初中数学思维方法

合集下载

初中数学思维训练方法总结

初中数学思维训练方法总结

初中数学思维训练方法总结数学是一门需要思维和逻辑能力的学科,初中数学的学习对培养学生的思维能力和逻辑思考能力起到至关重要的作用。

为了帮助初中生更好地进行数学学习和思维训练,本文将总结几种有效的初中数学思维训练方法。

一、拓展思维边界在数学学习中,拓展思维边界是培养学生创造性思维的重要方法。

创造性思维要求学生能够运用已有的知识和方法,针对新问题提出新的解决方案。

教师可以设计一些开放性和拓展性的问题,鼓励学生进行探究和思考。

例如,可以提出一个关于几何的问题,要求学生用不同的方法求解,并思考每种方法的优劣之处。

通过这样的训练,学生的思维边界将得到拓展,他们将更加富有创造性地解决数学问题。

二、引导探究和发现引导学生进行探究和发现是培养学生逻辑思维能力的有效方法。

教师可以提供一些学习资源,如数学实验工具、模型等,让学生通过观察、实验和探索的方式来加深对数学概念和定理的理解。

在引导学生探究时,教师应尽量减少对学生的干预,并鼓励学生提出问题、交流和讨论。

通过自主发现,学生将培养自己的逻辑思考能力,并更好地理解和运用数学知识。

三、解决实际问题将数学与实际问题相结合,能够激发学生的学习兴趣和思维能力。

教师可以选取一些与学生生活相关的实际问题,让学生运用数学知识进行分析和解决。

例如,在学习平面图形的性质时,可以选取一些城市规划或地图导航等实际问题,让学生进行数学建模和推理。

通过解决实际问题,学生将体会到数学在解决现实生活中的作用,并培养他们运用数学进行思维训练的能力。

四、进行数学游戏数学游戏既能让学生在轻松愉快的氛围中学习数学,又能培养他们的思维能力。

教师可以设计一些数学游戏,如数独、数学填字游戏等,在游戏中通过解题来锻炼学生的逻辑思维和问题解决能力。

数学游戏不仅可以激发学生对数学的兴趣,还能让他们在娱乐中不知不觉地进行数学思维的训练。

五、做好知识的迁移和联想数学知识的迁移和联想是培养学生综合思维能力的重要途径。

教师在教学过程中可以引导学生将已学的知识应用到实际问题中,同时鼓励他们将不同的数学知识进行联想和综合运用。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1、数形结合思想:就是依据数学问题的条件和结论之间的内在联系,既分析其代数含义,又显示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、分类讨论的思想:在数学中,我们经常必须要依据研究对象性质的差异,分各种不同状况予以考查;这种分类思索的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

3、联系与转化的思想:事物之间是互相联系、互相制约的,是可以互相转化的。

数学学科的各部分之间也是互相联系,可以互相转化的。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

2方法一1.对应的思想和方法在初一代数入门教学中,有代数式求值的计算题,通过计算发现:代数式的值是由代数式里字母的取值所决定的,字母的不同取值可得不同的计算结果。

这里字母的取值与代数式的值之间就建立了一种对应关系,再如实数与数轴上的点,有序实数对与坐标平面内的点都存在对应关系在进行此类教学〔制定〕时,应注意渗透对应的思想,这样既有助于培养同学用变化的观点看问题,又助于培养同学的函数观念。

2.整体的思想和方法整体思想就是合计数学问题时,不是着眼于它的局部特征,而是把注意和和着眼点放在问题的整体结构上,通过对其全面深入的观察,从宏观整体上熟悉问题的实质,把一些彼此独立但实质上又互相紧密联系着的量作为整体来处理的思想方法。

整体思想在处理数学问题时,有广泛的应用。

3.数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。

著名数学家华罗庚先生说:"数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。

'这充分说明了数形结合思想在数学研究和数学应用中的重要性。

4.分类的思想和方法教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使同学明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深入、更具体,并且还能使同学掌握分数的要点方法:3方法二1、数形结合的思想和方法在同学刚接触初中数学不久,教材中设置利用"数轴'这一图形,巩固"具有相反意义的量'的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。

如何培养初中生的数学思维(数学思维)

如何培养初中生的数学思维(数学思维)

如何培养初中生的数学思维(数学思维)数学思维对于初中生的学习和发展至关重要。

它不仅能够帮助他们在数学方面取得更好的成绩,还能够培养他们的逻辑思维、问题解决能力和创新能力。

然而,如何培养初中生的数学思维成为了教育者和家长们的一大难题。

本文将从几个方面探讨如何有效地培养初中生的数学思维。

一、创设数学学习环境要培养初中生的数学思维,首先需要创设良好的数学学习环境。

这包括教室的布置、学习材料的准备等方面。

教室应当整洁有序,让学生能够专注于数学学习。

同时,提供各种有趣而具有挑战性的学习材料,激发学生的学习兴趣和求知欲。

二、注重启发式教学启发式教学是培养初中生数学思维的有效方法之一。

它通过提供具体实例、设置问题、引导学生思考等方式,激发学生的主动思考和解决问题的能力。

教师应当尽量避免简单地传授知识,而是引导学生自己发现、探索数学规律。

这样不仅可以增加学生的学习动力,还能够培养他们的逻辑思维能力和数学思维方式。

三、强化数学实践数学实践是培养初中生数学思维的重要途径之一。

学生在进行数学实践活动时,可以将抽象的概念与具体的问题相结合,更好地理解数学知识。

教师可以组织学生进行数学建模、数学竞赛等活动,培养他们的数学思维和解决实际问题的能力。

四、多样化评价方式评价方式也对培养初中生数学思维起着至关重要的作用。

除了传统的考试评价外,教师还应当运用各种形式的评价,如作业评价、小组合作评价等。

这样可以更全面地了解学生的数学思维情况,及时进行调整和指导。

五、充分利用技术手段在当今信息技术高度发达的时代,教师可以充分利用各种技术手段来培养初中生的数学思维。

例如,使用数学软件、习题生成器等工具,让学生在计算中灵活使用数学知识,培养他们的数学思维和解决问题的能力。

六、家校合作家长与学校的紧密合作也是培养初中生数学思维的重要保障。

家长可以与教师定期交流,了解学生在数学学习中的情况,并给予适当的支持和引导。

同时,家长还可以提供一些数学游戏、数学书籍等资源,帮助学生在家中进行数学思维的训练。

初中数学思维能力训练的方法

初中数学思维能力训练的方法

初中数学思维能力训练的方法一、培养逻辑思维能力逻辑思维是数学思维的基础。

可以通过以下方式培养学生的逻辑思维能力:1.培养分析问题的能力:学生要学会先整体了解问题,再分析问题的具体要求,确定解题思路和方法。

2.培养推理能力:让学生学会运用已有的数学知识和逻辑推理方法来解决新问题。

3.培养归纳总结能力:让学生总结已学过的数学知识,找出其中的规律和特点,形成知识体系。

二、提高问题解决能力解决问题是数学思维的核心能力。

以下是提高问题解决能力的方法:1.培养解决复杂问题的能力:给学生提供一些复杂问题,让他们思考如何分解问题,逐步解决。

2.培养拓展问题的能力:让学生学会将已解决的问题进行拓展,思考相关问题,进一步加深对数学知识的理解。

3.培养运用多种方法解决问题的能力:学生应该学会运用各种不同的解题方法和策略,选择最适合的方法来解决问题。

三、锻炼数学思维的习惯数学思维能力的培养需要长期坚持。

以下是一些建立数学思维习惯的方法:1.培养自主解题的能力:让学生学会独立思考和解决问题,不要过分依赖老师或同学。

2.培养勤于思考的习惯:鼓励学生在课余时间多思考数学问题,找到解决问题的思路。

3.培养积极参与讨论的习惯:鼓励学生与同学一起讨论数学问题,交流解题思路和方法,促进合作学习。

四、多角度培养数学思维能力数学思维能力的培养应从多个角度入手:1.培养视觉思维:通过观察几何图形、数据统计表等,培养学生的几何和统计思维。

2.培养抽象思维:让学生学会把实际问题抽象成数学问题,进行符号化处理。

3.培养创造性思维:鼓励学生进行探究性学习,寻找多种解题方法和思路,发现数学问题的美妙之处。

4.培养运用数学知识解决实际问题的能力:将数学知识应用到实际问题中,提高学生的数学思维应用能力。

五、合理运用教具和技术工具教具和技术工具在培养数学思维能力上起到了重要的作用。

教师可以选择适当的工具和设备,如尺规、圆规、计算器、电脑等,辅助进行数学思维的培养和训练。

初中数学思维训练方法梳理

初中数学思维训练方法梳理

初中数学思维训练方法梳理数学作为一门科学,不仅仅是一种纯粹的计算工具,更是一种思维训练的工具。

在初中阶段,学生们需要通过一系列的数学思维训练方法来提高解决问题的能力。

本文将对初中数学思维训练方法进行梳理,帮助初中生们更好地提升数学思维能力。

一、推理与证明推理和证明是数学思维的核心。

通过推理和证明,学生们可以培养逻辑思维、严谨性和创造性。

在初中数学中,学生们可以练习通过归纳法、演绎法推理和证明数学结论。

例如,通过找规律来证明一般情况下的数学公式,或者通过反证法来证明一个命题的正确性。

二、问题解决解决问题是数学思维的重要方面。

通过问题解决,学生们可以培养观察能力、分析问题的能力和解决问题的能力。

在初中数学中,学生们可以练习通过列方程、设置代数模型等方法解决实际问题。

例如,通过列方程解决简单的应用题,或者通过建立几何图形来解决几何问题。

三、数学思维习惯养成数学思维习惯对于初中生们的数学学习至关重要。

养成良好的数学思维习惯可以帮助学生们更好地理解数学知识和解决数学问题。

在初中数学中,学生们可以通过以下方法养成良好的数学思维习惯:1. 培养思维的自觉性和主动性。

学生们需要主动思考问题、解决问题,而不是简单地依赖老师或同学的帮助。

2. 寻找解题中的规律和思路。

学生们应该学会通过观察、比较、总结等方法找到解题的规律和思路,从而更好地解决问题。

3. 练习数学思维和技巧。

学生们可以通过做习题、参加数学竞赛等方式来锻炼数学思维和技巧,提高解题能力。

四、数学思维工具与方法在初中数学学习中,有一些特定的思维工具和方法可以帮助学生们更好地理解和运用数学知识。

以下是一些常用的工具和方法:1. 图形工具:通过绘制图形可以更直观地理解和解决数学问题,比如在几何学中使用的画图和刻度尺等。

2. 假设和试验:通过假设和试验可以验证数学定理的正确性,培养学生们的实验精神和创造性思维。

3. 数量关系:学生们需要学会捕捉问题中的数量关系,例如比例关系、身份关系等,从而找到解决问题的关键。

初中数学思维训练方法和技巧

初中数学思维训练方法和技巧

初中数学思维训练方法和技巧1. 嘿,你知道吗?多做趣味数学题可是训练初中数学思维的超级妙招哦!就像解迷宫一样,让你一下子就沉浸其中啦。

比如说那道经典的鸡兔同笼问题,咦,怎么通过脚的数量算出鸡兔各有多少只呢?是不是感觉很有意思呀!2. 千万别忘了建立数学模型呀!这就好比给思维搭了个牢固的房子。

例如在学行程问题时,把路程、速度、时间用模型表示出来,哇塞,一切都变得清晰明了啦!3. 主动思考那是必须的呀!别总等着老师来讲。

看到一个数学问题,就像看到一个宝藏等你去挖掘呢!比如看到一个几何图形,就主动去想想有哪些性质和特点。

哎呀,想想就很有挑战性呢!4. 合作学习也超棒的哟!和小伙伴们一起讨论数学问题,就像一场思维的大碰撞。

“嘿,你怎么看这道题?”“我觉得应该这样做”,然后突然间灵感就来了!像解决那道难题时,大家你一言我一语,最后得出答案,那感觉真是爽歪歪呀!5. 归纳总结可重要啦!把学过的知识点像串珠子一样串起来。

比如学完一章内容,归纳一下都有哪些重点公式和定理。

哇,这样知识就不会乱啦!6. 一题多解简直绝了呀!就像走不同的路去同一个地方。

面对一道数学题,尝试用多种方法去解答。

比如说解那道方程题,哎呀,原来还有这么多种思路呀!7. 想象类比也很有用哦!把抽象的数学概念和生活中的东西类比起来,一下子就好理解多了。

像是把负数想象成欠账,是不是很形象呀?8. 培养直觉不能少哇!有时候凭感觉就能找到解题的方向呢。

就像在黑暗中突然看到一束光。

比如看到一个图形,直觉告诉你应该从这里入手。

哇,好神奇呀!9. 坚持练习那是必须的呀!数学思维就像肌肉,越练越强壮。

每天都做几道数学题,过段时间就会发现自己进步超大的哟!我觉得呀,只要按照这些方法去训练,初中数学思维肯定能得到大大提升,不信你就试试呗!。

初中数学思想方法有哪些

初中数学思想方法有哪些

初中数学思想方法有哪些1.抽象思维:数学是一门抽象的科学,学生需要通过将具体问题抽象化,找到问题的本质,从而解决问题。

例如,将实际问题转化为代数方程式,通过求解方程得到答案。

2.推理思维:数学是一门严密的逻辑学科,学生需要通过推理和证明来解决问题。

推理思维包括归纳和演绎思维。

归纳思维是从特殊到一般的思考方式,通过观察到的具体情况推导出普遍的规律。

演绎思维是从一般到特殊的思考方式,通过已知的规律推导出未知的结论。

3.创造性思维:数学是一门富有创造性的学科,学生需要发散思维来解决问题。

学生应该养成从多个角度思考问题、寻找多种解决方法的习惯。

例如,在解决几何问题时,可以尝试使用不同的图形构造方法来求解。

4.反证法思维:反证法是一种常用的数学证明方法,在解决问题时可以采用。

学生可以假设问题的逆否命题成立,然后通过逻辑推理和推导得出矛盾,从而证明原问题成立。

5.模型思维:通过建立模型来解决实际问题是数学思维中的重要方法之一、模型可以是几何图形、方程式或者统计模型等,通过对模型进行分析和求解,获得问题的解答。

6.折中思维:在解决问题中,有时需要找到一个平衡点,综合考虑各种因素来确定最优解。

学生需要分析问题的各方面情况,权衡利弊,寻找最佳解决方案。

7.归纳与猜想:通过归纳已有的数据、规律和经验,进行猜想和推论,从而找到问题的解答。

学生可以通过数列、几何图形等进行观察和总结,从中找到问题的规律。

8.合作思维:数学是一门合作学科,学生应该培养合作与沟通的能力。

学生可以通过小组讨论、合作解题等方式,互相帮助、共同思考问题,从而提高解决问题的能力。

以上是初中数学思想方法的一些例子,学生通过不断练习和培养,可以逐渐培养出灵活运用这些思维方法解决数学问题的能力。

初中生数学思维培养的策略与方法

初中生数学思维培养的策略与方法

初中生数学思维培养的策略与方法在初中阶段,数学作为一门基础学科,对学生的思维能力培养尤为重要。

本文将介绍一些有效的策略和方法,帮助初中生培养数学思维,提高数学学习成绩。

一、培养抽象思维能力抽象思维是数学思维的核心。

初中生可以通过以下方式培养抽象思维能力:1. 利用具体事物引导抽象思维:将数学知识与日常生活联系起来,引导学生从具体事物中抽象出数学概念,以此培养学生的抽象思维能力。

2. 运用符号和公式进行思维训练:引导学生学习数学符号和公式,通过运用它们解决问题,培养学生的符号思维和逻辑思维。

二、注重问题解决能力的培养数学思维的核心是解决问题能力。

以下是培养初中生问题解决能力的策略和方法:1. 培养问题意识:教师可以通过提问的方式激发学生的问题意识,让学生主动思考问题,解决问题。

2. 引导学生掌握解决问题的基本方法:学生需要掌握一定的问题解决方法,比如分析问题关键点、构建数学模型、选择合适的解题策略等。

3. 组织问题解决活动:给学生提供各种类型的问题,引导学生运用所学知识进行解决,培养学生的问题解决能力。

三、鼓励学生进行探究和实践数学是一门实践性很强的学科,鼓励学生进行探究和实践将有助于培养数学思维。

以下是一些可行的策略和方法:1. 提供适当的数学实践活动:教师可以设计一些实践性强的数学活动,引导学生进行探索,提高学生的数学思维能力。

2. 骨干问题法:选取一些具有代表性和启发性的数学问题,让学生自主探究和解决,激发学生的兴趣和求知欲。

3. 数学游戏:通过数学游戏的方式培养学生的数学逻辑思维和创造力,增加学习的趣味性和主动性。

四、巩固基础知识,提高思维水平巩固基础知识是数学思维培养的基础,同时,提高思维水平也是培养数学思维的重要环节。

以下是一些有效的策略和方法:1. 夯实数学基础知识:学生需要熟练掌握数学的基础知识,这为提高学生的数学思维水平打下坚实基础。

2. 高阶思维训练:引导学生进行高阶思维的训练,如分析、综合、判断、推理等,提高学生的思维水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学思维方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

它是中学数学中常用的方法之一。

6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。

运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。

7、反证法
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。

反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。

用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。

反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。

归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。

推理必须严谨。

导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。

8、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。

运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。

用归纳法或分析法证明平面几何题,其困难在添置辅助线。

面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。

所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。

9、几何变换法
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。

所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。

中学数学中所涉及的变换主要是初等变换。

有一些看来很难甚至于无法下手的习
题,可以借助几何变换法,化繁为简,化难为易。

另一方面,也可将变换的观点渗透到中学数学教学中。

将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

10、客观性题的解题方法
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。

选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。

填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。

要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。

下面通过实例介绍常用方法。

(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。

当遇到定量命题时,常用此法。

(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。

这种方法叫特殊元素法。

(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。

图解法是解选择题常用方法之一。

(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

相关文档
最新文档