【校级联考】河南省洛阳市孟津县2021届九年级(上)期末数学试题
2021-2022学年河南省洛阳市九年级(上)期末数学试卷(解析版)

2021-2022学年河南省洛阳市九年级第一学期期末数学试卷一、选择题(每小题3分,共30分).1.拼图是一种广受欢迎的智力游戏,需要将形态各异的组件拼接在一起,下列拼图组件是中心对称图形的为()A.B.C.D.2.如图,一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,当B,C,A'在一条直线上时,三角板ABC的旋转角度为()A.150°B.120°C.60°D.30°3.二次函数y=2x2﹣1的图象的顶点坐标是()A.(﹣1,0)B.(1,0)C.(0,1)D.(0,﹣1)4.在平面直角坐标系xOy中,若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.y2<y3<y1B.y1<y2<y3C.y1<y3<y2D.y3<y2<y15.根据圆规作图的痕迹,可用直尺成功找到三角形内心的图形是()A.B.C.D.6.看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为()马匹等级下等马中等马上等马齐王246田忌135 A.B.C.D.7.如图,二次函数y=a(x+2)2+k的图象与x轴交于A(﹣6,0),B两点,下列说法错误的是()A.a<0B.图象的对称轴为直线x=﹣2C.当x<0时,y随x的增大而增大D.点B的坐标为(2,0)8.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数,a2+3b ﹣4,例如把(2,﹣5)放入其中,就会得到22+3×(﹣5)﹣4=﹣15.现将实数对(m,﹣3m)放入其中,得到实数6,则m的值为()A.﹣10B.﹣1C.10或﹣1D.﹣10或19.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,则剪去的正方形的边长为()A.cm B.1cm C.cm D.2cm10.如图,点A,B在反比例函数y=(k<0)的图象上,AD⊥x轴于点D,BE⊥x轴于点E,BC⊥y轴于点C、连结AC.若OC=1,OD=OE,AC=AD,则k的值为()A.﹣2B.﹣C.﹣4D.﹣二、填空题(每小题3分,共15分)11.写出以﹣1,2为根的一元二次方程.12.二次函数y=ax2+bx+c(a、b、c是常数,a+0)的自变量x与函数值y的部分对应值如表:x…﹣3﹣2﹣101…y=ax2+bx+c…t m﹣2﹣2n…则该二次函数图象的对称轴为直线.13.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的试验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n307513021048085612502300发芽数m287212520045781411872185发芽频率0.93330.96000.96150.95240.95210.95090.94960.9500依据上面的数据可以估计,这种植物种子在该试验条件下发芽的概率约是(结果精确到0.01).14.如图,⊙O与△OAB的边AB相切、切点为B.将△OAB绕点B按顺时针方向旋转得到△O'A'B,使点O落在⊙O上,边A'B交线段AO于点C.若∠A'=27°,则∠OCB=度.15.如图,在△ABC中,∠BAC=30°,∠ACB=60°,BC=1,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A',连结A'C,A'P.点P到达点B时,线段A'P 扫过的面积为.三、解答题(本大题共8道小题,满分75分)16.小明与小亮两位同学解方程3(2x﹣5)=(2x﹣5)2的过程如下框:小明:两边同除以(2x﹣5),得3=2x﹣5.则x=4.小亮:移项,得3(2x﹣5)﹣(2x﹣5)2=0.提取公因式,得2x﹣5)(3﹣2x﹣5)=0.则2x﹣5=0或﹣2x﹣5=1解得x1=,x2=﹣1.任务一:你认为他们的解法是否正确?若正确请在括号内打“√“;若错误请在括号内打“×”;小明,小亮;任务二:写出你的解答过程.17.如图,在正方形网格中,将格点△ABC绕某点顺时针旋转角α(0°<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点.(1)请通过画图找到旋转中心,将其标记为点O;(2)直接写出旋转角α的度数.18.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根.(1)求m的取值范围.(2)当m取最大整数时,求此方程的根.19.2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.20.如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象和△ABC都在第一象限内,AB=AC=5,BC∥x轴,且BC=8,点A的坐标为(6,8).(1)若反比例函数y=(x>0)的图象经过点B,求此反比例函数的解析式;(2)若将△ABC向下平移m(m>0)个单位长度,A,C两点的对应点同时落在反比倒函数图象上,求m的值.21.园林部门计划在某公园建一个长方形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),建成后所用木栏总长22米,设苗圃ABCD 的一边CD长为x米.(1)苗圃ABCD的另一边BC长为米(用含x的代数式表示);(2)若苗圃ABCD的面积为45m,求x的值;(3)当x为何值时,苗圃ABCD的面积最大,最大面积为多少平方米?22.已知抛物线y=ax2﹣4ax﹣6(a≠0)经过点(﹣1,﹣1).(1)求抛物线的函数表达式和顶点坐标;(2)直线l交抛物线于点A(4,m),B(n,6),若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.23.定义:有且仅有一组对角相等的凸四边形叫做“等对角四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为等对角四边形.(1)如图1,点A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,延长BP到Q,使PQ=AP,连接AQ.求证:四边形AQBC是等对角四边形;(2)如图2,等对角四边形ABCD内接于⊙O,AB≠AD,BC=DC,①请判断四边形ABCD中哪一组对角相等,并说明理由;②若圆O的半径为5,AB=6,求AD,BC的长;③请直接写出AC的长.参考答案一、选择题(每小题3分,共30分)1.拼图是一种广受欢迎的智力游戏,需要将形态各异的组件拼接在一起,下列拼图组件是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义和图形的特点即可求解.解:A、是中心对称图形,故此选项符合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:A.2.如图,一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,当B,C,A'在一条直线上时,三角板ABC的旋转角度为()A.150°B.120°C.60°D.30°【分析】直接利用旋转的性质得出对应边,再根据三角板的内角的度数得出答案.解:∵将一块含30°角的直角三角板ABC绕点C顺时针旋转到△A'B'C,∴BC与B'C是对应边,∴旋转角∠BCB'=180°﹣30°=150°.故选:A.3.二次函数y=2x2﹣1的图象的顶点坐标是()A.(﹣1,0)B.(1,0)C.(0,1)D.(0,﹣1)【分析】根据二次函数顶点式解析式写出顶点坐标即可.解:二次函数y=2x2﹣1的图象的顶点坐标是(0,﹣1).故选:D.4.在平面直角坐标系xOy中,若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.y2<y3<y1B.y1<y2<y3C.y1<y3<y2D.y3<y2<y1【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.解:∵k>0,∴反比例函数y=(k>0)的图象在一、三象限,∴点A(﹣1,y1)在第三象限,∴y1<0,∵3>2>0,∴B(2,y2),C(3,y3)两点在第一象限,∴y2>y3>0,∴y1,y2,y3的大小关系为y1<y3<y2.故选:C.5.根据圆规作图的痕迹,可用直尺成功找到三角形内心的图形是()A.B.C.D.【分析】根据三角形内心的定义,三角形内心为三条角平分线的交点,然后利用基本作图对选项进行判断.解:三角形内心为三条角平分线的交点,由基本作图得到B选项作了两角的角平分线,从而可用直尺成功找到三角形内心.故选:B.6.看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6,4,2.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为()马匹等级下等马中等马上等马齐王246田忌135 A.B.C.D.【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为6,4,2时,田忌的马按1,5,3的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵情况如下:双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为.故选:B.7.如图,二次函数y=a(x+2)2+k的图象与x轴交于A(﹣6,0),B两点,下列说法错误的是()A.a<0B.图象的对称轴为直线x=﹣2C.当x<0时,y随x的增大而增大D.点B的坐标为(2,0)【分析】根据图象即可判断A、C;由解析式即可判断B;根据抛物线的对称性即可判断D.解:∵二次函数y=a(x+2)2+k的图象开口方向向下,∴a<0,故A正确,不合题意;由图象可知,抛物线的对称轴为直线x=﹣2,故B正确,不合题意;由图象知,当x<0时,由图象可知y随x的增大先增大后减小,故C错误,符合题意;∵抛物线的对称轴为直线x=﹣2,且过A(﹣6,0),∴B点的坐标为(2,0),故D正确,不合题意;故选:C.8.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数,a2+3b ﹣4,例如把(2,﹣5)放入其中,就会得到22+3×(﹣5)﹣4=﹣15.现将实数对(m,﹣3m)放入其中,得到实数6,则m的值为()A.﹣10B.﹣1C.10或﹣1D.﹣10或1【分析】根据放入实数对得到a2+3b﹣3列式计算即可.解:∵将实数对(m,﹣3m)放入其中,得到实数6,∴m2﹣9m﹣4=6,∴m2﹣9m﹣10=0,解得:m=﹣1或10,故选:C.9.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒,则剪去的正方形的边长为()A.cm B.1cm C.cm D.2cm【分析】设剪去的正方形的边长为xcm,则制成有盖的长方体铁盒的底面长为(10﹣2x)cm,宽为(6﹣x)cm,根据长方体铁盒的底面积是24cm2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.解:设剪去的正方形的边长为xcm,则制成有盖的长方体铁盒的底面长为(10﹣2x)cm,宽为=(6﹣x)cm,依题意得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得:x1=2,x2=9(不合题意,舍去).故选:D.10.如图,点A,B在反比例函数y=(k<0)的图象上,AD⊥x轴于点D,BE⊥x轴于点E,BC⊥y轴于点C、连结AC.若OC=1,OD=OE,AC=AD,则k的值为()A.﹣2B.﹣C.﹣4D.﹣【分析】根据题意求得B(k,1),进而求得AC=AD=,OD=CF=﹣k,AF=﹣1=,然后根据勾股定理得到()2=(﹣k)2+()2,解方程即可求得k的值.解:∵AD⊥x轴于点D,BE⊥x轴于点E,∴四边形BEOC是矩形,∴BE=OC=1,把y=1代入y=(k<0),求得x=k,∴B(k,1),∴OE=﹣k,∵OD=OE,∴OD=﹣k,∵BC⊥y轴于点C,把x=k代入y=得,y=,∴AC=AD=,∵OD=CF=﹣k,AF=﹣1=,在Rt△ACF中,AC2=CF2+AF2,∴()2=(﹣k)2+()2,解得k=±,∵在第二象限,∴k=﹣,故选:D.二、填空题(每小题3分,共15分)11.写出以﹣1,2为根的一元二次方程x2﹣x﹣2=0(答案不唯一).【分析】先求出﹣1+2及(﹣1)×2的值,再根据一元二次方程根与系数的关系构造出方程即可.解:∵﹣1+2=1,(﹣1)×2=﹣2,∴以﹣1,2为根的一元二次方程可以是x2﹣x﹣2=0(答案不唯一).故答案为:x2﹣x﹣2=0(答案不唯一).12.二次函数y=ax2+bx+c(a、b、c是常数,a+0)的自变量x与函数值y的部分对应值如表:x…﹣3﹣2﹣101…y=ax2+bx+c…t m﹣2﹣2n…则该二次函数图象的对称轴为直线x=﹣.【分析】由图表可知,x=﹣1和0时的函数值相等,然后根据二次函数的对称性求解即可.解:∵x=﹣1、x=0时的函数值都是﹣2相等,∴此函数图象的对称轴为直线x==﹣.故答案为:x=﹣.13.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的试验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n307513021048085612502300发芽数m287212520045781411872185发芽频率0.93330.96000.96150.95240.95210.95090.94960.9500依据上面的数据可以估计,这种植物种子在该试验条件下发芽的概率约是0.95(结果精确到0.01).【分析】概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种种子在此条件下发芽的概率约为0.95.故答案为:0.9514.如图,⊙O与△OAB的边AB相切、切点为B.将△OAB绕点B按顺时针方向旋转得到△O'A'B,使点O落在⊙O上,边A'B交线段AO于点C.若∠A'=27°,则∠OCB=87度.【分析】连接OO′,根据切线的性质得到AB⊥OB,根据旋转变换的性质得到OB=OO′,根据等边三角形的性质得到∠OBO′=60°,根据三角形的外角性质计算,得到答案.解:连接OO′,∵⊙O与△OAB的边AB相切,∴AB⊥OB,由旋转的性质可知,∠O'BA'=∠OBA=90°,BO=BO′,∵OB=OO′,∴OB=O′B=OO′,∴△OBO′为等边三角形,∴∠OBO′=60°,∴∠ABC=60°,∴∠OCB=∠A+∠ABC=27°+60°=87°,故答案为:87.15.如图,在△ABC中,∠BAC=30°,∠ACB=60°,BC=1,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A',连结A'C,A'P.点P到达点B时,线段A'P扫过的面积为﹣.【分析】依据轴对称的性质,即可得到AC=A'C,进而得出点A'的运动轨迹为以C为圆心,AC长为半径的一段圆弧;再根据扇形面积的计算公式,即可得到线段A'P扫过的面积.解:∵△ABC中,∠BAC=30°,∠ACB=60°,BC=1,∴∠ABC=90°,AC=2BC=2,AB =,如图①所示,点A关于直线CP的对称点为A',∴AC=A'C,∴点A'的运动轨迹为以C为圆心,AC长为半径的一段圆弧,当点P与点B重合时,线段A'P扫过的区域为弓形,如图②,∠APA'=180°,∠ACA'=120°,∴线段A'P 扫过的面积为﹣=﹣,故答案为:﹣.三、解答题(本大题共8道小题,满分75分)16.小明与小亮两位同学解方程3(2x﹣5)=(2x﹣5)2的过程如下框:小明:两边同除以(2x﹣5),得3=2x﹣5.则x=4.小亮:移项,得3(2x﹣5)﹣(2x﹣5)2=0.提取公因式,得2x﹣5)(3﹣2x﹣5)=0.则2x﹣5=0或﹣2x﹣5=1解得x1=,x2=﹣1.任务一:你认为他们的解法是否正确?若正确请在括号内打“√“;若错误请在括号内打“×”;小明×,小亮×;任务二:写出你的解答过程.【分析】任务一:观察两人的解法,小明忽略2x﹣5=0的情况,小亮提取公因式时没有添加括号出错;任务二:按照小明的思路,写出解方程过程即可.解:任务一:小明×,小亮×;故答案为:×,×;任务二:当2x﹣5=0,即x=时,方程成立;当2x﹣5≠0,即x≠时,两边同除以(2x﹣5),得3=2x﹣5.解得:x=4,则方程的解为x1=,x2=4.17.如图,在正方形网格中,将格点△ABC绕某点顺时针旋转角α(0°<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点.(1)请通过画图找到旋转中心,将其标记为点O;(2)直接写出旋转角α的度数.【分析】(1)连接CC1、AA1,再分别作两线段的中垂线,两中垂线的交点即为所求;(2)连接CO、C1O,结合网格特点可得旋转角∠COC1=α=90°.解:(1)如图所示,点O即为所求;(2)如图所示,∠COC1=α=90°.18.关于x的一元二次方程(m﹣5)x2+2x+2=0有实根.(1)求m的取值范围.(2)当m取最大整数时,求此方程的根.【分析】(1)根据一元二次方程的定义和判别式的意义得到m﹣5≠0且Δ=22﹣4×(m ﹣5)×2≥0,然后求出两个不等式的公共部分即可;(2)在(1)中的范围内m最大整数值为4,此时方程化为﹣x2+2x+2=0,然后利用公式法求解.解:(1)由题意,得Δ=22﹣4×(m﹣5)×2=4﹣4×2(m﹣5)≥0且m﹣5≠0,解得m≤5.5且m≠5.∴m的取值范围是m≤5.5且m≠5;(2)∵m≤5.5且m≠5,∴m的最大整数值是4,当m=4时,原方程化为﹣x2+2x+2=0,即x2﹣2x﹣2=0,a=1,b=﹣2,c=﹣2,Δ=22﹣4×1×(﹣2)=12>0,∴x==1±,∴x1=1+,x2=1﹣.19.2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有40人,估计该校800名学生中“比较了解”的学生有320人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.【分析】(1)用“不了解”类的人数除以它所占的百分比得到调查的总人数;(2)用8800乘以样本中“比较了解”的学生所占的百分比即可;(3)画树状图展示所有12种等可能的结果,找出恰好抽到2名男生的结果数,然后根据概率公式计算.解:(1)本次调查的学生总人数为4÷10%=40(人);∵本次抽取调查的学生中,“比较了解”的学生有:40﹣14﹣6﹣4=16(人),∴估计该校800名学生中“比较了解”的学生有800×=320(人),故答案为:40,320;(2)补全条形统计图如图:(3)画树状图如图:共有12个等可能的结果,恰好抽到2名男生的结果有6个,∴恰好抽到2名男生的概率为=.20.如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象和△ABC都在第一象限内,AB=AC=5,BC∥x轴,且BC=8,点A的坐标为(6,8).(1)若反比例函数y=(x>0)的图象经过点B,求此反比例函数的解析式;(2)若将△ABC向下平移m(m>0)个单位长度,A,C两点的对应点同时落在反比倒函数图象上,求m的值.【分析】(1)根据已知求出B与C点坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)表示出相应的平移后A与C坐标,将之代入反比例函数表达式即可求解.解:(1)过A作AD⊥BC于D,∵AB=AC=5,BC=8,点A(6,8).∴BD=BC=4,∠ADB=90°,∴AD=3,∴B(2,5),C(10,5),若反比例函数y=(x>0)的图象经过点B,则5=,解得,k=10,∴反比例函数的解析式为y=;(2)∵点A(6,8),C(10,5),将△ABC向下平移m个单位长度,∴A(6,8﹣m),C(10,5﹣m),∵A,C两点同时落在反比例函数图象上,∴6(8﹣m)=10(5﹣m),∴m=.21.园林部门计划在某公园建一个长方形苗圃ABCD.苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留1米宽的门(门不用木栏),建成后所用木栏总长22米,设苗圃ABCD 的一边CD长为x米.(1)苗圃ABCD的另一边BC长为24﹣3x米(用含x的代数式表示);(2)若苗圃ABCD的面积为45m,求x的值;(3)当x为何值时,苗圃ABCD的面积最大,最大面积为多少平方米?【分析】(1)根据木栏总长22米,两处各留1米宽的门,设苗圃ABCD的一边CD长为x米,即得BC长为(24﹣3x)米;(2)根据题意得:x•(24﹣3x)=45,即可解得x的值;(3)w=x•(24﹣3x)=﹣3(x﹣4)2+48,由二次函数性质可得答案.解:(1)∵木栏总长22米,两处各留1米宽的门,设苗圃ABCD的一边CD长为x米,∴BC长为22﹣3x+2=24﹣3x,故答案为:24﹣3x;(2)根据题意得:x•(24﹣3x)=45,解得x=3或x=5,∴x的值为3或5;(3)设苗圃ABCD的面积为w,则w=x•(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,∴x=4时,w最大为48,答:当x为4米时,苗圃ABCD的最大面积为48平方米.22.已知抛物线y=ax2﹣4ax﹣6(a≠0)经过点(﹣1,﹣1).(1)求抛物线的函数表达式和顶点坐标;(2)直线l交抛物线于点A(4,m),B(n,6),若点P在抛物线上且在直线l下方(不与点A,B重合),分别求出点P横坐标与纵坐标的取值范围.【分析】(1)利用待定系数法求得解析式,然后化成顶点解析式即可求得顶点坐标;(2)分别求出点A,B坐标,根据图象开口方向及顶点坐标求解.解:(1)∵抛物线y=ax2﹣4ax﹣6(a≠0)经过点(﹣1,﹣1),∴a+4a﹣6=﹣1,∴a=1,∴y=x2﹣4x﹣6,∵y=x2﹣4x﹣6=(x﹣2)2﹣10,∴顶点为(2,﹣10);(2)把x=4代入y=x2﹣4x﹣6得y=42﹣4×4﹣6=﹣6,∴m=﹣6,把y=6代入函数解析式得6=x2﹣4x﹣6,解得n=6或n=﹣2,∴点A坐标为(4,﹣6),点B坐标为(6,6)或(﹣2,6).∵抛物线开口向上,顶点坐标为(2,﹣10),∴抛物线顶点在AB下方,∴﹣2<x P<4或4<x P<6,﹣10≤y P<6或﹣6<y P<6.23.定义:有且仅有一组对角相等的凸四边形叫做“等对角四边形”.例如:凸四边形ABCD 中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为等对角四边形.(1)如图1,点A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,延长BP到Q,使PQ=AP,连接AQ.求证:四边形AQBC是等对角四边形;(2)如图2,等对角四边形ABCD内接于⊙O,AB≠AD,BC=DC,①请判断四边形ABCD中哪一组对角相等,并说明理由;②若圆O的半径为5,AB=6,求AD,BC的长;③请直接写出AC的长.【分析】(1)可证△APQ是等边三角形,可得∠Q=60°=∠QAP,由圆的内接四边形的性质可得∠QPA=∠ACB=60°=∠Q,由四边形内角和定理可证∠QAC≠∠QBC,可得结论;(2)①如图②,连接BD,根据等腰三角形的性质得到∠ABD≠∠ADB,∠CBD=∠CDB,求得∠ABC≠∠ADC,于是得到结论;②由等对角四边形定义可求∠BAD=∠BCD=90°,可得BD是直径,由勾股定理得到结论;③将△ABC绕点C顺时针旋转90°得到△CDH,可得AB=DH=6,AC=CH,∠ACH =90°,∠ABC=∠CDH,由勾股定理可求AC的长.【解答】(1)证明:∵∠APC=∠CPB=60°,∴∠APQ=60°,∵PQ=AP,∴△APQ是等边三角形,∴∠Q=60°=∠QAP,∵四边形APBC是圆内接四边形,∴∠QPA=∠ACB=60°,∵∠Q+∠ACB+∠QAC+∠QBC=360°,∴∠QAC+∠QBC=240°,∵∠QAC=∠QAP+∠BAC+∠PAB=120°+∠PAB>120°,∴∠QBC<120°,∴∠QAC≠∠QBC,∴∠QPA=∠ACB=60°=∠Q,∴四边形AQBC是等对角四边形;(2)解:①如图②,∠BAD=∠BCD,理由:连接BD,∵AB≠AD,BC=DC,∴∠ABD≠∠ADB,∠CBD=∠CDB,∴∠ABC≠∠ADC,∵四边形ABCD是准平行四边形,∴∠BAD=∠BCD;②∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,∠ABC+∠ADC=180°,∴∠BAD=∠BCD=90°,∴BD是直径,∴BD=10,∴BC=CD=BD=5,AD===8;③将△ABC绕点C顺时针旋转90°得到△CDH,∴AB=DH=6,AC=CH,∠ACH=90°,∠ABC=∠CDH,∵∠ABC+∠ADC=180°,∴∠ADC+∠CDH=180°,∴点A,点D,点H三点共线,∴AH=AD+DH=14,∵AC2+CH2=AH2,∴2AC2=196,∴AC=7,故AC的长为7.。
河南省洛阳市2021年九年级上学期数学期末考试试卷(I)卷

河南省洛阳市2021年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A . 18B .C . 36D .2. (2分)下列图形是相似多边形的是()A . 所有的平行四边形B . 所有的矩形C . 所有的菱形D . 所有的正方形3. (2分)(2019·金台模拟) 如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A . 30°B . 15°C . 45°D . 25°4. (2分)下列4组条件中,能判定△ABC∽△DEF的是()A . AB=5,BC=4,∠A=45°;DE=10,EF=8,∠D=45°B . ∠A=45°,∠B=55°;∠D=45°,∠F=75°C . BC=4,AC=6,AB=9;DE=18,EF=8,DF=12D . AB=6,BC=5,∠B=40°;DE=5,EF=4,∠E=40°5. (2分) (2019九上·莲池期中) 点C是线段AB的黄金分割点,且AB=6cm,则BC的长为()cmA .B .C . 或D . 或6. (2分)在一个不透明的布袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为()A . 10B . 15C . 5D . 27. (2分)菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A . 16B . 12C . 16或12D . 248. (2分)(2017·平川模拟) 反比例函数y= 的图象,当x>0时,y随x的增大而减小,则k的取值范围是()A . k<2B . k≤2C . k>2D . k≥29. (2分)如图,在△ABC中,DE∥BC,AD=6,DB=3,AE=4,则EC的长为()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)10. (1分) (2018九上·乐东月考) 把一元二次方程化成二次项系数大于零的一般式,其中二次项系数是________,常数项是________.11. (1分)(2017·路北模拟) 甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小明打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小明抽出的两颗求颜色相同的概率为________.12. (1分)已知△ABC∽△DEF,与的相似比为4:1,则与对应边上的高之比为________.13. (1分) (2018九上·天台月考) 已知函数是反比例函数,则m的值为________.14. (1分) (2018九上·永定期中) 如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为________.15. (1分)(2019·徐汇模拟) 在梯形ABCD中,AB∥DC ,∠B=90°,BC=6,CD=2,tanA=.点E 为BC上一点,过点E作EF∥AD交边AB于点F .将△BEF沿直线EF翻折得到△GEF ,当EG过点D时,BE的长为________.16. (1分) (2017八上·义乌期中) 我国三国时期数学家赵爽为了证明勾股定理,创造了一副“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形的边长为14,正方形的边长为2,且,则正方形的边长为________.17. (1分) (2020八下·重庆月考) 如图,在菱形ABCD中,AB= ,∠B=120°,点E是AD边上的一个动点(不与A,D重合),EF∥AB交BC于点F,点G在CD上,DG=DE.若△EFG是等腰三角形,则DE的长为________.三、解答题 (共8题;共57分)18. (10分)解方程:(1)(x+6)2=9;(2) 3x2﹣8x+4=0;(3)(2x﹣1)2=(x﹣3)2.19. (5分) (2018七上·平顶山期末) 画出如图由11个小正方体搭成的几何体从不同角度看得到的图形.20. (5分)如图,已知△ABC中,四边形DEGF为正方形,D、E在线段AC、BC上,F、G在AB上,如果S△ADF=S△CDE=1,S△BEG=3,求△ABC的面积.21. (5分)已知:如图,有一块面积等于1200cm2的三角形纸片ABC,已知底边与底边BC上的高的和为100cm (底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF在边BC上,顶点D、G分别在边AB、AC上,求加工成的正方形铁片DEFG的边长.22. (10分)(2017·寿光模拟) 某超市计划经销一些特产,经销前,围绕“A:王高虎头鸡,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鸭蛋”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有110万市民,估计全市最喜欢“羊口咸蟹子”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到A的概率是多少?写出分析计算过程.23. (10分)(2018·滨州) 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.24. (2分)(2017·日照) 如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即________,可使四边形ABCD为矩形.请加以证明.25. (10分) (2015九上·罗湖期末) 人民公园划出一块矩形区域,用以栽植鲜花.(1)经测量,该矩形区域的周长是72m,面积为320m2,请求出该区域的长与宽;(2)公园管理处曾设想使矩形的周长和面积分别为(1)中区域的周长和面积的一半,你认为此设想合理吗?如果此设想合理,请求出其长和宽;如果不合理,请说明理由,并求出在(1)中周长减半的条件下矩形面积的最大值.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共8题;共8分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共57分)18-1、18-2、18-3、19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
2020-2021学年洛阳市九年级上学期期末数学试卷(含答案解析)

2020-2021学年洛阳市九年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.方程x2=x的实数根是()A. 1或0B. −1或0C. 1或−1D. 12.下用配方法解一元二次方程+8x+7=0,则方程可变形为A. =9B. =9C. =16D. =573.以对角线交点为旋转中心旋转正方形,要想使旋转之后的图形与原图形重合,则至少应该旋转()A. 60°B. 90°C. 120°D. 180°4.2008年5月12日四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾,某医院要从包括张医生在内的4名外科骨干医生中,随机抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率为()A. 12B. 13C. 14D. 165.已知m,n是关于x的方程ax2+bx+c=0的两个实数根,设s1=m+n,s2=m2+n2,…,s100=m100+n100,…,则as2019+bs2018+cs2017的值为()A. 0B. 2017C. 2018D. 20196.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有100台被感染.设每轮感染中平均每一台电脑会感染台其他电脑,由题意列方程应为()A. 1+2x=100B. x(1+x)=100C. (1+x)2=100D.7.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则△AMN周长的最小值是()A. 3B. 4C. 5D. 68.掷一枚骰子,朝上的一面出现奇数的概率是()A. 16B. 13C. 12D. 239.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度p也随之改变,ρ与v在一定范围内满足ρ=mv,它的图象如图所示,则该气体的质量m为()A. 1.4kgB. 5kgC. 7kgD. 6.4kg10.已知反比例函数y=kx的图象如图所示,二次函数y=2kx2−x+k2的图象大致为()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.如图,已知△ABC是等边三角形,AD是中线,E在AC上,AE=AD,则∠EDC=______ .12.如图,我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如果大正方形的面积是20,小正方形的面积是8,直角三角形的两直角边分别是a和b,那么ab的值为______.13.抛物线y=x2+2x+c与y轴相交于点C,点O为坐标原点,点A是抛物线y=x2+2x+c与x轴的公共点,若OA=OC,则点A的坐标为______ .(x<0)上,作Rt△ABC,点D是14.如图,已知点A在反比例函数y=kx斜边AC的中点,连接DB并延长交y轴于点E,若△BCE的面积为7,则k的值为______.15.如图,△ABC≌△DEF,BE=3,AE=2,则DE的长是______.三、解答题(本大题共8小题,共75.0分)16.已知关于x的一元二次方程2x2+kx−k−3=0.(1)求证:方程有两个不等的实数根;(2)请你给定一个k值,使得方程的两个根为有理数,并求出这两个根.17.如图,△ABC的顶点A,B,C均在正方形网格的格点上.(1)画出△ABC关于直线l的对称图形△A1B1C1;(2)画出将△ABC沿水平方向向左平移4个单位后,再向下平移5个单位,最后得到的△A2B2C2;(3)画出将△ABC绕点A逆时针旋转90°后,所得到的图形,△A3B3C3.18.小明在春节期间去给爹爹、奶奶和外公、外婆拜年,小明从家里去爹爹家有A1、A2两条路线可走,从爹爹家去外公家有B1、B2、B3三条路线可走,如果小明随机选择一条从家里出发先到爹爹家给爹爹、奶奶拜年,然后再从爹爹家去外公家给外公、外婆拜年.(1)画树状图分析小明所有可能选择的路线.(2)若小明恰好选到经过路线B3的概率是多少?19.如图,AB为⊙O的直径,CD为⊙O的弦,连接AC,BD,半径CO交BD于点E,过点C作切线,交AB的延长线于点F,且∠CFA=∠DCA.(1)求证:OE⊥BD;(2)若BE=4,CE=2,则⊙O的半径是______,弦AC的长是______.20.如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数y=k经过菱形对角线的交点D,求反比例函数解析式.x21.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知y是x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?(3)销售价定为多少时,每日的销售利润最大?最大利润是多少?22. 如图所示,直线y1=2x+3和直线y2=kx−1分别交y轴于A,B两点,两条直线交于点C(−1,n).(1)求k,n的值;(2)求△ABC的面积,并根据图象直接写出当y1<y2时,自变量x的取值范围.23. 已知如图,AB=AC,点D,E分别在AC,AB上,AF⊥GE,AG⊥BD,垂足分别为F,G,且AF=AG,求证:∠EAF=∠DAG.参考答案及解析1.答案:A解析:解:∵x2=x,∴x2−x=0,则x(x−1)=0,∴x=0或x−1=0,解得x1=0,x2=1,故选:A.利用因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2.答案:B解析:先把常数项7移到方程右边,然后把方程两边加上42即可.方程变形为:x2+8x=−7,方程两边加上42,得x2+8x+42=−7+42,∴(x+4)2=9.故选B.考点:解一元二次方程−配方法.3.答案:B解析:解:正方形绕着它的对角线交点旋转90°后与原图形重合,故选:B.根据中心对称图形的定义,分析各图形的特征求解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.本题考查了中心对称图形的判断方法:一个图形绕一个点旋转180度后,与原图形重合,那么这个图形叫做中心对称图形.4.答案:A解析:试题分析:列举出所有情况,看抽调到张医生的情况占所有情况的多少即为所求的概率.假设其余三位医生分别是王、李、刘医生,则随机抽两名,出现的等可能情况为:(张,王);(张,李);(张,刘);(王,李);(王,刘);(李,刘)共6种,所以P(抽到张医生)=36=12.故选A.5.答案:A解析:解:∵s2019=m2019+n2019,s2018=m2018+n2018,s2017=m2017+n2017,∴as2019+bs2018+cs2017=a(m2019+n2019)+b(m2018+n2018)+c(m2017+n2017)=m2017(am2+bm+c)+n2017(an2+bn+c),∵m,n是方程ax2+bx+c=0的两个实数根,∴am2+bm+c=0,an2+bn+c=0,∴as2019+bs2018+cs2017=m2017×0+n2017×0=0.故选:A.根据题意得s2019=m2019+n2019,s2018=m2018+n2018,s2017=m2017+n2017,根据幂的运算得到as2019+bs2018+cs2017=m2017(am2+bm+c)+n2017(an2+bn+c),再根据方程解的定义得到am2+bm+c=0,an2+bn+c=0,所以as2019+bs2018+cs2017=0.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1⋅x2=ca.也考查了幂的运算和一元二次方程的解的定义.6.答案:C解析:解:每轮感染中平均一台电脑会感染x台电脑,一轮感染后就会有(1+x)台被感染,两轮感染后就会有[1+x+(1+x)x]台被感染,则有1+x+(1+x)x=100,整理得到:(x+1)2=100故选C.7.答案:B解析:解:⊙O的面积为2π,则圆的半径为√2,则BD=2√2=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′//BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,理由:∵A′C//MN,且A′C=MN,则四边形MCA′N为平行四边形,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+1为最小,则A′A=√(2√2)2+12=3,则△AMN的周长的最小值为3+1=4,故选:B.由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′//BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,进而求解.本题是为几何综合题,主要考查了圆的性质、点的对称性、平行四边形的性质等,确定点M、N的位置是本题解题的关键.8.答案:C解析:解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,奇数为1,3,5,则向上一面的数字是奇数的概率为36=13.故选C.任意掷一枚均匀的骰子总共有6种情况,其中奇数有3种情况,利用概率公式进行计算即可.本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.9.答案:C解析:本题考查了反比例函数的应用,关键是要由点的坐标求出函数的解析式.由图象知点(5,1.4)在函数的图象上,根据待定系数法就可求得函数解析式.求得m的值.解:∵ρ=mv,而点(5,1.4)在图象上,代入得m=5×1.4=7(kg).故选C.10.答案:D解析:试题分析:根据反比例函数的性质得到k<0,对于二次函数y=2kx2−x+k2,由2k<0可判断抛物线的开口向下;由x=−−12×2k =14k<0可判断抛物线的对称轴在y轴的左侧,由k2>0可判断抛物线与y轴的交点在x轴上方,综合三种结论即可得到正确选项.∵反比例函数y=kx的图象在第二、四象限,∴k<0,∴2k<0,则抛物线的开口向下,∵x=−−12×2k =14k<0,∴抛物线的对称轴在y轴的左侧,∵k2>0,∴抛物线与y轴的交点在x轴上方.故选D.11.答案:15°解析:解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=12(180°−∠CAD)=75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故答案为:15°.由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.解析:解:如图,∵大正方形的面积是20,小正方形的面积是8,∴直角三角形的面积是(20−8)÷4=3,ab=3,又∵直角三角形的面积是12∴ab=6.故答案为6.根据大正方形的面积是25,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值.本题考查了勾股定理,赵爽弦图等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.13.答案:(−3,0)、(1,0)解析:解:根据题意,知:OA=OC=|c|,∵点A是抛物线y=x2+2x+c与x轴的公共点,∴点A的坐标为(c,0)或(−c,0),将点A(c,0)代入y=x2+2x+c得:c2+2c+c=0,解得:c=0(舍)或c=−3,则点A的坐标为(−3,0);将点A(−c,0)代入y=x2+2x+c,得:(−c)2−2c+c=0,即c2−c=0,解得:c=0(舍)或c=1,则点A的坐标为(1,0);故答案为:(−3,0)、(1,0).由OA=OC=|c|及点A是抛物线与x轴的公共点可得点A的坐标为(c,0)或(−c,0),将点A坐标代入抛物线解析式可求得c的值.本题主要考查抛物线与x轴的交点,结合题意表示出点A的坐标是解题的前提,由抛物线个与x轴的交点求得c值是解题的关键.14.答案:14解析:解:连接OA.∵△BCE的面积为7,∴1BC⋅OE=7,2∴BC⋅OE=14,∵点D为斜边AC的中点,∴BD=DC=AD,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC=90°,∴△EOB∽△ABC,∴BCOB =ABOE,∴AB⋅OB⋅=BC⋅OE,∵12⋅OB⋅AB=k2,∴k=AB⋅BO=BC⋅OE=14,故答案为14.根据反比例函数系数k的几何意义,证明△ABC∽△EOB,根据相似比求出BA⋅BO的值,从而求出△AOB的面积.本题考查了反比例函数系数k的几何意义,解决本题的关键是证明△EOB∽△ABC,得到AB⋅OB⋅= BC⋅OE.15.答案:5解析:解:∵BE=3,AE=2,∴AB=AE+BE=3+2=5∵△ABC≌△DEF,∴DE=AB=5,故答案为:5.根据全等三角形的对应边相等解答.本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.16.答案:(1)证明:∵Δ=k2+8(k+3)=(k+4)2+8>0,∴方程有两个不等的实数根;(2)解:∵令−k−3=0,则k=−3,∴当k=−3时,原方程可化为2x2−3x=0,∴x1=0,x2=32.解析:本题考查的是一元二次方程的根的判别式以及运用因式分解法解一元二次方程.掌握一元二次方程根的判别式以及会运用因式分解法解一元二次方程是解答此题的关键.(1)先求出方程的Δ的代数式,进而变形即可得出结论;(2)令−k−3=0得出k的值,再代入方程求出x的值即可.17.答案:解:(1)△A1B1C1如图所示;(2)如图所示,△A2B2C2即为所求作的图形;(3)如图所示,△A3B3C3即为所求作的图形;解析:(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)将△ABC的三个顶点先向左平移4个单位后,再向下平移5个单位,得到平移后的对应点A2,B2,C2的位置,然后顺次连接即可得出平移后的△A2B2C2;(2)根据题意所述的旋转角度、旋转中心及旋转方向依次找到各点旋转后的对应点,然后顺次连接即可得出旋转后的△A3B3C3.本题考查了利用轴对称变换作图,利用平移变换作图,利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.18.答案:解:(1)画树状图得:则所有可能选择的路线有:A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,所以小明选择的路线有6种.(2)由(1)知道从小明家到外公家共有6条路线,经过B3的路线有2条.∴小明恰好选到经过路线B3的概率=1.3解析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)根据(1)中的树状图即可求得经过路线B3的有2种情况,然后利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.答案:54√5解析:(1)证明:∵∠CFA=∠DCA,∠ABD=∠DCA,∴∠CFA=∠ABD,∴BD//CF,∵CF为⊙O的切线,∴OC⊥CF,∴OC⊥BD,即OE⊥BD;(2)解:如图,连接BC,设⊙O的半径为r,则OE=r−2,OB=r,在Rt△OBE中,(r−2)2+42=r2,解得r=5,即⊙O的半径为5,在Rt△BCE中,BC=√22+42=2√5,∵AB为⊙O的直径,∴∠ACB=90°,∴AC=√102−(2√5)2=4√5.故答案为5,4√5.(1)根据圆周角定理得到∠ABD=∠DCA,则∠CFA=∠ABD,则可判断BD//CF,接着根据切线的性质得OC⊥CF,然后根据平行线的性质得到结论;(2)连接BC,如图,设⊙O的半径为r,在Rt△OBE中利用勾股定理得到(r−2)2+42=r2,求出r得到⊙O的半径为5,再利用勾股定理计算出BC=2√5,接着利用圆周角定理得到∠ACB=90°,然后利用勾股定理计算AC.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和勾股定理.20.答案:解:(1)如图,BM ⊥x 轴于点M ,∵点B 的坐标为(8,4),OC =BC ,∴CM =8−BC ,在Rt △BCM 中,BC 2=CM 2+BM 2,即BC 2=(8−BC)2+42,解得,BC =5,即菱形的边长为5;(2)∵D 是OB 的中点,∴点D 的坐标为:(4,2),∵点D 在反比例函数y =k x 上,∴k =4×2=8,∴反比例函数解析式为y =8x .解析:(1)过B 作BM ⊥x 轴于点M ,根据B 的坐标求出BM =4,在Rt △BCM 中,根据勾股定理得出方程,求出方程的解即可;(2)求出D 的坐标,然后根据待定系数法即可求得反比例函数解析式.本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,菱形的性质,勾股定理等知识点,求得D 的坐标是解此题的关键. 21.答案:解:(1)设y =kx +b ,根据题意可得:{20=20k +b 25=15k +b, 解得:{k =−1b =40, 故日销售量y(件)与每件产品的销售价x(元)之间的函数表达式为:y =−x +40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:w =(35−10)×(−35+40)=125(元),答:此时每日的销售利润是125元;(3)设总利润为w ,根据题意可得:w =(x −10)(−x +40)=−x 2+50x −400=−(x −25)2+225,∵a =−1<0,∴销售价定为25元时,每日的销售利润最大,最大利润是225元.解析:(1)直接利用待定系数法得出y与x之间的关系式即可;(2)利用每件的利润×销量=总利润进而得出答案;(3)利用每件的利润×销量=总利润,再结合配方法得出函数最值.此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,正确得出w与x之间的关系式是解题关键.22.答案:解:(1)∵点C(−1,n)在直线y1=2x+3上,∴n=2×(−1)+3=1,∴C(−1,1),∵y2=kx−1过C点,∴1=−k−1,解得:k=−2;(2)当x=0时,y=2x+3=3,则A(0,3),当x=0时,y=−2x−1=−1,则B(0,−1),×4×1=2;△ABC的面积:12∵C(−1,1),∴当y1<y2时,x<−1.解析:(1)利用待定系数法把C点坐标代入y1=2x+3可算出n的值,然后再把C点坐标代入y2=kx−1可算出k的值;(2)首先根据函数解析式计算出A、B两点坐标,然后再根据A、B、C三点坐标求出△ABC的面积;根据C点坐标,结合一次函数与不等式的关系可得y1<y2时,自变量x的取值范围.此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数图象上点的坐标特征,三角形的面积.关键是认真分析图象,能从图象中得到正确信息.23.答案:解:∵AF⊥GE,AG⊥BD,∴∠AFC=∠AGB=90°,∵AB=AC,AG=AF,∴Rt△ABG≌Rt△ACF(HL)∴∠BAG=∠CAF,∴∠EAF=∠DAG.解析:由“HL”可证Rt△ABG≌Rt△ACF,可得∠BAG=∠CAF,可得结论.本题考查了全等三角形的判定和性质,证明Rt△ABG≌Rt△ACF是本题的关键.。
┃精选3套试卷┃2021届洛阳市九年级上学期数学期末经典试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.⊙O 是半径为1的圆,点O 到直线L 的距离为3,过直线L 上的任一点P 作⊙O 的切线,切点为Q ;若以PQ 为边作正方形PQRS ,则正方形PQRS 的面积最小为( )A .7B .8C .9D .10【答案】B【分析】连接OQ 、OP ,作1OH ⊥于H ,如图,则OH=3,根据切线的性质得OQ PQ ⊥,利用勾股定理得到2221PQ OP OQ OP =-=-,根据垂线段最短,当OP=OH=3时,OP 最小,于是PQ 的最小值为22,即可得到正方形PQRS 的面积最小值1.【详解】解: 连接OQ 、OP ,作1OH ⊥于H ,如图,则OH=3, ∵PQ 为O 的切线,∴OQ PQ ⊥在Rt POQ △中,2221PQ OP OQ OP =-=-, 当OP 最小时,PQ 最小,正方形PQRS 的面积最小, 当OP=OH=3时,OP 最小,所以PQ 的最小值为23122-=, 所以正方形PQRS 的面积最小值为1 故选B2.下列方程中没有实数根的是( ) A .210x x --= B .2320x x ++= C .2201911200x x +-=D .220x x ++=【答案】D【分析】分别计算出判别式△=b2−4ac的值,然后根据判别式的意义分别判断即可.1411=5>0,方程有两个不相等的实数根;【详解】解:A、△=2B、△=32−4×1×2=1>0,方程有两个不相等的实数根;C、△=112−4×2019×(−20)=161641>0,方程有两个不相等的实数根;D、△=12−4×1×2=−7<0,方程没有实数根.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.4.下列事件中,是随机事件的是()A.任意一个五边形的外角和等于540°B.通常情况下,将油滴入水中,油会浮在水面上C.随意翻一本120页的书,翻到的页码是150D.经过有交通信号灯的路口,遇到绿灯【答案】D【分析】根据随机事件的定义,逐一判断选项,即可得到答案.【详解】∵任意一个五边形的外角和等于540°,是必然事件,∴A不符合题意,∵通常情况下,将油滴入水中,油会浮在水面上,是必然事件,∴B不符合题意,∵随意翻一本120页的书,翻到的页码是150,是不等能事件,∴C不符合题意,∵经过有交通信号灯的路口,遇到绿灯,是随机事件,∴D符合题意,故选D.【点睛】本题主要考查随机事件的定义,掌握必然事件,随机事件,不可能事件的定义,是解题的关键.5.如图,扇形AOB 中,半径OA=2,∠AOB=120°,C 是弧AB的中点,连接AC、BC,则图中阴影部分面积是( )A.4233π-B.2233π-C.433π-D.233π-【答案】A【解析】试题分析:连接AB、OC,AB⊥OC,所以可将四边形AOBC分成三角形ABC、和三角形AOB,进行求面积,求得四边形面积是23,扇形面积是S=13πr2=43π,所以阴影部分面积是扇形面积减去四边形面积即4233π-.故选A.6.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°【答案】B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数. 详解:如图所示:∵△ABC 是等腰直角三角形, ∴∠BAC=90°,∠ACB=45°, ∴∠1+∠BAC=30°+90°=120°, ∵a ∥b ,∴∠ACD=180°-120°=60°, ∴∠2=∠ACD-∠ACB=60°-45°=15°; 故选B .点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD 的度数是解决问题的关键.7.如图,四边形ABCD 和A B C D ''''是以点O 为位似中心的位似图形,若:3:5OD OD '=,则四边形ABCD 与四边形A B C D ''''的面积比为( )A .9:16B .3:5C .9:25D 35【答案】C【解析】由位似图的面积比等于位似比的平方可得答案. 【详解】∵:3:5OD OD '=即四边形ABCD 和A B C D ''''的位似比为3:5 ∴四边形ABCD 和A B C D ''''的面积比为9:25 故选:C . 【点睛】本题考查了位似图的性质,熟记位似图的面积比等于位似比的平方是解题的关键.8.随机掷一枚均匀的硬币两次,落地后至少有一次正面朝上的概率是()A.14B.12C.34D.1【答案】C【解析】先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.【详解】随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是34.故选C.【点睛】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是()A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【分析】太阳光线下的影子是平行投影,就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东,于是即可得到答案.【详解】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西-西北-北-东北-东”,是解题的关键.10.已知Rt△ABC中,∠C=900,AC=2,BC=3,则下列各式中,正确的是()A.2sin3B=;B.2cos3B=;C.2tan3B=;D.以上都不对;【答案】C【分析】根据勾股定理求出AB,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:AB=22222133AC BC ++== , 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC ==,= ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 11.下列各数中,属于无理数的是( ) A .2 B .4C .0D .1【答案】A【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项进行判断即可.【详解】A 、2是无理数,故本选项正确; B 、4=2,是有理数,故本选项错误; C 、0,是有理数,故本选项错误; D 、1,是有理数,故本选项错误; 故选:A . 【点睛】本题考查了无理数的定义,属于基础题,掌握无理数的三种形式是解答本题的关键.12.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC 平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确的是( )A .△AOD ∽△BOCB .△AOB ∽△DOC C .CD =BC D .BC•CD =AC•OA【答案】D【分析】直接利用相似三角形的判定方法分别分析得出答案.【详解】解:∵∠DAC=∠DBC ,∠AOD=∠BOC ,∴AOD ∆∽BOC ∆ ,故A 不符合题意; ∵AOD ∆∽BOC ∆ ,∴AO :OD=OB :OC ,∵∠AOB=∠DOC ,∴AOB ∆∽DOC ∆,故B 不符合题意;∵AOB ∆∽DOC ∆,∴∠CDB=∠CAB,∵∠CAD=∠CAB,∠DAC =∠DBC,∴∠CDB=∠DBC,∴CD=BC ; 没有条件可以证明BC CD AC OA ⋅=⋅, 故选D. 【点睛】本题考查了相似三角形的判定与性质,解题关键在于熟练掌握相似三角形的判定方法①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.二、填空题(本题包括8个小题)13.如图,ABC 中,90ABC ∠=︒,8AC =,9ABCS=,=△ABC C __________.【答案】18【分析】根据勾股定理和三角形面积公式得2218,64AB BC AB BC •=+=,再通过完全平方公式可得. 【详解】因为ABC 中,90ABC ∠=︒,8AC =,9ABCS =,所以222219,82AB BC AB BC AC •=+== 所以2218,64AB BC AB BC •=+= 所以()2222AB BC AB BC AB BC +=++• =64+36=100 所以AB+BC=10所以=△ABC C AC+AB+BC=8+10=18 故答案为:18 【点睛】考核知识点:勾股定理.灵活根据完全平方公式进行变形是关键.14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___个. 【答案】1【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中黄色球可能有x 个.根据题意,任意摸出1个,摸到黄色乒乓球的概率是:15%=x40,解得:x=1. ∴袋中黄色球可能有1个. 故答案为:115.△ABC 中,∠C =90°,tanA =43,则sinA+cosA =_____. 【答案】75【解析】∵在△ABC 中,∠C=90°,4tan 3A =, ∴可设BC=4k ,AC=3k , ∴由勾股定理可得AB=5k ,∴sinA=4455BC k AB k ==,cosA=3355AC k AB k ==, ∴sinA+cosA=437555+=.故答案为75.16.已知A (﹣4,y 1),B (﹣1,y 2),C (1,y 3) 是反比例函数y =﹣4x图象上的三个点,把y 1与2y 、3y 的的值用小于号连接表示为________. 【答案】312y y y <<【分析】根据反比例函数图象上点的坐标特征可分别计算出y 1,y 2,y 3的值即可判断. 【详解】∵A (﹣4,y 1),B (﹣1,y 2),C (1,y 3) 是反比例函数y =﹣4x图象上的三个点, ∴1414y =-=-,2441y =-=-,3441y =-=-, ∴312y y y <<, 故答案为:312y y y <<. 【点睛】本题考查了反比例函数图象上点的坐标特征,由反比例函数确定函数值即可.17.小华在一次射击训练中的6次成绩(单位:环)分别为:9,8,9,10,8,8,则他这6次成绩的中位数比众数多__________环. 【答案】0.5【分析】根据中位数的定义和众数的定义,分别求出中位数和众数,然后作差即可. 【详解】解:将这6次的成绩从小到大排列: 8, 8,8,9,9,10,故这6次的成绩的中位数为:(8+9)÷2=8.5环 根据众数的定义,这6次的成绩的众数为8环 ∴他这6次成绩的中位数比众数多8.5-8=0.5环 故答案为:0.5. 【点睛】此题考查的是求一组数的中位数和众数,掌握中位数和众数的定义是解决此题的关键. 18.如图,O 的半径为2,双曲线的关系式分别为1y x =和1y x=-,则阴影部分的面积是__________.【答案】2π【分析】根据反比例函数的对称性可得图中阴影部分的面积为半圆面积,进而可得答案. 【详解】解:双曲线1y x =和1y x=-的图象关于x 轴对称,根据图形的对称性,把第三象限和第四象限的阴影部分的面积拼到第二和第一象限中的阴影中,可得阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以S 阴影=218022360ππ⨯=.故答案为:2π. 【点睛】本题考查的是反比例函数和阴影面积的计算,题目中的两条双曲线关于x 轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,这是解题的关键. 三、解答题(本题包括8个小题)19.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠.(1)求证:ABFEAD .(2)若4AB =,3BE =,72AD =,求BF 的长.【答案】(1)见解析;(2)145【解析】(1)求三角形相似就要得出两组对应的角相等,已知了∠BFE =∠C ,根据等角的补角相等可得出∠ADE =∠AFB ,根据AB ∥CD 可得出∠BAF =∠AED ,这样就构成了两三角形相似的条件.(2)根据(1)的相似三角形可得出关于AB ,AE ,AD ,BF 的比例关系,有了AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,这样就能求出BF 的长了. 【详解】(1)证明:在平行四边形ABCD 中, ∵∠D +∠C =180°,AB ∥CD , ∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C , ∴∠AFB =∠D , ∴△ABF ∽△EAD .(2)解:∵BE ⊥CD ,AB ∥CD , ∴BE ⊥AB . ∴∠ABE =90°. ∴2222345AE AB BE =+=+=.∵△ABF ∽△EAD ,BF ABAD EA ∴=, 4752BF ∴=. 145BF ∴=.【点睛】本题主要考查了相似三角形的判定和性质,平行四边形的性质,等角的补角,熟练掌握相似三角形的判定和性质是解题的关键.20.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.【答案】35°【分析】连接OD ,根据切线的性质得∠ODC =90°,根据圆周角定理即可求得答案. 【详解】连接OD ,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=12∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.21.计算:(1)sin30°-(5- tan75°)0;(2)3 tan230°-2sin45°+3sin60°.【答案】(1)﹣12(2)32【分析】(1)根据特殊角的三角函数值和非零的数的零次幂,即可求解;(2)根据特殊角的三角函数值,即可求解.【详解】(1)sin30°-(5- tan75°)0=12-1=﹣12;(2) 3 tan230°-2sin45°+3sin60°=3×(3)2-2×22+3×3=1-1+3 2=32.【点睛】本题主要考查特殊角的三角函数值和非零的数的零次幂,掌握特殊角的三角函数值,是解题的关键.22.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.(1)求证:△DCE∽△DBC;(2)若CE=5,CD=2,求直径BC的长.【答案】(1)见解析;(2)【分析】(1)由等弧所对的圆周角相等可得∠ACD=∠DBC ,且∠BDC=∠EDC ,可证△DCE ∽△DBC ; (2)由勾股定理可求DE=1,由相似三角形的性质可求BC 的长.【详解】(1)∵D 是弧AC 的中点,∴AD CD =,∴∠ACD=∠DBC ,且∠BDC=∠EDC ,∴△DCE ∽△DBC ;(2)∵BC 是直径,∴∠BDC=90°,∴DE 2254CE CD =-=-=1.∵△DCE ∽△DBC ,∴DE EC DC BC=, ∴152=, ∴BC=25.【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE ∽△DBC 是解答本题的关键.23.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()2,2A ,()4,0B , ()4,4C -.(1)以点O 为位似中心,将ABC ∆缩小为原来的12得到111A B C ∆,请在y 轴右侧画出111A B C ∆; (2) 111AC B ∠的正弦值为 .【答案】(1)见解析;(2)1010【分析】(1)连接OA 、OC ,分别取OA 、OB 、OC 的中点即可画出△111A B C ,(2)利用正弦函数的定义可知.由111sin sin AC B ACB ∠=∠AD AC=,即可解决问题. 【详解】解:(1)连接OA 、OC ,分别取OA 、OB 、OC 的中点1A 、1B 、1C ,顺次连接1A 、1B 、1C ,△111A B C 即为所求,如图所示,(2)(2,2)A ,(4,4)C -,(4,0)B ,∴22210AC CD AD += 90ADC ∠=︒,10sin 210A AD ACB C ∴∠===. 111AC B ACB ∠=∠,11110sin sin AC B ACB ∴∠=∠. 【点睛】本题考查位似变换、平移变换等知识,锐角三角函数等知识,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.注意:记住锐角三角函数的定义,属于中考常考题型.24.一段路的“拥堵延时指数”计算公式为:拥堵延时指数=高峰时段通过该路段的时间平峰时段通过该路段的时间,指数越大,道路越堵。
2020-2021学年河南省洛阳市九年级上学期期末考试数学试卷及答案解析

2020-2021学年河南省洛阳市九年级上学期期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.下列图形中,可以看作是中心对称图形的是()
A.B.
C.D.
2.方程x2=4x的根是()
A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4 3.下列说法中正确的是()
A.“任意画出一个平行四边形,它是中心对称图形”是必然事件
B.“正八边形的每个外角的度数都等于45°”是随机事件
C.“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是不可能事件D.任意抛掷一枚质地均匀的硬币100次,则反面向上一定是50次
4.已知抛物线y=a(x﹣2)2+1经过点A(m,y1),B(m+2,y2),若点A在抛物线对称轴的左侧,且1<y1<y2,则m的取值范围是()
A.0<m<1B.0<m<2C.1<m<2D.m<2
5.在同一坐标系中,函数y=k
x和y=﹣kx+3的大致图象可能是()
A.B.
C.D.
6.疫情期间,某口罩厂一月份的产量为100万只,由于市场需求量不断增大,三月份的产
第1 页共24 页。
2021-2022学年河南省洛阳市九年级(上)期末数学试卷(含解析)

2021-2022学年河南省洛阳市九年级(上)期末数学试卷(含解析)(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.方程x2+2 x-3=0的解是A. x1=1,x2=3B. x1=1,x2=-3C. x1=-1,x2=3D. x1=-1,x2=-32.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A. 1:16B. 1:4C. 1:6D. 1:23.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=,下列说法中正确的是()A. P一定等于B. 抛掷次数逐渐增加,P稳定在附近C. 多抛掷一次,P更接近D. 硬币正面朝上的概率是4.下列各方程中,一定是一元二次方程的是()A. B. ax2=2aC. (y-1)(y+2)=0D. y=2x-35.学校要组织一次篮球赛,赛制为单循环制(每两个班之间都赛一场),计划安排15场比赛.设参加球赛的班级有x个,所列方程正确的为()A. x(x-1)=15B. x(x+1)=15C. x(x-1)=15D. x(x+1)=156.如图,在四边形ABCD中,AD=BC,∠DAB=50°,∠CBA=70°,P、M、N分别是AB、AC、BD的中点,若BC=6,则△PMN的周长是()A. 6B. 9C. 12D. 187.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A,B,O都在小正方形的顶点上,则∠AOB的正弦值是()A.B.C.D.8.如图:在△ABC中,AB=AC,D是AC上的一点,且∠A=∠DBC=36°,则下列结论不成立的是()A. BC=ADB. 点D是AC的黄金分割点C.D. BC2=AC•CD9.某楼梯的侧面如图所示,已测得线段AB的长为3.5米,∠BAC=29°,则该楼梯的高度BC可表示为()A. 3.5sin29°米B. 3.5cos29°米C. 3.5tan29°米D. 米10.下列各选项不能判断△ABC与△DEF相似的是()A. ∠C=∠D=90°,∠B=32°,∠E=58°B. ∠C=∠D=90°,AB=15,BC=9,EF=5,DF=4C. ∠C=∠D=90°,AC=15,BC=9,DE=5,DF=3D. ∠C=∠D=90°,AC=15,BC=9,EF=5,DF=3二、填空题(本大题共5小题,共15.0分)11.化简二次根式:= ______ ,= ______ .12.如图,已知平行四边形ABCD,过A做AH⊥CD于点H,AB=8,AH=4,若在平行四边形内取一点,则该点到平行四边形的四个顶点的距离均大于1的概率为______.13.如图,将一个Rt△ABC形状的楔子从木桩的底点P沿水平方向打入木桩底下,使木桩向上移动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm(如箭头所示),则木桩上升了______.(结果可含有三角函数)14.如图,比例规是一种画图工具,它由长度相等的两脚AD和BC交叉构成.利用它可以把线段按一定的比例伸长或缩短,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,这时CD=2,则AB=______.15.在Rt△ABC中,CA=CB,AB=9,点D在BC边上,连接AD,若tan∠CAD=,则BD的长为______ .三、解答题(本大题共8小题,共55.0分)16.(1)计算:0+2cos30°.(2)先化简,再求值:,其中x=-3.17.解方程;(1)x2-8x+8=17x2(2)x2+4x-2=018.如图,下列网格由小正方形组成,点A,B,C都在正方形网格的格点上.(1)在图1中画出一个以线段BC为边,且与△ABC面积相等但不全等的格点三角形;(2)在图2和图3中分别画出一个以线段AB为边,且与△ABC相似(但不全等)的格点三角形,并写出所画三角形与△ABC的相似比.(相同的相似比算一种)19.一个布袋中装有只有颜色不同的a(a>12)个球,分别是2个白球,4个黑球,6个红球和b个黄球,从中任意摸出一个球,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).请补全该统计图并求出的值.20.大楼AB是某地标志性建筑,如图所示,某校九年级数学社团为测量大楼AB的高度,一小组先在附近一楼房CD的底端C点,用高为1.5米的测杆CE在E处观测AB大楼顶端B处的仰角是72°,另一小组到该楼房顶端D点处观测AB大楼底部A处的俯角是30°,已知楼房CD高约是45米,根据以上观测数据求AB大楼的高(精确到0.1米).(已知:≈1.73,sin72°≈0.951,cos72°≈0.034,tan72°≈3.08)21.如图,在5×5的边长为1小的正方形的网格中,如图1△ABC和△DEF都是格点三角形(即三角形的各顶点都在小正方形的顶点上).(1)判断:△ABC与△DEF是否相似?并说明理由;(2)在如图2的正方形网格中,画出与△DEF相似且面积最大的格点三角形,并直接写出其面积.22.【发现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且DE=BC.(不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA 的中点,判断四边形EFGH的形状,并加以证明.【应用】在【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH 是菱形?你添加的条件是:______.(只添加一个条件)23.如图,在平面直角坐标系中,抛物线y=mx2-8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2-x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】∵∴ ( x+3)(x-1)=0,∴x+3=0,,或x-1=0,解得:故选B。
2020-2021学年河南省洛阳市孟津县九年级(上)期末数学试卷 (含解析)

2020-2021学年河南省洛阳市孟津县九年级第一学期期末数学试卷一.选择题(共10小题).1.如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则sin B=()A.B.C.D.2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.3.某人沿坡度为i=1:的山路行了20m,则该人升高了()A.20m B.m C.m D.m4.某超市一月份的营业额为36万元,由于受疫情影响,二月份营业额有所下降,三月份开始复苏,营业额为48万元,设从一月到三月平均每月的增长率为x.则下面所列方程正确的是()A.36(1﹣x)2=48B.36(1+x)2=48C.36(1﹣x)2=48﹣36D.48(1﹣x)2=365.下列各组图形一定相似的是()A.有一个角相等的等腰三角形B.有一个角相等的直角三角形C.有一个角是100°的等腰三角形D.有一个角是对顶角的两个三角形6.下列运算中,正确的是()A.÷=B.2+3=6C.﹣=D.(+1)(﹣1)=37.下列说法错误的是()A.随着试验次数的增多,某一事件发生的频率就会不断增大B.一个事件A试验中出现的次数越多,频数就越大C.试验的总次数一定时,频率与频数成正比D.频数与频率都能反映一个事件出现的频繁程度8.如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=α,那么AB等于()A.m•sinα米B.m•tanα米C.m•cosα米D.米9.如图,△ABC中,CD⊥AB于D,下列条件中:①∠1=∠A,②=,③∠B+∠2=90°,④∠BAC:∠ABC:∠ACB=3:4:5,⑤AC•BD=AD•CD,⑥∠1+∠2=∠A+∠B.一定能确定△ABC为直角三角形的条件的个数是()A.1B.2C.3D.410.如图,△ABC的两个顶点B、C均在第一象限,以点A(0,1)为位似中心,在y轴左侧作△ABC的位似图形△ADE,△ABC与△ADE的位似比为1:2.若点C的纵坐标是m,则其对应点E的纵坐标是()A.B.2m+3C.﹣(2m+3)D.﹣2m+3二.填空题(每小题3分,共15分)11.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是.12.将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分△ABF的面积是cm2.13.如图,A是斜靠在墙壁上的长梯,梯脚B到墙距离BC是1.6米,梯上的点D到墙距离DE是1.4米,BD的长是0.55米,则梯子的长为米.14.如图,∠APD=90°,AP=PB=BC=CD,在△APB、△APC、△APD、△ABC、△ABD、△ACD中写出一对相似三角形.15.线段AB、CD在平面直角坐标系中的网格位置.如图所示,O为坐标原点,A、B、C、D均在格点上,线段AB、CD是位似图形,位似中心的坐标是.三、解答题(共8个小题,满分55分)16.计算:(2cos45°﹣sin60°)+﹣.17.解方程:(y+2)2=(3y﹣1)2.18.如图,在△ABC中,AB=12cm,AC=8cm,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,求线段EF的长.19.如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.20.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.21.某学习小组,为了测量旗杆AB的高度,他们在大楼MN第10层D点测得旗杆底端B 的俯角是32°,又上到第35层,在C点测得旗杆顶端A的俯角是60°,每层楼高度是2.8米,请你根据以上数据计算旗杆AB的高度.(精确到0.1米,已知:sin32°≈0.37,cos32°≈0.93,tan32°≈0.62,≈1.73)22.某商家将进货单价40元的商品按50元出售,能卖出500件,已知这种商品每涨价0.4元,就会少销售4件.商家为了赚得8000元的利润,每件售价应定为多少?23.如图,正方形ABCD的边长是12cm,E、F分别是直线BC、直线CD上的动点,当点E在直线BC上运动时,始终保持AE⊥EF.(1)证明:Rt△ABE∽Rt△ECF;(2)当点E在边BC上,BE为多少时,四边形ABCF的面积等于88cm2;(3)当点E在直线BC上时,△AEF和△CEF能相似吗?若不能,说明理由,若能,直接写出此时BE的长.参考答案一.选择题(共10小题).1.如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则sin B=()A.B.C.D.解:由正弦的定义知,sin B==.故选:B.2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.3.某人沿坡度为i=1:的山路行了20m,则该人升高了()A.20m B.m C.m D.m解:设该人升高了x米,则水平前进了x米.根据勾股定理可得x2+(x)2=202.则x=.故选:C.4.某超市一月份的营业额为36万元,由于受疫情影响,二月份营业额有所下降,三月份开始复苏,营业额为48万元,设从一月到三月平均每月的增长率为x.则下面所列方程正确的是()A.36(1﹣x)2=48B.36(1+x)2=48C.36(1﹣x)2=48﹣36D.48(1﹣x)2=36解:依题意得:36(1+x)2=48.故选:B.5.下列各组图形一定相似的是()A.有一个角相等的等腰三角形B.有一个角相等的直角三角形C.有一个角是100°的等腰三角形D.有一个角是对顶角的两个三角形解:A.若一个等腰三角形的底角和一个等腰三角形的顶角相等,无法判定两三角形相似,故本选项错误;B.两个直角三角形中直角相等,则两锐角的大小无法确定,无法判定两三角形相似,故本选项错误;C.一个角为100°,则这个角必须是顶角,且两底角度数为40°,故两个三角形三内角均相等,即可判定两三角形相似,故本选项正确;D.对顶角相等的三角形中,其他两个角的度数不确定,故无法判定两三角形相似,故本选项错误,故选:C.6.下列运算中,正确的是()A.÷=B.2+3=6C.﹣=D.(+1)(﹣1)=3解:∵,故选项A正确;∵,故选项B错误;∵,故选项C错误;∵(+1)(﹣1)=2﹣1=1,故选项D错误;故选:A.7.下列说法错误的是()A.随着试验次数的增多,某一事件发生的频率就会不断增大B.一个事件A试验中出现的次数越多,频数就越大C.试验的总次数一定时,频率与频数成正比D.频数与频率都能反映一个事件出现的频繁程度解:A、随着试验次数的增多,某一事件发生的频率不会改变,故原说法错误,符合题意;B、一个事件A试验中出现的次数越多,频数就越大,正确,不合题意;C、试验的总次数一定时,频率与频数成正比,正确,不合题意;D、频数与频率都能反映一个事件出现的频繁程度,正确,不合题意;故选:A.8.如图,小明为了测量其所在位置A点到河对岸B点之间的距离,沿着与AB垂直的方向走了m米,到达点C,测得∠ACB=α,那么AB等于()A.m•sinα米B.m•tanα米C.m•cosα米D.米解:在直角△ABC中,tanα=,∴AB=m•tanα.故选:B.9.如图,△ABC中,CD⊥AB于D,下列条件中:①∠1=∠A,②=,③∠B+∠2=90°,④∠BAC:∠ABC:∠ACB=3:4:5,⑤AC•BD=AD•CD,⑥∠1+∠2=∠A+∠B.一定能确定△ABC为直角三角形的条件的个数是()A.1B.2C.3D.4解:①∵∠A+∠2=90°,∠1=∠A,∴∠1+∠2=90°,即△ABC为直角三角形,故①符合题意;②∵CD2=AD•DB,∴,∵∠ADC=∠CDB=90°,∴△ACD∽△CBD,∴∠1=∠A,∵∠A+∠2=90°,∴∠1+∠2=90°,即∠ACB=90°,故②符合题意;③∵∠B+∠2=90°,∠B+∠1=90°,∴∠1=∠2,即无法得到两角和为90°,故③不符合题意;④∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°(三角形的内角和是180°),∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;故④不符合题意;⑤由三角形的相似无法推出AC•BD=AD•CD成立,所以△ABC不是直角三角形,故⑤不符合题意.⑥∵∠1+∠2=∠A+∠B,∠1+∠2+∠A+∠B=180°,∴∠1+∠2=90°,∴∠ACB=90°,∴△ABC是直角三角形;故⑥符合题意.故一定能确定△ABC为直角三角形的条件有①②⑥.故选:C.10.如图,△ABC的两个顶点B、C均在第一象限,以点A(0,1)为位似中心,在y轴左侧作△ABC的位似图形△ADE,△ABC与△ADE的位似比为1:2.若点C的纵坐标是m,则其对应点E的纵坐标是()A.B.2m+3C.﹣(2m+3)D.﹣2m+3解:设点C的纵坐标为m,则A、C间的纵坐标的长度为(m﹣1),∵△ABC放大到原来的2倍得到△ADE,∴E、A间的纵坐标的长度为2(m﹣1),∴点E的纵坐标是﹣[2(m﹣1)﹣1]=﹣(2m﹣3)=﹣2m+3.故选:D.二.填空题(每小题3分,共15分)11.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是.解:∵同时抛掷两枚质地均匀的硬币,等可能的结果有:正正,正反,反正,反反;∴出现两个正面朝上的概率是:,故答案为:.12.将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分△ABF的面积是(8﹣8)cm2.解:∵∠B=30°,∠ACB=90°,AB=8cm,∴AC=4(cm),BC=AC=4(cm),由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=4(cm),∴BF=BC﹣CF=(4﹣4)(cm),∴△ABF的面积=×BF×AC=(8﹣8)(cm2),故答案为(8﹣8).13.如图,A是斜靠在墙壁上的长梯,梯脚B到墙距离BC是1.6米,梯上的点D到墙距离DE是1.4米,BD的长是0.55米,则梯子的长为 4.40米.解:因为梯子每一条踏板均和地面平行,所以构成一组相似三角形,即△ABC∽△ADE,则=,设梯子长为x米,则=,解得,x=4.40.故答案是:4.40.14.如图,∠APD=90°,AP=PB=BC=CD,在△APB、△APC、△APD、△ABC、△ABD、△ACD中写出一对相似三角形△ABC∽△DBA.解:∵∠APD=90°,AP=PB=BC=CD,∴AB=AP,AC=AP,AD=AP,∴=,,∴,又∵∠ABC=∠ABD,∴△ABC∽△DBA,故答案为:△ABC∽△DBA.15.线段AB、CD在平面直角坐标系中的网格位置.如图所示,O为坐标原点,A、B、C、D均在格点上,线段AB、CD是位似图形,位似中心的坐标是(0,0)或(,4).解:当点A和点C为对应点,点B和点D为对应点时,延长CA、BD交于点O,则位似中心的坐标是(0,0),当点A和点D为对应点,点B和点C为对应点时,连接AD、BC交于点P,则点P为位似中心,∵线段AB、CD是位似图形,∴AB∥CD,∴△PAB∽△PDC,∴===,即=,∴AP=,∴位似中心点P的坐标是(,4),综上所述,位似中心点的坐标是(0,0)或(,4),故答案为:(0,0)或(,4).三、解答题(本大题共8个小题,满分55分)16.计算:(2cos45°﹣sin60°)+﹣.解:(2cos45°﹣sin60°)+﹣=×(2×﹣)+﹣==2.17.解方程:(y+2)2=(3y﹣1)2.解:直接开平方,得y+2=±(3y﹣1)即y+2=3y﹣1或y+2=﹣(3y﹣1),解得:y1=,y2=﹣.18.如图,在△ABC中,AB=12cm,AC=8cm,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于点F,交AB于点G,连接EF,求线段EF的长.解:在△AGF和△ACF中,,∴△AGF≌△ACF(ASA).∴AG=AC=8cm,∴GF=CF,则BG=AB﹣AG=12﹣8=4(cm).又∵BE=CE,∴EF是△BCG的中位线.∴EF=BG=2cm.答:EF的长为2cm,19.如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.【解答】证明:∵∠B=90°,AB=4,BC=2,∴AC==2,∵CE=AC,∴CE=2,∵CD=5,∵==,=,∴=,∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△ABC∽△CED.20.某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.解:(1)画树形图为:共有8种等可能的结果数,其中甲、乙、丙三名学生在同一个餐厅用餐的结果数为2,所以甲、乙、丙三名学生在同一个餐厅用餐的概率==;(2)甲、乙、丙三名学生中至少有一人在B餐厅用餐的结果数为7,所以甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率=.21.某学习小组,为了测量旗杆AB的高度,他们在大楼MN第10层D点测得旗杆底端B 的俯角是32°,又上到第35层,在C点测得旗杆顶端A的俯角是60°,每层楼高度是2.8米,请你根据以上数据计算旗杆AB的高度.(精确到0.1米,已知:sin32°≈0.37,cos32°≈0.93,tan32°≈0.62,≈1.73)解:过C作CE⊥BA交BA的延长线于点E,过点D作DF⊥BA交BA于点F.由题意知:∵点D在第10层,点C在第35层,每层楼高为2.8米,∴MD=2.8×10=28(米),CM=2.8×35=98(米),在Rt△DFB中,∠FDB=32°,BF=MD=28,∴DF==≈≈45.16(米),在Rt△CEA中,∠ACE=60°,CE=DF≈45.16,∴EA=CE•tan∠ACE=45.16×tan60°≈45.16×1.73≈78.13(米),∵BE=CM=98(米)∴BA=BE﹣AE≈98﹣78.13=19.87≈19.9(米),答:旗杆AB的高度约为19.9米.22.某商家将进货单价40元的商品按50元出售,能卖出500件,已知这种商品每涨价0.4元,就会少销售4件.商家为了赚得8000元的利润,每件售价应定为多少?解:设售价应定为x元/个,则每个的销售利润为(x﹣40)元,能卖出500﹣×4=(1000﹣10x)件,依题意,得:(x﹣40)(1000﹣10x)=8000,整理得:x2﹣140x+4800=0,解得:x1=60,x2=80.答:售价应定为60元/个或80元/个.23.如图,正方形ABCD的边长是12cm,E、F分别是直线BC、直线CD上的动点,当点E在直线BC上运动时,始终保持AE⊥EF.(1)证明:Rt△ABE∽Rt△ECF;(2)当点E在边BC上,BE为多少时,四边形ABCF的面积等于88cm2;(3)当点E在直线BC上时,△AEF和△CEF能相似吗?若不能,说明理由,若能,直接写出此时BE的长.【解答】证明:(1)∵AE⊥EF,∴∠AEB+∠CEF=90°,又∵∠BAE+∠AEB=90°.∴∠BAE=∠CEF,又∵∠B=∠C=90°,∴Rt△ABE∽Rt△ECF;(2)如图,设BE=xcm,则CE=(12﹣x)cm,∵Rt△ABE∽Rt△ECF,∴,∴,∴,∴,根据题意得:,整理得:x2﹣12x+32=0,∴x1=4,x2=8,∴BE=4cm或BE=8cm;(3)△ABE∽△AEF能成立,如图1,当点E在线段BC上时,∵AE⊥EF,∴∠AEF=∠C=90°,∵AF不平行BC,∴∠AFE≠∠FEC,当∠FEC=∠EAF时,△AEF∽△ECF,∵Rt△ABE∽Rt△ECF,∴∠BAE=∠FEC=∠EAF,,∵tan∠BAE=tan∠EAF=,∴,∴,∴BE=6(cm);如图2,当点E在CB的延长线上时,设AF与BC的交点为H,当∠CEF=∠AFE时,△CEF∽△EFA,∴EH=HF,∠FAE=∠HEA,∴AH=EH=HF,∵BC∥AD,∴△CFH∽△DFA,∴,∴CH=6(cm),∴BH=6(cm),∴AH===6(cm),∴BE=EH﹣BH=(6﹣6)(cm),如图3,当点E在BC的延长线上时,设AF与BC交于点H,当∠EFC=∠EAF时,△FCE∽△AEF,同理可求BE=(6+6)(cm),综上所述:BE的长是6cm或()cm或()cm.。
河南省洛阳市孟津县九年级(上)期末数学试卷

A.8
B.10
C.12
D.14
7.(3 分)如图 1,在三角形纸片 ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示
中的虚线剪开,剪下的阴影三角形与原三角形相似的有( )
A.①②③
B.①②④
C.①③④
D.②③④
8.(3 分)一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋
A.(x+2)2=5
B.(x﹣2)2=5
C.(x﹣2)2=3
D.(x+2)2=3
4.(3 分)某商场今年 3 月份的营业额为 400 万元,5 月份的营业额达到 633.6 万元,若设
商场 3 月份到 5 月份营业额的月平均增长率为 x,则下面列出的方程中正确的是( )
A.400(1+x)2=633.6
B.400(1+2x)2=6336
C.400×(1+2x)2=63.6
D.400×(1+x)2=633.6+400
5.(3 分)当 A 为锐角,且 <cos∠A< 时,∠A 的范围是( )
A.0°<∠A<30° B.30°<∠A<60° C.60°<∠A<90° D.30°<∠A<45° 6.(3 分)如图,在△ABC 中,点 D、E 分别是边 AB,BC 的中点.若△DBE 的周长是 6,
子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜
第1页(共6页)
色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下 列说法正确的是( )
A.袋子一定有三个白球 B.袋子中白球占小球总数的十分之三 C.再摸三次球,一定有一次是白球 D.再摸 1000 次,摸出白球的次数会接近 330 次 9.(3 分)如图,面积为 16 的正方形 ABCD 中,有一个小正方形 EFGH,其中 E、F、G 分 别在 AB、BC、FD 上.若 BF=1,则小正方形的周长为( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【校级联考】河南省洛阳市孟津县2018届九年级(上)期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1 )A .10B .C .D .20 2.一元二次方程2x 2﹣5x ﹣2=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.用配方法解方程x 2+4x+1=0时,方程可变形为 ( )A .()22=5x -B .()22=5x +C .()22=3x +D .()22=3x -1a =4.某商场今年3月份的营业额为400万元,5月份的营业额达到633.6万元,若设商场3月份到5月份营业额的月平均增长率为x ,则下面列出的方程中正确的是( ) A .400(1+x )2=633.6B .400(1+2x )2=6336C .400×(1+2x )2=63.6D .400×(1+x )2=633.6+4005.当A 为锐角,且12<cos ∠A A 的范围是( ) A .0°<∠A <30° B .30°<∠A <60° C .60°<∠A <90° D .30°<∠A <45°6.如图,在△ABC 中,点D 、E 分别是边AB ,BC 的中点.若△DBE 的周长是6,则△ABC 的周长是( )A .8B .10C .12D .147.如图1,在三角形纸片ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形相似的有( )A.①②③B.①②④C.①③④D.②③④8.一个不透明的袋子里有若干个小球,它们除了颜色外,其它都相同,甲同学从袋子里随机摸出一个球,记下颜色后放回袋子里,摇匀后再次随机摸出一个球,记下颜色,…,甲同学反复大量实验后,根据白球出现的频率绘制了如图所示的统计图,则下列说法正确的是()A.袋子一定有三个白球B.袋子中白球占小球总数的十分之三C.再摸三次球,一定有一次是白球D.再摸1000次,摸出白球的次数会接近330次9.如图,面积为16的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=1,则小正方形的周长为()A.7B.6C.5D.410.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.1)B.(2,1)C.(2D.(1二、填空题11x取值范围_____.12.已知a:b=3:2,则(a-b):a= .13.有画有等腰三角形、平行四边形、等腰梯形、长方形、等边三角形五张卡片,背面朝下,颜色、形状、大小都一样,任取一张是中心对称图形的概率是_____.14.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t 秒,连接DE,当△BDE是直角三角形时,t的值______________.15.如图,D是等边△ABC边AB上的点,AD=2,DB=4.现将△ABC折叠,使得点C与点D重合,折痕为EF,且点E、F分别在边AC和BC上,则CFCE=_______.16.如图,某城市的电视塔AB坐落在湖边,数学老师带领学生隔湖测量电视塔AB的高度,在点M处测得塔尖点A的仰角∠AMB为22.5°,沿射线MB方向前进200米到达湖边点N处,测得塔尖点A在湖中的倒影A′的俯角∠A′NB为45°,则电视塔AB的高度为______米(结果保留根号).三、解答题17.计算:1cos3011cos60tan 30-︒++︒︒. 18.如图,以O 为位似中心,将△ABC 放大为原来的2倍(不写作法,保留作图痕迹).19.已知关于x 方程2x 2﹣(3+4k )x+2k 2+k=0,k 为何值时,方程有两个不相等的实数根?20.如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四角连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14,若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.21.甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传三次.(1)求三次传球后,球回到甲脚下的概率;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?22.如图,已知AB ∥CD ,AD 、BC 相交于点E ,点F 在ED 上,且∠CBF=∠D .(1)求证:FB 2=FE•FA;(2)若BF=3,EF=2,求△ABE 与△BEF 的面积之比.23.已知:如图①,在平行四边形ABCD 中,3AB cm =,5BC cm =,AC AB ⊥.ACD 沿AC 的方向匀速平移得到PNM ,速度为1/cm s ;同时,点Q从点C 出发,沿着CB 方向匀速移动,速度为1/cm s ;当PNM 停止平移时,点Q 也停止移动,如图②.设移动时间为()(04)t s t <<.连接PQ 、MQ 、MC .解答下列问题:()1当t 为何值时,//PQ AB ?()2当3t =时,求QMC 的面积;()3是否存在某一时刻t ,使PQ MQ ⊥?若存在,求出t 的值;若不存在,请说明理由.参考答案1.B【详解】.2.B【解析】【分析】本题可由求根公式求解得出答案.【详解】B 项.【点睛】本题考查了一元二次方程的求解,熟练掌握公式是解决本题的关键.3.C【解析】【分析】根据配方法的定义即可得到答案.【详解】将原式变形可得:x 2+4x +4-3=0,即(x +2)2=3,故答案选C.【点睛】本题主要考查了配方法解一元二次方程,解本题的要点在于将左边配成完全平方式,右边化为常数.4.A【分析】4月份的营业额=4001+x ⨯(),5月份的营业额=4月份的营业额()1x ⨯+,把相关数值代入即可得到相应方程.【详解】3月份的营业额为400万元, 商场3月份到5月份营业额的月平均增长率为x ,4∴月份的营业额=4001+x ⨯(),5∴月份的营业额,∴可列方程为: 400(1)(1)633.6x x ⨯++=,所以A 选项是正确的.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为2(1)a x b +=.5.B【解析】试题解析:∵cos60°=12, cos30°=2, ∴30°<∠A <60°. 故选B .6.C【解析】【详解】解:∵点D 、E 分别是边AB ,BC 的中点,∴DE 是三角形BC 的中位线,AB =2BD ,BC =2BE ,∴DE ∥BC 且12DE AC =, 又∵AB =2BD ,BC =2BE ,∴AB +BC +AC =2(BD +BE +DE ),即△ABC 的周长是△DBE 的周长的2倍,∵△DBE 的周长是6,∴△ABC 的周长是:6×2=12. 故选C.7.B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】①阴影部分的三角形与原三角形有两个角相等,故两三角形相似;②阴影部分的三角形与原三角形有两个角相等,故两三角形相似;③两三角形的对应边不成比例,故两三角形不相似;④两三角形对应边成比例且夹角相等,故两三角形相似.故选B.【点睛】本题考查了相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.8.D【分析】观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一常数附近,可以用此常数表示白球出现的概率,从而确定正确的选项.【详解】∵观察折线统计图发现随着摸球次数的增多白球出现的频率逐渐稳定在某一33%附近,∴白球出现的概率为33%,∴再摸1000次,摸出白球的次数会接近330次,正确,其他错误,故选D.【点睛】本题考查了利用频率估计概率的知识,观察随着实验次数的增多而逐渐稳定在某个常数附近即可.9.C【分析】由条件可证明△BEF∽△CFD,则有BE BFCF CD=,代入可求得BE,在Rt△BEF中可求得EF,即小正方形的周长.【详解】∵四边形ABCD和四边形EFGH都是正方形,∴∠B=∠C=∠EFG=90︒,∴∠BFE+∠DFC=∠BEF+∠BFE=90︒,∴∠BEF=∠DFC,∴△BEF∽△CFD,∴BE BF CF CD=, 又∵正方形ABCD 面积为16,∴BC =CD =4,∵BF =1,则CF =3, ∴134BE =, ∴BE =34, 在Rt △BEF 中,由勾股定理可求得EF =54, 即小正方形的周长为5,故答案选C.【点睛】本题主要考查相似三角形的判定与性质,勾股定理,正方形的性质,熟悉掌握性质定理是关键.10.C【解析】【分析】由已知条件得到AD′=AD=2,AO=12AB=1,根据勾股定理得到,于是得到结论.【详解】解:∵AD′=AD=2, AO=12AB=1,OD′==,∵C′D′=2,C′D′∥AB ,∴C′(2,故选D .【点睛】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键. 11.x <1【分析】根据根号下需要满足非负数,从而得出答案.【详解】, ∴1-x>0.∴ x <1.【点睛】本题主要考查了二次根式的意义和性质,熟悉掌握是关键.12.. 【解析】试题分析:根据比例关系即可得到答案.∵a:b=3:2∴(a-b):a=(3-2):3=1:3考点:比例关系.13.25【分析】任取一张是中心对称图形的概率=出现中心对称图形的次数÷事件的总数.【详解】任意翻开一张卡片,共有5种情况,其中是中心对称图形的有平行四边形,长方形2种,所以概率是25. 【点睛】本题主要考查了概率公式;中心对称图形,解决本题关键是理解什么是中心对称图形,然后根据事件的总数和出现中心对称图形的次数求出概率.14.2或6或3.5或4.5.【解析】∵∠ACB =90°,∠ABC =60°,BC =2cm , ∴AB =BC ÷cos60°=2÷12=4(cm ), ①∠BDE =90°时, 13∵D为BC的中点,∴DE是△ABC的中位线,∴AE=12AB=12×4=2(cm),点E在AB上时,t=2÷1=2(秒),②∠BED=90°时,BE=BD⋅cos60°=12×2×12=0.5(cm)点E在AB上时,t=(4−0.5)÷1=3.5(秒),综上所述,t的值为2秒或3.5秒,故答案为2秒或3.5秒.点睛:本题主要考查锐角三角函数,用t表示出线段的长,化动为静,再根据60°角的三角函数值找到关于t的方程是解决这类问题的基本思路.15.54.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=6,由折叠的性质可知,∠EDF=∠C=60°,EC=ED,FC=FD,∴∠AED=∠BDF,∴△AED∽△BDF,∴DFDE=BD DF BFAE AD DE++++=108=54,∴CFCE=DFDE=54,故答案为54.点睛:本题考查的是翻转变换的性质、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、翻转变换的性质是解题的关键.16.【解析】解:如图,连接AN,由题意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB AN=,故答案为点睛:此题是解直角三角形的应用﹣﹣﹣仰角和俯角,主要考查了垂直平分线的性质,等腰三角形的性质,解本题的关键是求出∠ANB=45°.17.233 +【分析】利用特殊角的三角函数值代入再通过实数运算法则求出即可. 【详解】原式=121 12 -+=(1﹣2×23=2 3=2 3【点睛】此题主要考查了特殊角的三角函数值应用,正确记忆特殊角的三角函数值是解题关键. 18.如图所示见解析.【分析】连接OA、OB、OC并延长到2AO、2BO、2CO长度找到各点的对应点,然后顺次连接即可. 【详解】如图所示:△A′B′C′和△A″B″C″.【点睛】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.19.当k >﹣916时,方程有两个不相等的实数根. 【解析】【分析】当△>0,方程有两个不相等的实数根.【详解】∵关于x 方程2x 2﹣(3+4k )x+2k 2+k=0有两个不相等的实数根,∴△=[﹣(3+4k )]2﹣4×2×(2k 2+k )=16k+9>0,解得:k >﹣916, ∴当k >﹣916时,方程有两个不相等的实数根. 【点睛】本题考查了一元二次方程20(a 0)++=≠ax bx c 的根的判别式24b ac =-△:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 20.道路的宽为1米【解析】试题分析:首先假设道路的宽为x 米,根据道路的宽为正方形边长的,得出正方形的边长以及道路与正方形的面积进而得出答案.试题解析:设道路的宽为x米,则可列方程:x(12﹣4x)+x(20﹣4x)+16x2=×20×12,即:x2+4x﹣5=0,解得:x1=l,x2=﹣5(舍去).答:道路的宽为1米.考点:一元二次方程的应用.21.(1)14(2)球回到乙脚下的概率大.【解析】(1)画出树状图,利用概率公式列式进行计算即可求得球回到甲脚下的概率;(2)求出球回到传到乙脚下的概率,与(1)中的结果进行比较大小即可.试题分析:(1)根据题意画出树状图如下:由树形图可知三次传球有8种等可能结果;三次传球后,球回到甲脚下的概率=21 84 =;(2)由(1)可知球回到乙脚下的概率=38,1348<,所以球回到乙脚下的概率大.22.(1)证明见解析;(2)5:4.【解析】试题分析:(1)要证明FB2=FE•FA,只要证明△FBE∽△FAB即可,根据题目中的条件可以找到两个三角形相似的条件,本题得以解决;(2)根据(1)中的结论可以得到AE的长,然后根据△ABE与△BEF如果底边分别为AE和EF,则底边上的高相等,面积之比就是AE和EF的比值.试题解析:(1)∵AB∥CD,∴∠A=∠D.又∵∠CBF=∠D,∴∠A=∠CBF,∵∠BFE=∠AFB ,∴△FBE ∽△FAB , ∴FB FE FA FB = ∴FB 2=FE•FA;(2)∵FB 2=FE•FA,BF=3,EF=2∴32=2×(2+AE ) ∴52AE =∴54AE EF =,∴△ABE 与△BEF 的面积之比为5:4.考点:相似三角形的判定与性质.23.(1)当209t =时,//PQ AB ,理由见解析;(2)910;(3)当32t =时,PQ MQ ⊥,理由见解析【分析】(1)根据勾股定理求出AC ,根据PQ ∥AB ,得出关于t 的比例式,求解即可; (2)过点P 作PD ⊥BC 于D ,根据△CPD ∽△CBA ,列出关于t 的比例式,表示出PD 的长,再根据S △QMC =12QC•PD ,进行计算即可; (3)过点M 作ME ⊥BC 的延长线于点E ,根据△CPD ∽△CBA ,得出PD=35 (4-t),CD=45 (4-t),再根据△PDQ ∽△QEM ,得到PD DQ QE EM = ,即PD•EM=QE•DQ ,进而得到方程212316999555555t t t ⎛⎫⎛⎫⎛⎫-=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭求得t=32或t=0(舍去),即可得出当t=32时,PQ ⊥MQ 【详解】解:()1如图所示,3AB cm =,5BC cm =,AC AB ⊥,∴Rt ABC 中,4AC =,若//PQ AB ,则有CP CQ PA QB=, ∵CQ PA t ==,4CP t =-,5QB t =-, ∴45t t t t-=-, 即22209t t t -+=, 解得209t =, 当209t =时,//PQ AB ;()2如图所示,过点P 作PD BC ⊥于点D ,∴90PDC A ∠=∠=,∵PCD BCA ∠=∠∴CPD CBA ∽, ∴CP PD CB BA=, 当3t =时,431CP =-=,∵3BA =,5BC =, ∴153PD =, ∴35PD =, 又∵3CQ =,//PM BC , ∴13932510QMC S=⨯⨯=; ()3存在时刻32t =,使PQ MQ ⊥,理由如下:如图所示,过点M 作ME BC ⊥的延长线于点E ,∵CPD CBA ∽, ∴CP PD CD CB BA CA==, ∵3BA =,4CP t =-,5BC =,4CA =, ∴4534t PD CD -==, ∴()345PD t =-,()445CD t =-. ∵PQ MQ ⊥,∴90PDQ QEM ∠=∠=,PQD QME ∠=∠,∴PDQ QEM ∽, ∴PD DQ QE EM=,即PD EM QE DQ ⋅=⋅. ∵()31234555EM PD t t ==-=-, ()41694555DQ CD CQ t t t =-=--=-, ()49954555QE DE DQ t t t ⎡⎤=-=---=+⎢⎥⎣⎦, ∴212316999()555555t t t ⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, 即2230t t -=, ∴32t =或0t =(舍去), ∴当32t =时,PQ MQ ⊥. 【点睛】此题属于四边形综合题,主要考查了相似三角形的判定与性质、勾股定理、平行线的性质、三角形的面积计算的综合应用,解决问题的关键是根据题意画出图形,作出辅助线,构造相似三角形.。