高中物理 动力学中的临界问题

合集下载

动力学中的临界问题

动力学中的临界问题
T 分析:当滑块具有向左的加速度a=2g时,加 速度大于g,故此时小球已“飘离”斜面。小 ma a 球受重力mg、绳的拉力T,如图所示.有: P
A
T (2mg) (mg)
2 2
2
mg
450
故此时,绳中的拉力:
T (2mg ) 2 (mg ) 2 5mg
拓展:滑块以向左的加速度a=0.5g运动时,线中拉力T和斜面 的支持力各为多少? .
在水平方向:Tcos45°-Nsin45°=0.5mg ① 在竖直方向:Tsin45°+Ncos45°=mg 联立①②得: T= N= mg

动力学中的临界问题(三)
【例2】如图所示,一质量为M、长为L的长方形木板B放在光滑的 水平地面上,在其右端放一质量为m的小木块A。 A、B之间摩擦因 数为µ。现用水平恒力F作用于B。试求使AB滑离的最小拉力F。
滑: A、B间摩擦为滑动摩擦 未滑:A、B速度相等或加速度相等。 解:A、B即将滑离时有: 对B有: m g Ma ① ② A F B
动力学中的临界问题(三)
接触体中的临界问题-------“要离而未离” 、“要飘而未飘” 【例3】【教辅P59例2】如右图所示,细线的一端固定于倾角为 45°的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的 小球当滑块以向左的加速度a=0.5g运动时,线中拉力T= 斜面 的支持力N= . y 分析:当滑块具有向左的加速度a=0.5g时,加 T N 速度小于g,故此时小球未脱离斜面。小球受 重力mg、绳的拉力T和斜面的支持力N作用, x 如图所示.有:
A F
பைடு நூலகம்
B
拉力不大时,A、B会保持相对静止;随着拉力F的增大,A的 加速度因大于B的加速度时,而有了相对滑动。 分析:求A、B滑离的临界条件。此时,系统应兼具滑与未滑 的特点。只需分别列出滑与未滑的表达式,联立即可。

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

2024高考物理一轮复习--牛顿第二定律的应用--动力学中的临界和极值问题

动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。

(4)速度达到最值的临界条件:加速度为0。

2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。

高考研究(五) 动力学中的临界问题

高考研究(五) 动力学中的临界问题

教 材 回 顾
高 考 研 究
课时跟踪检测
动力学中的临界问题


1 发生的位移为 s= a(t0+t2)2 2 木板的速度为 v 板=a2t0-a3t2 1 2 1 2 发生的位移为 s 板= a2t0+a2t0t2- a3t2 2 2 木板刚好从物块下抽出时应 v有 板=v 且 s 板-s=L 联立并代入数值得 t2=1.2 s, a2=3 m/s2, F=10 N。 [答案] (1)F>4 N (2)10 N
教 材 回 顾
高 考 研 究
课时跟踪检测
动力学中的临界问题


(2) 当 A、 B 速 度 相 等 时 ,若 B 恰好到 A 的右 侧末端,则可保证不会滑出, 设经过时间 t,A、B 的速度相等,则有: v0-aBt=aAt 1 2 1 2 根据位移关系得: v0t- aBt - aAt =l 2 2 代入数据解得: t= 1 s ,v0=5 m / s 所以初速度应小于等于 5 m /, s即 v0≤5 m /。 s
教 材 回 顾 高 考 研 究
课时跟踪检测
动力学中的临界问题


由题意可知 d=x1+x2④ mA+mBgs i nθ 由①②④解 得 : d= 。 k [答案] mA+mBgs i nθ k mAgs i n θ + mBgs i n θ
教 材 回 顾
高 考 研 究
课时跟踪检测
动力学中的临界问题


|相互接触的物体分离问题
两个物体相互接触,随着物体受力情 题型 况 的 变 化 , 物 体 之 间 的 弹 力 随 之 发 生 简述 变 化 , 物 体 之 间 弹 力 减 小 到 零 是 物 体 恰好分离的临界状态。

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题

高中物理-动力学中的临界和极值问题在应用牛顿运动定律解决动力学问题时,会出现一些临界或极值条件的标志: 1.若题目中出现“恰好”“刚好”等字眼,明显表示过程中存在临界点.2.若题目中有“取值范围”“多长时间”“多大距离”等词语,表明过程中存在着“起止点”,而这些“起止点”往往就对应临界状态.3.若题目中有“最大”“最小”“至多”“至少”等字眼,表明过程中存在着极值,而极值点往往是临界点.4.若题目要求“最终加速度”“稳定加速度”等即是求收尾加速度或收尾速度. 一、接触与分离的临界条件物体分离的临界条件是相互作用力由原来的不为零变为零.因此解答此类问题,应该对原状态下研究对象的受力和运动状态进行分析,由牛顿第二定律或平衡条件列方程,令其中相互作用的弹力为零解得临界状态的加速度,以临界加速度为依据分析各种状态下物体的受力情况及运动状态的变化.质量为m 、半径为R 的小球用长度也为R 的轻质细线悬挂在小车车厢水平顶部的A 点,现观察到小球与车顶有接触,重力加速度为g ,则下列判断正确的是( )A .小车正向右做减速运动,加速度大小可能为3gB .小车正向左做减速运动,加速度大小可能为33gC .若小车向右的加速度大小为23g ,则车厢顶部对小球的弹力为mgD .若细线张力减小,则小球一定离开车厢顶部 [解析] 如图所示,小球恰好与车顶接触的临界状态是车顶对小球的弹力恰为零,故临界加速度a 0=g tan θ,由线长等于小球半径可得,θ=60°,a 0=3g .小球与车顶接触时,小车具有向右的加速度,加速度大小a ≥3g ,A 、B 项错;当小车向右的加速度大小a =23g 时,ma F N +mg=tan θ,解得F N =mg ,C 项正确;细线张力F T =ma sin θ,小球与车顶接触的临界(最小)值F Tmin =2mg ,当张力的初始值F T >2mg 时,张力减小时只要仍大于或等于临界值,小球就不会离开车厢顶部,D 项错误.[答案] C二、绳子断裂与松弛的临界条件绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T =0.如图所示,小车内固定一个倾角为θ=37°的光滑斜面,用一根平行于斜面的细线系住一个质量为m =2 kg 的小球,取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,则:(1)当小车以a 1=5 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?(2)当小车以a 2=20 m/s 2的加速度向右匀加速运动时,细线上的拉力为多大?[解析] 本题中存在一个临界状态,即小球刚好脱离斜面的状态,设此时加速度为a 0,对小球受力分析如图甲所示.将细线拉力分解为水平x 方向和竖直y 方向两个分力,则得到F cos θ=ma 0 F sin θ-mg =0a 0=g tan θ=403m/s 2.(1)a 1=5 m/s 2<a 0,这时小球没有脱离斜面,对小球受力分析如图乙所示,由牛顿第二定律得 F cos θ-F N sin θ=ma 1 F sin θ+F N cos θ-mg =0 解得F =20 N ,F N =10 N.(2)a2=20 m/s2>a0,这时小球脱离斜面,设此时细线与水平方向之间的夹角为α,对小球受力分析如图丙所示,由牛顿第二定律得F cos α=ma2F sin α=mg两式平方后相加得F2=(ma2)2+(mg)2解得F=(ma2)2+(mg)2=20 5 N.[答案](1)20 N(2)20 5 N三、相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值,并且还要考虑摩擦力方向的多样性.(多选)如图所示,小车内有一质量为m的物块,一轻质弹簧两端与小车和物块相连,处于压缩状态且在弹性限度内,弹簧的劲度系数为k,形变量为x,物块和小车之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,运动过程中,物块和小车始终保持相对静止,则下列说法正确的是()A.若μmg小于kx,则小车的加速度方向一定向左B.若μmg小于kx,则小车的加速度最小值为a=kx-μmgm,且小车只能向左加速运动C.若μmg大于kx,则小车的加速度方向可以向左也可以向右D.若μmg大于kx,则小车的加速度最大值为kx+μmgm,最小值为kx-μmgm[解析]若μmg小于kx,而弹簧又处于压缩状态,则物块所受弹簧弹力和静摩擦力的合力水平向左,即小车的加速度一定向左,A对;由牛顿第二定律得kx-F f=ma,当F f=μmg时,加速度方向向左且最小值为a min=kx-μmgm,随着加速度的增加,F f减小到零后又反向增大,当再次出现F f=μmg时,加速度方向向左达最大值a max =kx+μmgm,但小车可向左加速,也可向右减速,B错;若μmg大于kx,则物块所受弹簧弹力和静摩擦力的合力(即加速度)可能水平向左,也可能水平向右,即小车的加速度方向可以向左也可以向右,C对;当物块的合外力水平向右时,加速度的最大值为μmg-kxm,物块的合外力水平向左时,加速度的最大值为μmg+kxm,则小车的加速度最大值为kx+μmgm,最小值为0,D错.[答案]AC四、加速度或速度最大的临界条件当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现加速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(多选)(2016·潍坊模拟)如图所示,一个质量为m 的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ,现给环一个水平向右的恒力F ,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F 1=kv ,其中k 为常数,则圆环运动过程中( )A .最大加速度为FmB .最大加速度为F +μmgmC .最大速度为F +μmgμkD .最大速度为mgk[解析] 当F 1<mg 时,由牛顿第二定律得F -μ(mg -kv )=ma ,当v =mg k 时,圆环的加速度最大,即a max =Fm ,选项A 正确,B 错误;圆环速度逐渐增大,F 1=kv >mg ,由牛顿第二定律得F -μ(kv -mg )=ma ,当a =0时,圆环的速度最大,即v max =F +μmgμk,选项C 正确,D 错误. [答案] AC五、数学推导中的极值问题将物理过程通过数学公式表达出来,根据数学表达式解出临界条件,通常用到三角函数关系.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得: L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为: F min =1335N. [答案] (1)3 m/s 2 8 m/s (2)30°1335N 六、滑块一滑板模型中的临界问题在滑块—滑板模型中,若两者一起运动时优先考虑“被动”的“弱势”物体,该物体通常具有最大加速度,该加速度也为系统一起运动的最大加速度,否则两者将发生相对运动.(2016·湖北荆州模拟)物体A 的质量m 1=1 kg ,静止在光滑水平面上的木板B 的质量为m 2=0.5 kg 、长l =1 m ,某时刻A 以v 0=4 m/s 的初速度滑上木板B 的上表面,为使A不至于从B 上滑落,在A 滑上B 的同时,给B 施加一个水平向右的拉力F ,若A 与B 之间的动摩擦因数μ=0.2,试求拉力F 应满足的条件.(忽略物体A 的大小)[解析] 物体A 滑上木板B 以后,做匀减速运动, 加速度a A =μg ①木板B 做加速运动,有F +μm 1g =m 2a B ②物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v t ,则v 20-v 2t 2a A =v 2t2a B+l ③ 且v 0-v t a A =v ta B④ 由③④式,可得a B =v 202l-a A =6 m/s 2,代入②式得F =m 2a B -μm 1g =0.5×6 N -0.2×1×10 N =1 N ,若F <1 N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1 N. 当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才能不会从B的左端滑落.即有:F =(m 1+m 2)a , μm 1g =m 1a ,所以F =3 N ,若F 大于3 N ,A 就会相对B 向左端滑下. 综上,力F 应满足的条件是1 N ≤F ≤3 N. [答案] 1 N ≤F ≤3 N1.(2016·西安质检)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()A.3μmg B.4μmg C.5μmg D.6μmg解析:选D.纸板相对砝码恰好运动时,对纸板和砝码构成的系统,由牛顿第二定律可得:F-μ(2m+m)g=(2m +m)a,对砝码,由牛顿第二定律可得:2μmg=2ma,联立可得:F=6μmg,选项D正确.2.(多选)(2016·湖北黄冈模拟)如图甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态,现用竖直向上的拉力F作用在物体上,使物体开始向上做匀加速运动,拉力F与物体位移x的关系如图乙所示(g=10 m/s2),下列结论正确的是()A.物体与弹簧分离时,弹簧处于原长状态B.弹簧的劲度系数为750 N/mC.物体的质量为2 kgD.物体的加速度大小为5 m/s2解析:选ACD.物体与弹簧分离时,弹簧的弹力为零,轻弹簧无形变,所以选项A正确;从题图乙中可知ma =10 N,ma=30 N-mg,解得物体的质量为m=2 kg,物体的加速度大小为a=5 m/s2,所以选项C、D正确;弹簧的劲度系数k=mgx0=200.04N/m=500 N/m,所以选项B错误.3.(多选)如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力解析:选BC.甲方式中,F最大时,A刚要离开地面,A受力如图丙所示,则F N1cos θ=mg①对B:F′N1sin θ=ma1②由牛顿第三定律可知F′N1=F N1③乙方式中,F 最大时,B 刚要离开地面,B 受力如图丁所示,则F N2cos θ=mg ④ F N2sin θ=ma 2⑤由①③④可知F N2=F N1=F N1′⑥由②⑤⑥式可得a 2=a 1,对整体易知F 2=F 1, 故选项B 、C 正确,选项A 、D 错误.4.如图所示,水平桌面光滑,A 、B 物体间的动摩擦因数为μ(可认为最大静摩擦力等于滑动摩擦力),A 物体质量为2m ,B 和C 物体的质量均为m ,滑轮光滑,砝码盘中可以任意加减砝码.在保持A 、B 、C 三个物体相对静止共同向左运动的情况下,B 、C 间绳子所能达到的最大拉力是( )A.12μmg B .μmg C .2μmg D .3μmg 解析:选B.因桌面光滑,当A 、B 、C 三者共同的加速度最大时,F BC =m C a 才能最大.这时,A 、B 间的相互作用力F AB 应是最大静摩擦力2μmg ,对B 、C 整体来讲:F AB =2μmg =(m B +m C )a =2ma ,a =μg ,所以F BC =m C a =μmg ,选项B 正确.5.如图所示,用细线将质量为m 的氢气球拴在车厢地板上的A 点,此时细线与水平方向成θ=37°角,气球与固定在水平车顶上的压力传感器接触,小车静止时,细线恰好伸直但无弹力,压力传感器的示数为气球重力的12.重力加速度为g ,sin37°=0.6,cos 37°=0.8.现要保持细线方向不变而传感器示数为零,下列方法中可行的是( )A .小车向右加速运动,加速度大小为12gB .小车向左加速运动,加速度大小为12gC .小车向右减速运动,加速度大小为23gD .小车向左减速运动,加速度大小为23g解析:选C.小车静止时细线无弹力,气球受到重力mg 、空气浮力f 和车顶压力F N ,由平衡条件得f =mg +F N =32mg ,即浮力与重力的合力为12mg ,方向向上.要使传感器示数为零,则细线有拉力F T ,气球受力如图甲所示,由图乙可得12mg ma =tan 37°,小车加速度大小为a =23g ,方向向左.故小车可以向左做加速运动,也可以向右做减速运动,C 选项正确.6.如图所示,质量为m =1 kg 的物体,放在倾角θ=37°的斜面上,已知物体与斜面间的动摩擦因数μ=0.3,最大静摩擦力等于滑动摩擦力,取g =9.8 m/s 2,sin 37°=0.6,cos 37°=0.8.要使物体与斜面相对静止且一起沿水平方向向左做加速运动,则其加速度多大?解析:当物体恰不向下滑动时,受力分析如图甲所示 F N1sin 37°-F f1cos 37°=ma 1F f1sin 37°+F N1cos 37°=mg F f1=μF N1解得a 1=3.6 m/s 2当物体恰不向上滑动时,受力分析如图乙所示F N2sin 37°+F f2cos 37°=ma2F N2cos 37°=mg+F f2sin 37°F f2=μF N2解得a2=13.3 m/s2因此加速度的取值范围为3.6 m/s2≤a≤13.3 m/s2.答案:3.6 m/s2≤a≤13.3 m/s2。

高中物理图解法分析动力学临界问题(修订版)

高中物理图解法分析动力学临界问题(修订版)

拼搏图解法分析动力学临界问题湖北省恩施高中 陈恩谱动力学临界问题的产生机制和常规解决方法,笔者已经在《动力学临界问题的类型与解题技巧》里进行了详细的举例和分析,这次要介绍的是该文所述三种方法之外的更加直观和迅速的图解法,其精髓是根据力的多边形定则将物体受力按顺序首尾相接形成力的多边形,然后根据物体间保持相对静止时力允许的变化范围,确定加速度或者其他条件的允许范围。

具体如下: 一、弹力类临界问题1、轻绳类临界问题轻绳有两类临界问题——绷紧和绷断,绷紧要求F T >0,不绷断要求F T ≤F T m 。

合起来即0≤F T ≤F T m 。

【例1】如图所示,绳AC 、BC 一端拴在竖直杆上,另一端拴着一个质量为m 的小球,其中AC 杆长度为l.当竖直杆以某一角速度ω转动时,绳AC 、BC 均处于绷直状态,此时AC 绳与竖直方向夹角为30°,BC 绳与竖直方向夹角为45°。

试求ω的取值范围。

已知重力加速度为g .【解析】若两绳中均有张力,则小球受力如图所示,将F T1、F T2合成为一个力F 合,由平行四边形定则易知F 合方向只能在CA 和CB 之间,将mg 、F 合按顺序首尾相接,与二者的合力ma 形成如图所示三角形,其中mg 不变,ma 方向水平指向圆心,则由F 合的方向允许的范围,即可由图轻松求出ma允许的范围:45tan 30tan mg ma mg ≤≤其中30sin 2l a ω=,代入上式,得:lgl g 2332≤≤ω 【例2】如图所示,物体的质量为2 kg ,两根轻绳AB 和AC 的一端连接于竖直墙上,另一端系于物体上,AC 水平,AB 与水平方向成θ=60°角,在物体上另施加一个方向与水平方向也成θ=60°角的拉力F ,若要使两绳都能伸直,求拉力F 的大小范围.(重力加速度g 取10m/s 2)【解析】小球受力如左图所示,由平行四边形定则易知,绳中张力F T1、F T2的合力方向只可能在两绳所夹范围内;则由平衡条件可知,重力mg 与拉力F 的合力方向也就只能在两绳反向延长线所夹范围内。

三:动力学中的临界问题

三:动力学中的临界问题

高三物理第二轮专题复习专题三:动力学中的临界问题教学目标:1、掌握处理临界问题的基本思路;2、能正确处理动力学中的临界问题。

教学过程:一、在变化中求临界——解决临界问题的基本思路 1、临界问题2、解决临界问题的基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段); (2)寻找过程中变化的物理量(自变量与因变量);(3)探索因变量随自变量变化时的变化规律,要特别注意相关物理量的变化情况; (4)确定临界状态,分析临界条件,找出临界关系;二、动力学中的典型临界问题 1、接触与脱离的临界条件例1(1995年上海)如图所示,细线的一端固定于倾角为450的光滑楔形滑块A 的顶端P 处,细线的另一端拴一质量为m 的小球。

当滑块至少以加速度a= 向左运动时,小球对滑块的压力等于零。

当滑块以a=2g 的加速度向左运动时,线中拉力T= 。

2、相对静止与相对滑动的临界条件 例2、如图所示,质量为M 的木板上放着一质量为m 的木块,木块与木板间的动摩擦因数为μ1,木板与水平地面间动摩擦因数为μ2。

求加在木板上的力F 为多大时,才能将木板从木块下抽出?3、绳子断裂与松弛的临界条件例3、如图所示的升降机中,用两根能承受的最大拉力均为320N 的绳子AO 和BO 吊着一质量为m=20kg 的重物。

两绳互相垂直,且AO 与竖直方向夹角θ=370。

为了使AO 、BO 两绳不断裂,升降机由静止开始匀加速上升20m 的最短时间是多少?例4、如图所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态。

现将l 2线剪断,求剪断瞬时物体的加速度。

4、加速度最大与速度最大的临界条件例5、一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程( ) A 、小球在水平方向的速度逐渐增大 B 、小球在竖直方向的速度逐渐增大 C 、到达最低位置时小球线速度最大D 、到达最低位置时绳中的拉力等于小球重力例6、如图所示,在互相垂直的匀强电场和匀强磁场中,一个质量为m 、带电量为+q 的有孔小球沿着穿过它的竖直长杆下滑,小球与杆之间的滑动摩擦系数为μ,设电场场强为E ,磁感应强度为B ,电场、磁场范围足够大,求:(1)当小球有最大加速度时的速度为多大?(2)当小球有最小加速度时的速度为多大?5、两物体相对静止的临界条件 例7、(2001年全国)惯性制导系统广泛的应用于弹道式导弹系统中,这个系统的重要元件之一就是加速度计,加速度计的构造原理的示意图如下,沿导弹长度方向安装的固定光滑竿上套一质量为m 的滑块,滑块两侧分别与劲度系数均为k 的弹簧相连,弹簧的另一端与固定壁相连,滑块原来静止,弹簧处于自然长度,滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导,设某段时间内导弹沿水平方向运动,指针向左偏离O 点的距离为s ,则这段时间内导弹的加速度为( ) A.方向向左,大小为1ks/m B.方向向右,大小为1ks/mC.方向向左,大小为2ks/mD.方向向右,大小为2ks/m。

(完整版)动力学中的临界问题

(完整版)动力学中的临界问题

动力学中的临界问题1.动力学中的临界极值问题在物体的运动状态发生变化的过程中,往往达到某个特定的状态时,有关的物理量将发生突变,此时的状态即为临界状态,相应物理量的值为临界值.若题目中出现 “最大”、“最小”、“刚好”等词语时,往往会有临界值出现.2.发生临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.3.临界问题的解法一般有三种极限法:在题目中如出现“最大”“最小”“刚好”等词语时,一般隐含着临界问题,处理这类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的. 假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.数学方法:将物理过程转化为数学公式,根据数学表达式解出临界条件.特别提醒临界问题一般都具有一定的隐蔽性,审题时应尽量还原物理情境,利用变化的观点分析物体的运动规律,利用极限法确定临界点,抓住临界状态的特征,找到正确的解题方向.例1如图所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求:(1)物体在水平面上运动时力F 的值;(2)物体在水平面上运动所获得的最大加速度。

动力学中的临界极值问题

动力学中的临界极值问题

动力学中的临界极值问题
临界极值问题在动力学中是指系统的某个物理量在经过变化时达到临界值的问题。

这个物理量可以是系统的能量、动量、速度等等。

临界极值问题在动力学中有很多应用,下面以力学中的临界速度问题为例进行解释。

在力学中,临界速度是指物体在某个运动过程中速度达到临界值时的问题。

通常情况下,物体的速度会随着时间的增加而增加,但当速度达到某个临界值时,物体的运动状态会发生突变。

临界速度问题可以通过求解物体受到的合力和运动方程来解决。

当物体受到的合力等于零时,即达到了临界速度。

在这个临界速度下,物体的加速度为零,速度不再改变,达到了稳定的运动状态。

临界速度问题在实际生活中有很多应用。

例如,在过山车设计中,设计师需要确定过山车的速度达到临界值时的运动状态,以保证乘客的安全。

同样,在飞行器设计中,确定飞行器起飞和降落时的临界速度也是一个关键问题。

总之,临界极值问题在动力学中是指系统的某个物理量达到临界值时的问题,通过求解物体受力和运动方程可以解决问题。

临界速度问题是其中的一个重要应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动力学中的临界问题
1.当物体的运动从一种状态转变为另一种状态时必然有一个转折点,这个转折点所对应的状态叫做临界状态;在临界状态时必须满足的条件叫做临界条件。

用变化的观点正确分析物体的受力情况、运动状态变化情况,同时抓住满足临界值的条件是求解此类问题的关键。

2.临界或极值条件的标志
(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在着临界点;
(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就是临界状态;
(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;
(4)若题目要求“最终加速度”、“稳定加速度”等,即是要求收尾加速度或收尾速度。

3.产生临界问题的条件
(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0。

(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。

(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是F T=0。

(4)加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。

当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值。

例1:如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F 向上拉B,运动距离h时,B与A分离,下列说法正确的是( )
A.B和A刚分离时,弹簧长度等于原长
B.B和A刚分离时,它们的加速度为g
C.弹簧的劲度系数等于mg h
D.在B和A分离前,它们做匀加速直线运动
例2:如图所示,质量为m =1 kg 的物块放在倾角为θ=37°的斜面体上,斜面体质量为M=2 kg ,斜面体与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,试确定推力F 的取值范围。

(sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)
【答案】14.4 N≤F ≤33.6 N
例3:如图所示,左右带有固定挡板的长木板放在水平桌面上,物体M 放于长木板上静止,此时弹簧对物体的压力为3 N ,物体的质量为0.5 kg ,物体与木板之间无摩擦,现使木板与物体M 一起以6 m /s 2的加速度向左沿水平方向做匀加速运动时( )
A .物体对左侧挡板的压力等于零
B .物体对左侧挡板的压力等于3 N
C .物体受到4个力的作用
D .弹簧对物体的压力等于6 N
例4:如图所示,一细线的一端固定于倾角为o 45的光滑楔形滑块A 上的顶端O 处,细线另一端系一质量为m =0.5 kg 的小球,取210m s g 。

(1)当滑块静止时,线中拉力T 等于多少?
(2)当滑块从静止向左加速运动时,小球恰好对斜面无压力,经过2 s
小球运动的位移是多少?
例5:如图所示,截面为直角三角形的斜面体固定在水平地面上,两斜面光滑,斜面倾角分别为60°和30°,一条不可伸长的轻绳跨过固定在斜面顶端的光滑定滑轮连接着两个小物体,物体B 的质量为m ,起始距地面的高度均为3h ,重力加速度为g 。

(1)若A 的质量也为m ,由静止同时释放两物体,求当A 刚到地面时的速度大小;
(2)若斜面体不固定,当斜面体在外力作用下以大小为a 的加速度水
平向右做匀变速直线运动时,要使A 、B 两物体相对斜面都不动,分析物体
A 的质量和加速度a 的关系。

相关文档
最新文档