实验三微程序控制器实验

合集下载

实验三 微控制器实验

实验三 微控制器实验

实验三微控制器实验一. 实验目的1. 掌握时序产生器的组成原理。

2. 掌握微程序控制器的组成原理。

3. 掌握微程序的编制、写入,观察微程序的运行。

二. 实验设备CCT-IV计算机组成原理教学实验系统一台。

三.实验内容实验所用的时序电路原理如图3-1所示,可产生4个等间隔的时序信号TS1-TS4,其中Φ为时钟信号,由实验台右上方的方波信号源提供,可产生频率及脉宽可调的方波信号。

学生可根据实验自行选择方波信号的频率及脉宽。

为了便于控制程序的运行,时序电路发生器也设置了一个启停控制触发器Cr,使TS1-TS4信号输出可控。

图中STEP(单步)、STOP(停机)分别是来自实验板上方中部的一个微动开关START的按键信号。

当STEP开关为0时(EXEC),一旦按下启动键,运行触发器Cr一直处于“1”状态,因此时序信号TS1-TS4将周而复始地发送出去。

当STEP为1(STEP)时,一旦按下启动键,机器便处于单步运行状态,即此时只发送一个CPU周期的时序信号就停机。

利用单步方式,每次只读一条微指令,可以观察微指令的代码与当前微指令的执行结果。

另外,当机器连续运行时,如果STOP开关置“1”(STOP),也会使机器停机。

由于时序电器的内部线路已经连好,所以只需将时序电路与方波信号源连接(即将时序电路的时钟脉冲输入端Φ接至方波信号发生器输出端H23),时序电路的CLR已接至实验板左下方的CLR模拟开关上。

2. 微程序控制电路与微指令格式(1)微程序控制电路微程序控制器的组成见图3-2,其中控制存储器采用3片2816的E2PROM,具有掉电保护功能,微命令寄存器18位,用两片8D触发器(273)和一片4D(175)触发器组成。

微地址寄存器6位,用三片正沿触发的双D触发器(74)组成。

它们带有清“0”端和预置端。

在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。

当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过强置端将某一触发器置为“1”状态,完成地址修改。

计算机组成原理-微程序控制器实验报告

计算机组成原理-微程序控制器实验报告

计算机组成原理实验之微程序控制器实验一、实验目的1.掌握时序发生器的组成原理。

2.掌握微程序控制器的组成原理。

二、实验内容1.实验电路(1)时序发生器电路本实验所用的时序电路见图4.1。

电路由一个500KHz晶振、2片GAL22V10、一片74LS390组成,可产生两级等间隔时序信号T1-T4、W1-W3,其中一个W由一轮T1-T4组成,相当于一个微指令周期或硬连线控制器的一拍,而一轮W1-W3可以执行硬连线控制器的一条机器指令。

另外,供数字逻辑实验使用的时钟由MF经一片74LS390分频后产生。

图4.1 时序信号发生器(2)微程序控制器电路图4.2微程序控制器电路微地址转移逻辑表达式:A5=D5=μA5;A4=D4=C•P2+μA4;A3=D3=IR7•P1+μA3;A2=D2=IR6•P1+SWC•P0+μA2;A1=D1=IR5•P1+SWB•P0+μA1;A0=D0=IR4•P1+SWA•P0+μA0。

2.一些关键技术(1)微指令格式图4.3微指令格式(3)上述8条指令的微程序流程图如图4.4所示图4.4微程序流程图(4)微程序代码表表4-2微程序代码表微指令KT RRF WRF RRM WRM PR当前微地址00 0C 1E 06 07 0B 1D 0D 0E 0A 02 03 09 04 05 08 0F 下一微地址08 1E 06 07 1E 1D 0D 0E 1D 02 03 02 04 05 04 0F 10P0 1 . . . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . . . . 1P2 . . . . . . . . . . . . . . . . .备用. . . . . . . . . . . . . . . . .TJ . 1 . . 1 1 . 1 1 . 1 . 1 . 1 . .LDIR . . . 1 . . . 1 . . . . . . . . 1PC+1 . . . . . . . . . . . . . . . . .LDPC# . 1 . . . 1 . . . . . . . . . 1AR+1 . . . . . . . . . . . 1 . . 1 . .LDAR# . 1 . . . 1 . . . 1 . . 1 . . . . LDDR1 . . . . . . . . . . . . . . . . . LDDR2 . . . . . . . . . . . . . . . . . LDRi . . . . . . . . 1 . . . . . . . .SW_BUS# . 1 1 . . 1 1 . 1 1 . . 1 1 . 1 . RS_BUS# . . . . 1 . . . . . . . . . . . . ALU_BUS# . . . . . . . . . . . . . . . . . RAM_BUS# . . . . . . . . . . 1 . . . . . . CER# . . . 1 . . . 1 . . . . . . . . 1 CEL# . . 1 . . . 1 . . . 1 . . 1 . . . LR/W# . . 0 . . . 0 . . . 1 . . 0 . . . Cn# . . . . . . . . . . . . . . . . .M . . . . . . . . . . . . . . . . .S0 . . . . . . . . . . . . . . . . .S1 . . . . . . . . . . . . . . . . .S2 . . . . . . . . . . . . . . . . .S3 . . . . . . . . . . . . . . . . .表4-2微程序代码表(续)微指令ADD SUB AND STA LDA JC STP OUT当前微地址10 18 11 19 12 1A 13 1B 14 1C 15 1F 16 17 下一微地址18 0F 19 0F 1A 0F 1B 0F 1C 0F 0F 0F 0F 0FP0 . . . . . . . . . . . . . .P1 . . . . . . . . . . . . . .P2 . . . . . . . . . . 1 . . .备用. . . . . . . . . . . . . .TJ . . . . . . . . . . . . 1 1LDIR . . . . . . . . . . . . . .PC+1 . 1 . 1 . 1 . 1 . 1 1 . 1 1LDPC# . . . . . . . . . . . 1 . .AR+1 . . . . . . . . . . . . . .LDAR# . . . . . 1 . 1 . . . . .LDDR1 1 . 1 . 1 . 1 . . . . . . .LDDR2 1 . 1 . 1 . . . . . . . . .LDRi . 1 . 1 . 1 . . . 1 . . . .SW_BUS# . . . . . . . . . . . . . .RS_BUS# . . . . . . 1 . 1 . . 1 . 1ALU_BUS# . 1 . 1 . 1 . 1 . . . . . .RAM_BUS# . . . . . . . . . 1 . . . .CER# . . . . . . . . . . . . . .CEL# . . . . . . . 1 . 1 . . . .LR/W# . . . . . . 0 . 1 . . . .Cn# . . . 1 . . . . . . . . . .M . 0 . 0 . 1 . 0 . . . . . .S0 . 1 . 0 . 1 . 0 . . . . . .S1 . 0 . 1 . 1 . 0 . . . . . .S2 . 0 . 1 . 0 . 0 . . . . . .S3 . 1 . 0 . 1 . 0 . . . . . .注:后缀为#的信号都是低电平有效信号,为了在控存ROM中用“1”表示有效,这些信号在控制器中经过反相后送往数据通路。

微程序控制器原理实验报告

微程序控制器原理实验报告

微程序控制器原理实验报告一、引言微程序控制器作为计算机系统的重要组成部分,扮演着指挥和控制计算机操作的关键角色。

本实验报告将对微程序控制器的原理进行探讨,并描述相关实验的设计、步骤、结果和分析。

二、微程序控制器的原理2.1 微程序控制器的概念微程序控制器是一种控制计算机操作的技术,通过将指令集中的每个指令分解为一系列微操作,并以微指令的形式存储在控制存储器中,从而实现指令的执行控制。

2.2 微指令的组成和格式微指令由多个字段组成,每个字段代表一个微操作控制信号。

常见的微指令格式包括微地址字段、条件码字段、操作码字段等。

2.3 微指令的执行过程微指令的执行过程包括指令的取指、译码、执行和写回等阶段。

每个阶段对应微指令的不同部分,通过控制信号的转换和传递,完成相应的操作。

三、微程序控制器的设计与实验3.1 设计思路在进行微程序控制器实验前,需要明确实验的目标和设计思路。

实验通常包括以下几个步骤:确定指令集、确定微指令格式、设计控制存储器、设计控制逻辑电路等。

3.2 实验步骤1.确定指令集:根据实验需求,确定需要支持的指令集。

2.确定微指令格式:根据指令集的要求,设计适合的微指令格式。

3.设计控制存储器:根据微指令格式,设计控制存储器的结构和内容。

4.设计控制逻辑电路:根据微指令的执行过程,设计控制逻辑电路,实现指令的控制和转换。

5.构建实验平台:将设计的控制存储器和控制逻辑电路构建成实验平台,并与计算机系统相连。

6.进行实验:在实验平台上执行指令,观察和记录实验结果。

3.3 实验结果与分析根据实验步骤中的设计和操作,得到了相应的实验结果。

通过比对实验结果和预期效果,可以对微程序控制器的设计和实验进行分析和评估。

四、总结与展望微程序控制器作为计算机系统的关键组成部分,通过微操作的方式实现指令的执行控制。

本实验报告对微程序控制器的原理进行了探讨,并描述了相关实验的设计、步骤、结果和分析。

通过实验,我们深入理解了微程序控制器的工作原理和设计方法。

微程序控制器实验报告

微程序控制器实验报告

一、实验目的1、通过实验,进一步理解微程序控制器的组成结构。

理解微程序控制器的控制原理2、加深理解微程序控制器的工作原理。

掌握指令流程与功能3、理解掌握微程序控制器的设计思路与方法二、实验内容与步骤1、微程序控制器的组成原理控制存储器:实现整个指令系统的所有微程序,一般指令系统是规定的由高速半导体存储器构成,容量视机器指令系统而定,取决于微程序的个数,其长度就是微指令字的长度。

微指令寄存器:存放从控存读出的当前微指令。

微操作控制字段将操作控制信号送到控制信号线上,微地址字段指出下一条微地址的形成。

微地址寄存器:存放将要访问的下一条微指令地址地址转移逻辑:形成将要执行的微指令地址,形成方式:取指令公操作所对应的微程序一般从控存的0地址开始,所以微程序的人口地址0是由硬件控制的。

当出现分支时,通过判别测试字段、微地址字段、和执行部件的反馈信息形成后即微地址。

Cpu设计步骤:1.拟定指令系统2.确定总体结构(数据通路)3.安排时序4.拟定指令流程。

根据指令系统,写出对应所有机器指令的全部微操作机器节拍安排,然后列出操作时间表5.确定微指令的控制方式、下地址形成方式、微指令格式及微指令字长,编写全部的微指令的代码,最后将编写的微指令放入控制存储器中。

微程序控制器的设计步骤(1)设计微程序确定微程序流程图,也就是控制算法流程图。

(2)确定微指令格式微指令格式中的操作控制字段取决于执行部件的子系统需要多少微指令。

假定采用直接控制方式,执行部件需要10个微命令,则操作控制字段需要10位。

测试判别字段取决于微程序流程图中有多少处分支转移。

假定有3处分支,则测试判别字段需要3位。

下址字段取决于微程序流程图的规模。

假定微程序共用50条微指令,则下址字段至少需要6位。

这是因为ROM地址译码时,26=64,6位地址可容纳64条微指令。

(3)将微程序编译成二进制代码(4)微程序写入控制存储器(5)设计硬件电路三、实验现象--CPU 头文件cpu_defsLIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;PACKAGE cpu_defs IS --定义程序包,包头,包体TYPE opcode IS (load, store, add, sub, bne); --这个语句适合于定义一些用std_logic 等不方便定义的类型,综合器自动实现枚举类型元素的编码,一般将第一个枚举量(最左边)编码为0 CONSTANT word_w: NATURAL :=8;CONSTANT op_w: NATURAL :=3;CONSTANT rfill: STD_LOGIC_VECTOR(op_w-1 downto 0):=(others =>'0');--FUNCTIOn slv2op(slv:IN STD_LOGIC_VECTOR) RETURN opcode;FUNCTION op2slv(op:in opcode) RETURN STD_LOGIC_VECTOR;END PACKAGE cpu_defs;PACKAGE BODY cpu_defs ISTYPE optable IS ARRAY(opcode) OF STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--数组有5个元素,其他均0CONSTANT trans_table:optable :=("000", "001", "010", "011", "100");FUNCTION op2slv(op:IN opcode) RETURN STD_LOGIC_VECTOR ISBEGINRETURN trans_table(op);END FUNCTION op2slv;END PACKAGE BODY cpu_defs;--实验7-8 微程序控制器实验LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL,IEEE.NUMERIC_STD.ALL;USE WORK.CPU_DEFS.ALL;--使用自己定义的程序包ENTITY CPU ISPORT( clock : IN STD_LOGIC;--时钟reset : IN STD_LOGIC;--复位mode : IN STD_LOGIC_VECTOR(2 DOWNTO 0); --查看用mem_addr : INUNSIGNED(word_w-op_w-1 DOWNTO 0);--地址output : OUT STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);data_r_out : OUT STD_LOGIC_VECTOR(19 DOWNTO 0);--微指令Rop_out : OUT STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);--操作码add_r_out : OUT UNSIGNED(4 DOWNTO 0) --微地址R);END ENTITY;ARCHITECTURE rtl OF CPU ISTYPE mem_array IS ARRAY (0 TO 2**(word_w-op_w)-1) OF STD_LOGIC_VECTOR(word_w-1DOWNTO 0);--定义RAMSIGNAL mem : mem_array;CONSTANT prog : mem_array:=(0=> op2slv(load) & STD_LOGIC_VECTOR(TO_UNSIGNED(4,word_w-op_w)),1=> op2slv(add) & STD_LOGIC_VECTOR(TO_UNSIGNED(5,word_w-op_w)),2=> op2slv(store) & STD_LOGIC_VECTOR(TO_UNSIGNED(6,word_w-op_w)),3=> op2slv(bne) & STD_LOGIC_VECTOR(TO_UNSIGNED(7,word_w-op_w)), --TO_UNSIGNED转换函数将4转换为5位“00100”4=> STD_LOGIC_VECTOR(TO_UNSIGNED(2,word_w)),5=> STD_LOGIC_VECTOR(TO_UNSIGNED(3,word_w)),OTHERS => (OTHERS =>'0'));TYPE microcode_array IS ARRAY (0 TO 14) OF STD_LOGIC_VECTOR(19 DOWNTO 0); CONSTANT code : microcode_array:=(--控制存储器0=> "00010100010000000001",1=> "00000000000110000010",2=> "00001010000000000011",3=> "00000100001000001111",4=> "00100010000000000000",5=> "00000000000100000000",6=> "00000010100001000000",7=> "00000010100000100000",8=> "00000000000110000100",9=> "01000001000000000101",10=> "00000000000110000110",11=> "00000000000110000111",12=> "00000000000110010000",13=> "10000010000000000000",14=> "00000000000000000000");SIGNAL count : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL op : STD_LOGIC_VECTOR(op_w-1 DOWNTO 0);SIGNAL z_flag : STD_LOGIC;SIGNAL mdr_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL mar_out : UNSIGNED(word_w-op_w-1 DOWNTO 0);SIGNAL IR_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);SIGNAL acc_out : UNSIGNED(word_w-1 DOWNTO 0);SIGNAL sysbus_out : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);EGINPROCESS(reset,clock)VARIABLE instr_reg : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE acc : UNSIGNED(word_w-1 DOWNTO 0);CONSTANT zero : UNSIGNED(word_w-1 DOWNTO 0):=(OTHERS =>'0')VARIABLE mdr : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE mar : UNSIGNED(word_w-op_w-1 DOWNTO 0);VARIABLE sysbus : STD_LOGIC_VECTOR(word_w-1 DOWNTO 0);VARIABLE microcode : microcode_array;VARIABLE add_r : UNSIGNED(4 DOWNTO 0);VARIABLE data_r : STD_LOGIC_VECTOR(19 DOWNTO 0);VARIABLE temp : STD_LOGIC_VECTOR(4 DOWNTO 0);BEGINIF reset='0' THENadd_r:=(OTHERS =>'0');count <= (OTHERS =>'0');instr_reg := (OTHERS =>'0');acc := (OTHERS =>'0');mdr := (OTHERS =>'0');mar := (OTHERS =>'0');z_flag <='0';mem <= prog;sysbus :=(OTHERS =>'0');ELSIF RISING_EDGE(clock) THEN--microprogram controllerdata_r := code(TO_INTEGER(add_r));IF data_r(4 DOWNTO 0)="01111" THEN --判断下地址temp:="01" & op(2 DOWNTO 0);add_r := UNSIGNED(temp);ELSIF data_r(4 DOWNTO 0)="10000" THENIF z_flag='1' THENadd_r:="01110";ELSEadd_r :="01101";END IF;ELSEadd_r := UNSIGNED(data_r(4 DOWNTO 0));END IF;data_r_out <=data_r;add_r_out <= add_r;--PCIF data_r(16)='1' THEN --PC_bus='1'sysbus := rfill & STD_LOGIC_VECTOR(count);END IF;IF data_r(19)='1' THEN --load_PC='1'count <= UNSIGNED(mdr(word_w-op_w-1 DOWNTO 0));ELSIF data_r(10)='1' THEN --INC_PC='1'count <= count+1;ELSEcount <= count;END IF;--IRIF data_r(15)='1' THEN --load_IRinstr_reg := mdr;END IF;IF data_r(9)='1' THEN --Addr_bus='1'sysbus := rfill & instr_reg(word_w-op_w-1 DOWNTO 0);END IF;op <= instr_reg(word_w-1 DOWNTO word_w-op_w);IR_out <= instr_reg;op_out <=op;--ALUIF data_r(17)='1' THEN --load_ACC='1'acc:=UNSIGNED(mdr);END IF;IF data_r(11)='1' THEN --ALU_ACC='1'IF data_r(6)='1' THEN --ALU_add='1'acc := acc + UNSIGNED(mdr);ELSIF data_r(5)='1' THEN --ALU_sub='1'acc := acc - UNSIGNED(mdr);END IF;END IF;IF data_r(18)='1' THEN --ACC_bus='1'sysbus := STD_LOGIC_VECTOR(acc);END IF;IF acc=zero THENz_flag <='1';ELSEz_flag <='0';END IF;acc_out<= acc;--RAMIF data_r(14)='1' THEN --load_MAR='1'mar := UNSIGNED(sysbus(word_w-op_w-1 DOWNTO 0));ELSIF data_r(12)='1' THEN --load_MDR='1'mdr := sysbus;ELSIF data_r(8)='1' THEN --CS='1'IF data_r(7)='1' THEN --R_NW='1'mdr := mem(TO_INTEGER(mar));ELSEmem(TO_INTEGER(mar))<=mdr;END IF;END IF;IF data_r(13)='1' THEN --MDR_bus='1'sysbus:=mdr;END IF;mdr_out <= mdr;mar_out <= mar;END IF;sysbus_out <=sysbus;END PROCESS;PROCESS(mode,mem_addr)BEGIN--mode=0 -> sysbus--mode=1 -> PC--mode=2 -> result of ALU--mode=3 -> IR--mode=4 -> MAR--mode=5 -> MDR--mode=6 -> memoutput <= (OTHERS =>'0');CASE mode isWHEN "000" =>output<=sysbus_out;WHEN "001" =>output(word_w-op_w-1 DOWNTO 0)<= STD_LOGIC_VECTOR(count);WHEN "010" =>output <= STD_LOGIC_VECTOR(acc_out);WHEN "011" =>output <= IR_out;WHEN "100" =>output(word_w-op_w-1 DOWNTO 0) <= STD_LOGIC_VECTOR(mar_out);WHEN "101" =>output <= mdr_out;WHEN "110" =>output <= mem(TO_INTEGER(mem_addr));WHEN others =>output <= (OTHERS =>'Z');END CASE;END PROCESS;END ARCHITECTURE;现象结果:四、实验体会原本对于控制器的设计还是一片空白,通过实验初步理解微程序控制器的组成结构。

微程序控制器原理实验

微程序控制器原理实验

微程序控制器原理实验微程序控制器是一种基于微程序理论的控制器,被广泛应用于计算机系统的控制部分。

微程序控制器利用微指令来完成对计算机硬件的控制,通过将控制指令以微指令的形式存储在控制存储器中,再通过微程序计数器和指令寄存器的协作来实现对计算机中相关硬件的控制。

微程序控制器通过微指令的方式将指令的信息分解成若干微操作,每个微操作对应一个微指令。

每个微指令又由多个微操作组成,通过控制存储器中的微指令的读出来实现对相应的微操作的控制。

在微程序控制器的设计过程中,需要进行微指令的编码和微操作的选择,确保微操作的实现顺序和时序满足设计要求。

微程序控制器的实验可以通过设计一个简单的微程序控制器来进行验证。

首先,需要设计一个微指令的格式,其中包括操作码、操作数、地址等字段。

然后,根据需要控制的硬件模块设计相应的微操作,并将这些微操作编码成微指令。

通过控制存储器将微指令存储起来,并设计一个微程序计数器和指令寄存器来控制微指令的读取和执行过程。

在实验中,可以选择一些简单的指令例如加法指令来进行设计。

首先,设计一个微指令的格式,其中包括操作码字段和操作数字段。

然后,根据加法指令的功能设计相应的微操作,例如从寄存器中读取操作数、将操作数累加等。

将这些微操作编码成微指令,并将微指令存储在控制存储器中。

通过微程序计数器和指令寄存器来控制微指令的读取和执行过程,实现对加法指令的控制。

在实验中,需要设计相应的硬件电路来实现微程序控制器的功能。

这些电路包括控制存储器、微程序计数器、指令寄存器等。

可以使用逻辑门、触发器等基本的数字电路元件来实现这些电路。

通过将这些电路连接起来,形成一个完整的微程序控制器实验样机。

在实验过程中,需要根据设计的微指令格式和微操作进行编码和存储。

通过控制存储器将微指令读取并执行,控制相应的硬件模块进行操作。

通过示波器或LED 等辅助工具来监测和验证微程序控制器的工作状态和正确性。

微程序控制器原理实验可以帮助学生深入理解微程序的工作原理和实现方式。

微程序控制实验报告(共10篇)

微程序控制实验报告(共10篇)

微程序控制实验报告(共10篇)微程序控制器实验报告计算机组成原理实验报告一、实验目的:(1)掌握微程序控制器的组成原理。

(2)掌握微程序的编制、写入,观察微程序的运行过程。

二、实验设备:PC 机一台,TD-CMA 实验系统一套。

三、实验原理:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制的硬件逻辑部件工作的微命令序列,完成数据传送和各种处理操作。

它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。

这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。

微程序存储在一种专用的存储器中,称为控制存储器,微程序控制器原理框图如图所示:微程序控制器组成原理框图在实验平台中设有一组编程控制开关KK3、KK4、KK5(位于时序与操作台单元),可实现对存储器(包括存储器和控制存储器)的三种操作:编程、校验、运行。

考虑到对于存储器(包括存储器和控制存储器)的操作大多集中在一个地址连续的存储空间中,实验平台提供了便利的手动操作方式。

以向00H 单元中写入332211 为例,对于控制存储器进行编辑的具体操作步骤如下:首先将KK1 拨至‘停止’档、KK3 拨至‘编程’档、KK4 拨至‘控存’档、KK5 拨至‘置数’档,由CON 单元的SD05——SD00 开关给出需要编辑的控存单元首地址(000000),IN 单元开关给出该控存单元数据的低8 位(00010001),连续两次按动时序与操作台单元的开关ST(第一次按动后MC 单元低8 位显示该单元以前存储的数据,第二次按动后显示当前改动的数据),此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M7——M0 显示当前数据(00010001)。

然后将KK5 拨至‘加1’档,IN 单元开关给出该控存单元数据的中8 位(00100010),连续两次按动开关ST,完成对该控存单元中8 位数据的修改,此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M15——M8 显示当前数据(00100010);再由IN 单元开关给出该控存单元数据的高8 位(00110011),连续两次按动开关ST,完成对该控存单元高8 位数据的修改此时MC 单元的指示灯MA5——MA0 显示当前地址(000000),M23——M16 显示当前数据(00110011)。

实验三:微程序控制器实验

实验三:微程序控制器实验

《计算机组成原理》实验报告实验三:微程序控制器实验学院:专业:班级:学号:学生姓名:实验日期:指导老师:成绩评定:计算机学院计算机组成原理实验室实 验 三一、 实验名称:微程序控制器实验二、 实验目的:掌握微程序的编制、写入、观察微程序的运行情况 ,了解微程序流程原理。

三、 实验原理:微程序控制器的基本任务是完成当前指令的翻译和执行,即将当前指令的功能转换成可以控制硬件逻辑部件工作的微命令序列,以完成数据传输和各种处理操作。

它的执行方法就是将控制各部件动作的微命令的集合进行编码,即将微命令的集合仿照机器指令一样,用数字代码的形式表示,这种表示称为微指令。

这样就可以用一个微指令序列表示一条机器指令,这种微指令序列称为微程序。

微程序存储在一种专用的存储器中,该存储器称为控制存储器。

微程序流程图:NOP00指令译码P<1>IN->R0R0->OUT NOPR0->AR0->BA+B->R00130320405333530ADDINOUTHLT01010135四、实验设备:TD-CMA实验系统一套五、实验步骤:1、对微控器进行编程(写)(1)将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘编程’档,KK4置为‘控存’档,KK5置为‘置数’档。

(2)使用CON单元的SD05-SD00给出微地址,IN单元给出低8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的低8位。

(3)将时序与操作台单元的开关KK5置为‘加1’档。

(4)IN单元给出中8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的中8位。

IN单元给出高8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的高8位。

(5)重复(1)(2)(3)(4)四步,将二进制代码表的微地址(地址和十六进制)写入芯片中。

2、对微控器进行校验(读)(1)将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘校验’档,KK4置为‘控存’档,KK5置为‘置数’档。

微程序控制器实验

微程序控制器实验

微程序控制器实验一、实验目的和要求(必填)通过看懂教学计算机中已经设计好并正常运行的数条基本指令(例如,ADD、MVRR、OUT、MVRD、JR、RET 等指令)的功能、格式和执行流程,然后自己设计几条指令的功能、格式和执行流程,并在教学计算机上实现、调试正确。

其最终要达到的目的是:1.深入理解计算机微程序控制器的功能、组成知识;2.深入地学习计算机各类典型指令的执行流程;3.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念;4.学习微程序控制器的设计过程和相关技术。

控制器设计是学习计算机总体组成和设计的最重要的部分。

要在T EC-XP+教学计算机完成这项实验,必须比较清楚地懂得:1.T EC-XP+教学机的微程序控制器主要由微程序定序器A M2910、产生当前微地址和下地址的微控存和M ACH 器件组成;2.T EC-XP+教学机上已实现的全部基本指令和留给用户实现的19 条扩展指令的控制信号都是由微控存和M ACH 给出的。

3.应了解监控程序的A命令只支持基本指令,扩展指令应用E命令将指令代码写入到相应的存储单元中;不能用T、P 命令单步调试扩展指令,只能用G命令执行扩展指令。

4.要明白T EC-XP+教学机支持的指令格式及指令执行流程分组情况;理解T EC-XP +教学机中已经设计好并正常运行的各类指令的功能、格式和执行流程,也包括控制器设计与实现中的具体线路和控制信号的组成。

5.要明确自己要实现的指令格式、功能、执行流程设计中必须遵从的约束条件。

二、实验内容和原理(必填)1.完成控制器部件的教学实验,主要内容是由学生自己设计几条指令的的功能、格式和执行流程,并在教学计算机上实现、调试正确。

2.首先是看懂T EC-XP+教学计算机的功能部件组成和线路逻辑关系,然后分析教学计算机中已经设计好并正常运行的几条典型指令(例如,ADD、MVRR、OUT、MVRD、JRC、CALA、RET 等指令)的功能、格式和执行流程,注意各操作功能所对应的控制信号的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档