断 开断路器,这种方式称为重合闸后加速。
断路器灭弧
电弧的特点是: (1)起弧电压、电流数值低 (2)电弧能量集中,温度很高 (3)电弧是一束质量很轻的游离 态气体,在外力作用下,很易弯曲、 变形。 (4)电弧有良好的导电性能、具 有很高的电导: (5)电弧有阴极区(包括阴极斑 点)、弧柱区(包括弧柱、弧焰)、 阳极区(包括阳极斑点)三部分组 成。 游离作用: 当开关工作时,介质会由绝缘状 态变成导电状态。介质的放电现象 是由于电场、热、光的作用下,介 质里的中性质点产生自由电子、正、 负离子的结果。这种现象我们称为 游离作用。在介质中产生的游离作 用达到一定程度时,介质将被击穿, 而产生电弧放电。电弧的形成是由 于介质的游离而发生的。
7
2015-3-24
KKJ(合后继电器)
KKJ的由来 现在微机保护操作回路都会有KKJ继电 器。它是从电力系统KK操作把手的合后位 臵接点延伸出来的,所以叫KKJ。 KKJ继电器实际上就是一个双圈磁保持 的双位臵继电器。该继电器有一动作线圈 和复归线圈,当动作线圈加上一个“触发 ”动作电压后,接点闭合。此时如果线圈 失电,接点也会维持原闭合状态,直至复 归线圈上加上一个动作电压,接点才会返 回。当然这时如果线圈失电,接点也会维 持原打开状态。手动/遥控合闸时同时启动 KKJ的动作线圈,手动/遥控分闸时同时启 动KKJ的复归线圈,而保护跳闸则不启动复 归线圈(保护跳闸和手动/遥控跳闸回路之 间加有的二极管就是为实现此目的)。这 样KKJ继电器(其常开接点的含义即我们传 统的合后位臵)就完全模拟了传统KK把手 的功能,这样既延续了电力系统的传统习 惯,同时也满足了变电站综合自动化技术 的需要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-KM
二、动作原理
图25-1是采用DH-2AG 型重合闸继电器的三相一次式电气自动重合闸装置的展开图(图中仅绘出了与ZCH 有关的部分)。

这种ZCH 属于一次式电气自动重合闸。

1. 正常运行是时电容C 的充电回路
线路正常运行时,断路器在合闸状态,其DL 3常闭接点断开;控制开关KK 在合闸后位置时,接点KK 21-23接通,ZCH 中的电容C 处在充电状态。

如图25-2(A )所示,其充电通路为+K M →KK 21-23→4R →C →-KM ;此时,信号灯XD 亮,指示控制母线KM 的电压正常,电容C 已处在充电状态。

2.ZCH 装置的起动
当断路器DL
事故跳闸,面控制开关KK 仍处在合闸位置时,接点KK 21-23但断路器事故跳闸时,其辅助常闭接点DL 闭合,接通了ZCH 的起动回路,于是ZCH 中的时间继电器SJ 经它本身的瞬时常闭接点SJ 2而动作。

SJ 动作后,其常闭接点SJ 2瞬时断开,使电阻5R 串入
SJ 的线圈电路中,这时SJ 继续保持在动作状态,串入5R 的目的是为了限制流过SJ 线圈的电流,免使线圈受热(图中SJ 的线圈不是按长期接上额定电压来设计的)。

ZCH 的起动如图25-2(B )所示。

时间继电器SJ 动作后,其通路为+KM →KK 21-23→SJ →5R →DL 3→-KM 经一定时间其延时闭合的常开接点SJ 1接通。

此时,电容器C 就对ZCH 中的中间继电器ZJ 的电压器ZJ 的电压线圈放电,使ZJ 动作,并起动ZCH 装置,如图25-2(C )所示,其通路为C →SJ 1→ZJ →C 。

3.ZCH 动作使断路器重合闸
中间继电器ZJ 动作后,其常闭接点ZJ 4打开,使XD 熄灭,指示ZCH 已经动作,其出口回路接点ZJ 2,ZJ 1已经接通。

此时,断路器控制回路中的合闸接触器HC 被接通而动作,使断路器重新合闸,如图25-2(D )所示,其通路为+KM →KK 21-23→ZJ 2→ZJ 1→ZJ →→1QP →TBJ 2→DL 2→HC →-KM 。

中间继电器ZJ 是由电容器C 放电而动作的,由于放电时间短,为了使ZJ 能够自保持,所以在ZCH 的出口回路中串入了ZJ 的电流线圈,使ZJ 本身的常开接点ZJ 1,ZJ 2闭合,接通ZJ 的电流线圈,以保持ZJ 处于动作状态。

在断路器合闸后,断路器的辅助接点DL 2断开,而使ZJ 的自保持解除。

在ZCH 的出口回路中串联信号继电器XJ 的目的,是为了记录ZCH 的动作,并给出ZCH 动作的信号。

断路器重合成功以后,所有继电器自动复归到原来位置,而电容器又恢复充电,要使ZCH 退出工作时,将出口回路的切换片1QP 断开。

三,DH-2型继电器如何满足ZCH 的基本要求 1、ZCH 只重合一次
如果故障为永久性的,则断路器在ZCH 的作用下重合后,继电保护器将使断路器再次跳闸。

断路器在第二次跳闸后,ZCH 又要起动,使其时间继电器SJ 动作。

但由于电容器C 还来不及充满电(充电时间表需15~25秒),所以电容C 的放电电压很低,起动不了中间继电器ZJ,因而ZCH 的出口回路不会接通,这就保证了ZCH 只能重合一次。

2. 用控制开关断开断路器时,ZCH 不应动作
如图25-1所示,在停电操作时,控制开KK 的手柄放在“预备跳闸”及“跳闸后”位置,此时KK 21-23断开,ZCH 失去合闸电源。

而KK 2-4闭合,使电容C 先对电阻6R 放电,而使中间继电器ZJ 失去动作条件。

3. 当ZCH 出口回路的中间继电器ZJ 接点ZJ 2与ZJ 1被卡住时,防止断路器多次重合于故障线路上(即所谓“防跳”) 的措施
图25-1所示的电路中,采用了两套“防跳”措施:
(1) 在中间继电器ZJ 电流线圈回路(即其保持回路)中,串接了它自己的两对常开接点ZJ 1和ZJ 2,万一其中一对常开接点
被卡住时,另一对常开接点仍能正常断开,不致发生断路器“跳跃”的现象。

(2) 为了进一步防止在ZJ 的两对接点被卡住时,断路器仍然可能发生“跳跃”的情况,则在断路器的跳闸线圈TQ 回路
中,又串接了防跳继电器TBJ 的电流线圈。

当断路器事故跳闸时,TBJ 动作。

当ZJ 的两个串联的常开接点被粘住时,TBJ 的电压线圈经过自身的常开接点TBJ1→XJ →ZJ 电流线圈→ZJ 1→ZJ 2→KK 21-23→+KM 而带电自保持,它在合闸接触器 HC 回路中的常闭接点TBJ 3也同时保持断开,使合闸接触器HC 不会接通,从而达到了“防跳”的目的。

4. 用控制开关手动合闸到故障线路上时,ZCH 不应动作
当运行人员操作控制开关,断路器合闸到故障线路上时,线路保护动作使断路器跳开,这时由于电容器C 还来不及充电到所需的电压,ZJ 不会动作,断路器不再重合。

相关文档
最新文档