不变量问题
抓住不变量解应用题

应用题中的不变量一、部分量不变例1、育红小学六年级图书角原来有科技书与文艺书本数比是5∶6,借出10本科技书后,科技书与文艺书本数比是3∶4。
科技书原来有多少本?解法一:本题文艺书本数不变。
由原来有科技书是文艺书本数的56,现在科技书是文艺书本数的34,则文艺书本数是10÷(56-34)本,得科技书原来有的本数。
10÷(56-34)×56=10÷112×56=100(本)解法二:本题文艺书本数不变。
由科技书与文艺书本数比。
原来5∶6=10∶12现在3∶4=9∶12则文艺书本数的份数12不变,得科技书原来有的本数。
10÷(10-9)×10=100(本)例2、小军原有的钱数是小明的3/4,小军用去100元后,这时小军的钱数是两人总钱数的5/17。
小军原来有多少元钱?[思路点拔]:题中小军的钱数减少了,总钱数也减少了,但小明的钱数没有变,因此,我们可以把小明的钱数看作单位“1”。
这时“小军用去100元后,这时小军的钱数是两人总钱数的5/17”就转化为“小军用去100后,这时小军的钱数是小明的5/(17-5),即5/12”,再根据题中前两个条件可知,100元相当于小明的钱数的3/4-5/12=1/3。
因此小明的钱数是100÷1/3=300(元),小军原有钱数是300×3/4=400(元)例3、唐洋小学六(4)班男生人数占班级总人数的9/16,后来又转走了4名男生,这时男生人数占班级总人数的8/15,求六(4)班原来有学生多少名?[思路点拔]:从男生转走了4名看出,男生人数和班级总人数都发生了变化,但女生人数没有变。
因此可以把女生人数这个不变量看作单位“1”,原来男生人数占班级总人数的9/16,女生人数就占班级总人数的1-9/16=7/16,原来男生人数是女生人数的9/16÷7/16=9/7;现在男生人数占总人数的8/15,女生人数就占班级总人数的1-8/15=7/15,现在男生人数是女生人数的8/15÷7/15=8/7,男生人数减少了4名,分率减少了9/7-8/7=1/7,据此求出女生人数为4÷1/7=28(名),六(4)班原有学生人数是28÷7/16=64(名) 例4、有含糖率为7%的糖水600克,要使含糖率变为10%,需再加入多少克糖?[思路点拔]:糖水600克中有水:600*(1-7%)=558克,所以,现在糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克例5、鸡栏里有公鸡和母鸡共80只,其中公鸡,后来又买回若干只公鸡后,母鸡占总只数的,问又买回多少只公鸡?[思路点拔]:首先,找准不变量:母鸡只数,可以直接计算出来,算出其只数80×(1-)=44只。
第六单元比中的“不变量问题”专项练习(解析版)北师大版

【分析】设原来两桶汽油一共有x千克,汽油从甲桶倒向乙桶,总质量没变,汽油总质量÷原来总份数×原来甲桶对应份数-汽油总质量÷现在总份数×现在甲桶对应份数=5千克,据此列出方程解答即可。
【详解】解:设原来两桶汽油一共有x千克。
x÷(3+2)×3-x÷(8+7)×8=5
x÷5×3- x÷15×8=5
2023-2024学年六年级数学上册典型例题系列
第六单元:比中的“不变量问题”专项练习
1.“双减”课后服务活动中,数学文化研究小组有42人,其中男、女生人数的比是6∶1。后来又加入一些女生,这时男、女生数的比为4∶3。这个小组增加了多少名女生?
【答案】21人
【分析】根据题意可知,男生人数不变,有42× =36(名),女生有42-36=6(名),后来女生人数占男生人数的 ,根据分数乘法的意义,用36× 即可求出变化后的女生人数,再减去原来的女生人数即可。
7∶5=(7×5)∶(5×5)=35∶25
13÷(48-35)
=13÷13=1Βιβλιοθήκη 克)甲:1×48=48(克)
乙:1×12=12(克)
答:甲液原来有48克、乙药液原来有12克。
【点睛】本题考查按比分配,解答本题的关键是掌握按比分配解决问题的方法。
14.一个书架上层和下层的本数比4∶5,如果把上层拿120本到下层,这样下层刚好是上层的2倍,这个书架原来上层有多少本?
【详解】解:设两个场馆共有 名观众。
答:两个场馆共有60名观众。
【点睛】本题考查比例的实际应用,找出题目中人数变化和比的变化的关系是解题的关键。
3.一杯糖水,糖和水的质量比是1∶10。若再放2克糖,糖和水的质量比则是1∶8。杯中糖水里原有糖和水各多少克?
第五讲 六年级数学分数除法应用题(三)“不变量”解题

第五讲 分数除法应用题(三)“不变量”解题一、夯实基础有些分数应用题,数量变化多,分析难度大,不易列式计算。
但是,如果我们仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的“不变量”。
对于这类分数应用题,我们通常是抓住“不变量”,巧设单位“1”,把其他分率统一转化为同一个单位“1”,求出单位“1”的量,把它作为解题的中间条件,问题就迎刃而解了。
运用“量不变”的思维方法解题时,大体上有以下几种情况:(1)分量发生变化,总量没有变化;(2)总量发生变化,但其中有的分量没有发生变化;(3)总量和分量都发生变化,但分量之间的差没有发生变化。
二、典型例题例1.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。
问后来又有几名女生来看书?例2.有两缸金鱼,如果从甲缸中取出1尾放入乙缸,则两缸的金鱼尾数相等,如果从乙缸中取出1尾放入甲缸,则乙缸是甲缸的21。
求原来甲、乙两缸各有金鱼多少尾?例3.一筐香蕉,筐的重量是香蕉的121,卖掉19千克后,剩下的香蕉重量是筐重量的25倍,求原来筐里有香蕉多少千克?三、熟能生巧1.某校原有科技书和文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,求又进科技书多少本?2.小芳在看一本小说,晚饭前,已看的页数是未看的71,晚饭后,她又看了8页,这时已看的页数是未看的61,这本小说有多少页?3.某车间男工人数是女工人数的2倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?四、拓展演练1.一批葡萄运进仓库时的质量是100千克,测得含水量为99%,过一段时间,测得含水量为 98%,这时葡萄的质量是多少千克?2.有甲、乙两个粮库,原来甲粮库存粮的吨数是乙粮库的75。
如从乙粮库调6吨到甲粮库,甲粮库存粮的吨数就是乙的54。
原来甲、乙粮库各存粮多少吨?3.袋中有若干个皮球,其中花皮球占125,后来往袋中又放入了6个花皮球,这时花皮球占皮球总数的21,现在袋中有多少个皮球?星级挑战★1.小强和小明各有图书若干本。
小学六年级数学根据不变量确定单位1问题专项练习及详细答案解析(50题)

小学六年级数学根据不变量确定单位1问题专项练习及详细答案解析(50题)1、学校图书室对科技书和文艺书进行整理,其中科技书占,后来又买来了15本科技书,这样科技书占总数的,问原来科技书有多少本?2、工厂原有职工128人,男工人数占总数的,后来又调入男职工若干人,调入后男工人数占总人数的,这时工厂共有职工多少人?3、某小学男、女生人数之比是16:13,后来有几位女生转学到这所学校,男、女生人数之比变成为6:5,这时全体学生共有880人,问转学来的女生有多少人?4、职工技术学校原有科技书、文艺书630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,又买来科技书多少本?5、一条路,已修的米数相当于未修米数的,后来又修了500米,这时已修的米数和未修的米数的比是3:2,这条路全长多少米?6、学校兴趣小组中,科技组与绘画组人数比是3:2,后来科技组又增加了40人,这时绘画组人数是科技组人数的50%,绘画组有多少人?7、某班一次体标测验,不合格人数与合格人数的比是1:9,后来补测,2人由不合格改为合格,这时体标合格率是94%,这个班有学生多少人?8、张庄小学六年级学生中女生占,后来又转来了15名女生,这样女生占六年级总人数的,六年级原来有多少名学生?9、光明小学原来体育达标人数与没有达标的人数比是3:5,后来又有60名同学达标,这时达标人数是没达标的,光明小学共有学生多少人?10、学校计算机小组中女生占37.5%,后来又有4名女生参加,这时女生占小组总人数的.计算机小组现在共有多少人?11、(福州)甲、乙两个仓库库存化肥的质量比是12:11,后来乙仓库又运来24吨,这时甲仓库存化肥比乙仓库少.乙仓库原来存化肥多少吨?12、(2010•武昌区)合唱团里男、女生人数比是3:5,后来调来8名男生,这时男、女生人数比是7:10,合唱团原有女生多少人?13、(2011•武汉)甲乙两人原有的钱数之比是5:4,后来甲用去了45元,乙又得到了45元,这时两人的钱数之比是5:7,两人原来一共有多少钱?14、(福州)甲、乙两个仓库库存化肥的质量比是12:11,后来乙仓库又运来24吨,这时甲仓库存化肥比乙仓库少.乙仓库原来存化肥多少吨?15、六(1)班在一次劳动中,原计划把全班同学平均分成甲、乙两组.后来,根据需要从甲组调了4个人到乙组,结果乙组人数占全班的60%.六(1)班有多少人?16、有甲、乙两堆煤,其中甲堆是乙堆的,后来从乙堆运39吨到甲堆后,甲堆是乙堆的.原来这两堆各有多少吨?17、某校六年级课外数学兴趣小组中,女生人数占;后来又吸收了4个女同学参加,这时,女生人数与小组人数的比是4 : 9。
抓住不变量解应用题

应用题中的不变量一、部份量不变例1、育红小学六年级图书角原先有科技书与文艺书本数比是5∶6,借出10本科技书后,科技书与文艺书本数比是3∶4。
科技书原先有多少本?解法一:此题文艺书本数不变。
由原先有科技书是文艺书本数的56,此刻科技书是文艺书本数的34,那么文艺书本数是10÷(56-34)本,得科技书原先有的本数。
10÷(56-34)×56=10÷112×56=100(本)解法二:此题文艺书本数不变。
由科技书与文艺书本数比。
原先 5∶6=10∶12此刻 3∶4=9∶12那么文艺书本数的份数12不变,得科技书原先有的本数。
10÷(10-9)×10=100(本)例二、小军原有的钱数是小明的3/4,小军用去100元后,这时小军的钱数是两人总钱数的5/17。
小军原先有多少元钱?[思路点拔]:题中小军的钱数减少了,总钱数也减少了,但小明的钱数没有变,因此,咱们能够把小明的钱数看做单位“1”。
这时“小军用去100元后,这时小军的钱数是两人总钱数的5/17”就转化为“小军用去100后,这时小军的钱数是小明的5/(17-5),即5/12”,再依照题中前两个条件可知,100元相当于小明的钱数的3/4-5/12=1/3。
因此小明的钱数是100÷1/3=300(元),小军原有钱数是300×3/4=400(元)例3、唐洋小学六(4)班男生人数占班级总人数的9/16,后来又转走了4名男生,这时男生人数占班级总人数的8/15,求六(4)班原先有学生多少名?[思路点拔]:从男生转走了4名看出,男生人数和班级总人数都发生了转变,但女生人数没有变。
因此能够把女生人数那个不变量看做单位“1”,原先男生人数占班级总人数的9/16,女生人数就占班级总人数的1-9/16=7/16,原先男生人数是女生人数的9/16÷7/16=9/7;此刻男生人数占总人数的8/15,女生人数就占班级总人数的1-8/15=7/15,此刻男生人数是女生人数的8/15÷7/15=8/7,男生人数减少了4名,分率减少了9/7-8/7=1/7,据此求出女生人数为4÷1/7=28(名),六(4)班原有学生人数是28÷7/16=64(名)例4、有含糖率为7%的糖水600克,要使含糖率变成10%,需再加入多少克糖?[思路点拔]:糖水600克中有水:600*(1-7%)=558克,因此,此刻糖水总量是:558/(1-10%)=620克那么要加糖:620-600=20克例五、鸡栏里有公鸡和母鸡共80只,其中公鸡,后来又买回假设干只公鸡后,母鸡占总只数的,问又买回多少只公鸡?[思路点拔]:第一,找准不变量:母鸡只数,能够直接计算出来,算出其只数80×(1-)=44只。
“不变量”解题

第21讲“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】将6143的分子与分母同时加上某数后得97,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79,由此可求出新分数的分子和分母。
” 分母:(61-43)÷(1-79)=81 分子:81×79=63 81-61=20或63-43=20解法二:4361的分母比分子多18,79的分母比分子多2,因为分数的与分母的差不变,所以将79的分子、分母同时扩大(18÷2=)9倍。
79 的分子、分母应扩大:(61-43)÷(9-7)=9(倍) 约分后所得的79在约分前是:79 =7×99×9 =6381所加的数是81-61=20答:所加的数是20。
练习1: 1、分数97181 的分子和分母都减去同一个数,新的分数约分后是25 ,那么减去的数是多少? 2、分数113的分子、分母同加上一个数后得35,那么同加的这个数是多少?3、将5879这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?【例题2】将一个分数的分母减去2得45,如果将它的分母加上1,则得23,求这个分数。
解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45”可知,分母比分子的54倍还多2。
由“分母加1得23”可知,分母比分子的32倍少1,从而将原题转化成一个盈亏问题。
分子:(2+1)÷(32-54)=12 分母:12×32-1=17解法二:两个新分数在未约分时,分子相同。
紧扣“不变量”灵活解决问题

思路
原 来有 水
,
24
,
9
x
4
=
( 立 方 分米 )
,
当铁 块
。
瀛
:
放 入 水 槽 中 水位 上 升 了 但 是 水 的体 积 还 是 抓 住 了这 个 不 变 量
一
8 6 4 立 方分米
≯
,
就 可 以 巧 妙 解 决 问题
。
不 妨设现 在水位
灌
共是
x
分米
。
那 么 将 浸 没 在 水 中 的铁 块 体 积 和 原 来 水 的 体 积 合 在
x
有 的 同 学会 按 照 常 规 思 路 来 解 答
:
,
先 求 出这
,
6
x
6
x
6
=
216
(立 方分米 )
,
然 后 认 为 上 升 水 的体 积 等 于 铁 块 的 体 积
x
。
所以
水位 上 升 了
6
6
-
(2 4
x
9)
。
=
, ( 分米 )
。
这 样做
,
就 已 经 认 定铁 块 完
全 浸 没 在水 中 了
一
起
算 两者
,
一
共 的 体积 就 是
,
24
义9 X X
,
而 浸 没 在 水 中 的铁 块 体 积
是
6
x
6
x x
所 以用
。
一
共 的 体 积 减 去 浸 没 在 水 中 的铁 块 体 积 等
24 9 4
于 原 来 水 的体 积
24
x
小学六年级奥数第21讲“不变量”解题(含答案分析)

第21讲“不变量”解题一、知识要点一些分数的分子与分母被施行了加减变化,解答时关键要分析哪些量变了,哪些量没有变。
抓住分子或分母,或分子、分母的差,或分子、分母的和等等不变量进行分析后,再转化并解答。
二、精讲精练【例题1】将6143的分子与分母同时加上某数后得97,求所加的这个数。
解法一:因为分数的分子与分母加上了一个数,所以分数的分子与分母的差不变,仍是18,所以,原题转化成了一各简单的分数问题:“一个分数的分子比分母少18,切分子是分母的79,由此可求出新分数的分子和分母。
” 分母:(61-43)÷(1-79)=81 分子:81×79=63 81-61=20或63-43=20解法二:4361的分母比分子多18,79的分母比分子多2,因为分数的与分母的差不变,所以将79的分子、分母同时扩大(18÷2=)9倍。
79 的分子、分母应扩大:(61-43)÷(9-7)=9(倍) 约分后所得的79在约分前是:79 =7×99×9 =6381所加的数是81-61=20答:所加的数是20。
练习1: 1、分数97181 的分子和分母都减去同一个数,新的分数约分后是25,那么减去的数是多少?2、分数113 的分子、分母同加上一个数后得35,那么同加的这个数是多少?3、将5879 这个分数的分子、分母都减去同一个数,新的分数约分后是23,那么减去的数是多少?【例题2】将一个分数的分母减去2得45 ,如果将它的分母加上1,则得23,求这个分数。
解法一:因为两次都是改变分数的分母,所以分数的分子没有变化,由“它的分母减去2得45”可知,分母比分子的54 倍还多2。
由“分母加1得23 ”可知,分母比分子的32倍少1,从而将原题转化成一个盈亏问题。
分子:(2+1)÷(32 -54)=12 分母:12×32-1=17解法二:两个新分数在未约分时,分子相同。