复旦大学模拟电路知识
复旦大学模拟电路二级运放实例 (1)

尹睿
版权所有,不得侵犯!传播与修改请保留版权信息。
目录
1 2 引言 ..................................................................................................................... 1 电路分析 .............................................................................................................. 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 3 3.1 3.2 3.3 3.4 电路结构 ....................................................................................................... 2 电路描述 ....................................................................................................... 2 静态特性 ....................................................................................................... 3 频率特性 ....................................................................................................... 5 相位补偿 ....................................................................................................... 7 调零电阻 ....................................................................................................... 7 偏置电路 ..................................................................................................... 10 共模输入范围 .............................................................................................. 13 输出动态范围 .............................................................................................. 13 单位增益带宽(GBW) .............................................................................. 14 输入失调电压 .............................................................................................. 14
模拟电路(基本概念和知识总揽)

模拟电路(基本概念和知识总揽)1、基本放大电路种类(电压放大器,电流放大器,互导放大器和互阻放大器),优缺点,特别是广泛采用差分结构的原因。
2、负反馈种类(电压并联反馈,电流串联反馈,电压串联反馈和电流并联反馈);负反馈的优点(降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用)3、基尔霍夫定理的内容是什么?基尔霍夫定律包括电流定律和电压定律。
电流定律:在集总电路中,任何时刻,对任一节点,所有流出节点的支路电流代数和恒等于零。
电压定律:在集总电路中,任何时刻,沿任一回路,所有支路电压的代数和恒等于零。
4、描述反馈电路的概念,列举他们的应用?反馈,就是在电子系统中,把输出回路中的电量输入到输入回路中去。
反馈的类型有:电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。
负反馈的优点:降低放大器的增益灵敏度,改变输入电阻和输出电阻,改善放大器的线性和非线性失真,有效地扩展放大器的通频带,自动调节作用。
电压(流)负反馈的特点:电路的输出电压(流)趋向于维持恒定。
5、有源滤波器和无源滤波器的区别?无源滤波器:这种电路主要有无源元件R、L和C组成有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。
集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。
6、基本放大电路的种类及优缺点,广泛采用差分结构的原因。
答:基本放大电路按其接法的不同可以分为共发射极放大电路、共基极放大电路和共集电极放大电路,简称共基、共射、共集放大电路。
共射放大电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻较大,频带较窄。
常做为低频电压放大电路的单元电路。
共基放大电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射放大电路相当,频率特性是三种接法中最好的电路。
复旦微电子-模拟集成电路设计-单级放大器(1)_OK

造成gm随Vin的变化不明显,提高电路的
RD
线性度。
Vout 从电流方程推导增益:
Vin M1
Vout VDD I D RD
Rs
AV
Vout Vin
ID Vin
RD
Gm RD
Id随Vin的增加缓慢,而不再是平方律关系23
共源放大器
推导Gm:
Gm
ID Vin
I D VGS
VGS Vin
Vout Vdd-Vth2
a) 当 Vin VTH 1,Vout VDD VTH 2 b) 当 Vin VTH 1, M1、M2 饱和
A
Vth1
Vin
1
2
nCox
W L
1
Vin
VTH 1
2
1 2
nCox
W L
2
VDD Vout
VTH 2
2
W L
1
Vin
VTH 1
可忽略
4
分压电路
二级管分压电路:M2采用PMOS,消除体效应。
M2 Vo=VDS1
I D1 I D2 Vo VDS1
2 1
VDS 2 VTH 2
VTH 1
M1
VDS1 VDS2 VDD
例:VDD 5V ,VTH1 1V ,VTH 2 1V ,
nCox 2.5105 A /V 2 , pCox 1.25105 A /V 2
M1 饱和
11
共源放大器
Vout
Vout VDD I D RD
VDD
1 2
μnCox
W L
Vin VTH
2 RD
Vin ,Vout Vout Vin1 VTH
复旦微电子-模拟电路-第5章+反馈

模拟电子学基础
32
复旦大学电子工程系 陈光梦
深度负反馈放大器的近似估算
深度负反馈状态: AF>>1
反馈深度:1A FA F 1 AF AF
负反馈放大器的A闭f 1A环AF F1增益可以简化为:
Af A 1 1 AF F
2020/3/12
模拟电子学基础
33
复旦大学电子工程系 陈光梦
闭环增益的变化: Af Af AAf F
A
F
两者之间的关系:
Af
A
A f A f (1 A F ) 2
A 1 A 1 AF
2020/3/12
模拟电子学基础
15
复旦大学电子工程系 陈光梦
负反馈放大器的输入阻抗
ii + vi ri A
ii + vi ri A
vf
F
rif
rif ri(1AF)
串联负反馈
2020/3/12
if
F
rif
rif
ri
1 AF
并联负反馈
模拟电子学基础
16
复旦大学电子工程系 陈光梦
负反馈放大器的输出电阻
s
+
_+
i
f
io
A vo
ro
i'o= 0
vof + F vf
s
+
+
i
_
f
io
A
ro
F if
iof vo
rof
rof
2020/3/12
模拟电子学基础
37
复旦大学电子工程系 陈光梦
负反馈放大器的频率特性
复旦微电子-模拟电路-第5章 反馈精选文档PPT课件

A
F
两者之间的关系:
Af
A
A f A f (1 A F ) 2
A 1 A 1 AF
2020/11/11
模拟电子学基础
15
复旦大学电子工程系 陈光梦
负反馈放大器的输入阻抗
ii + vi ri A
ii + vi ri A
vf
F
rif
rif ri(1AF)
串联负反馈
2020/11/11
if
F
rif
rif
ri
1 AF
并联负反馈
模拟电子学基础
16
复旦大学电子工程系 陈光梦
负反馈放大器的输出电阻
s
+
_+
i
f
io
A vo
ro
i'o= 0
vof + F vf
s
+
+
i
_
f
io
A
ro
F if
iof vo
rof
rof
rof
ro 1 AF
rof ro(1AF)
电压负反馈
电流负反馈
2020/11/11
反馈网络分离后的电压串联负反馈
vs +_+ vi rid
vf R1
ro vo
F
Rf
vof
Rf vf
R1
原来的电压 放大器
2020/11/11
考虑反馈网络影响后的 基本放大器
模拟电子学基础
23
复旦大学电子工程系 陈光梦
电压串联负反馈的例子
放大器的基本参数为:差分放大器的差模输入电阻 rid=10K,射极跟随器的输出电阻ro3=100,三级放大器 的电压增益Av0=8000。反馈网络的参数为R1=1k, Rf=20K。
复旦微电子-模拟电路-第1章+电路分析基础-89页精选文档

模拟电子学 基础
复旦大学电子工程系 陈光梦
绪论
模拟电子学的研究对象 模拟电子学的研究方法 模拟电子学的应用背景
2019/10/19
模拟电子学基础
2
复旦大学电子工程系 陈光梦
电子学的研究对象的层次
1、系统 2、模块 3、电路 4、器件
E
N
放大
/滤波
E
P
vi
VDD=+12V
模拟电子学基础
18
复旦大学电子工程系 陈光梦
拉普拉斯变换简介
定义
Fs f testdt 0
s 是一个复变量, s = s + jw
f(t) 应满足下列条件: 1)当t < 0时,f(t) = 0; 2)当t > 0时,f(t) 分段连续; 3)当t →∞时,e-st 较 f(t) 衰减得更快。
1
rs
vs
RL
R1
R3
v
R2
2019/10/19
1'
1'
1 vrs
vs
v
R2 R1 R2
rs (R1//R2)R3
1'
模拟电子学基础
30
复旦大学电子工程系 陈光梦
等效电流源定律(诺顿定律)
网络的等效关系
1
1
+ 源网络
N
负载 网络
N'
等价
负载
is rs
网络 N'
1'
1'
is=网络 N 的端口1-1' 间的短路电流
模拟电子学基础
16
复旦大学电子工程系 陈光梦
复旦大学模拟集成电路课件

P-N结耗尽区
耗尽区宽度:
2ε ε Φ NA xn = 0 si B q N D (N A + N D )
1 2
2ε ε Φ ND x p = 0 si B q N A (N A + N D )
1
1
2
例: N A = 1019 cm −3
Φ F (p ) =
F(E) =
1 1 + e(E - E F )/kT
– 本征载流子浓度:
n i = 3.9 × 1016 T 3/2e -Eg0/2kT
室温下(300K)
n i = 1.45 × 1010 cm-3
T↑,
n i↑。 T每升高11度,Ni 为原来的2倍。
掺杂半导体的费米势
EC EF=e φF Ei Eg Ev
器件
CMOS工艺、器件物理、器件Spice参 数、*版图设计、*电路模拟
模拟集成电路的“蛋壳”模型
2002年世界模拟IC市场
模拟信号带宽的关系
集成电路工艺的趋势
对模拟电路而言,不同的应用对于不同的信号带宽
MOS和BIPOLAR器件性能
工艺进化对模拟电路的影响
• 优势
– 面积更小、寄生电容更小 – 阻抗更大、速度更快
– PLL 可得到精确的频率。 – PLL 的频率和振荡器(VCO)的特征时间常数成反比。~C/Gm – 低通滤波器中的电路和VCO 的电路是匹配的。
单极点低通Gm-C滤波器
Gm由偏置电流或电压确定,易受工艺、温度和电源 电压变化的影响
磁盘驱动器中的模块电路(2)
• 模数转换器(ADC)
– 6位ADC, – 由VCO提供采样时钟。采样频率由数字时钟恢复电路控 制。 – 偏移控制:采集63个比较器的失调电压,反馈到输入 端,抵消由此引起的失真。
复旦微电子模拟集成电路设计数模与模数转换器课件

并行数模转换器
电流按比例缩放DAC
上式中,分支电流按一定的缩放比例加权产生,例如是二进 制加权。
并行数模转换器
例1:二进制电阻加权DAC
反馈电阻用于确定DAC的增益,若RF = KR/2,
电阻的范围大:
非单调;速度快(寄生无关)
并行数模转换器
例2:R-2R梯形电路
R值相近,DAC单调,速度快。
定义最低有效位LSB:
LSB
Vref 2N
满刻度值(FS):
满刻度范围:
数模转换器特性
量化噪声:有限精度转换器将模拟值进行数字化引入的固有 不确定性。等于无限精度DAC的模拟输出减去 有限精度DAC的模拟输出减去
DAC的动态范围:等于FSR和可分辨的最小值之比。
用分贝的形式:
数模转换器特性
DAC的信噪比:满刻度值和量化噪声均方根值之比
运放带宽的影响:若是过阻尼,则GB决定运算放大器的速度
若上例中运放的GB=1MHz。则: 假定理想输出等于Vref,则输出的稳定值为Vref的0.5LSB : 设N=8
数模转换器测试
输入-输出测试:
输出频谱测试: 码型的基频纯度高 基准噪声小
数模转换器分类
开关阵列的编码:译码器,二进制(加权)和温度编码(不加 权)
并行数模转换器
电荷DAC的最大INL和DNL: 当只有第i个电容和Vref相连,则理想输出为
则第i位的INL: 最坏情况发生在i=1时:
二进制电容加权阵列的最坏DNL情 况发生在MSB变化时。 由等效电路,得:
并行数模转换器
电荷DAC的最大DNL:
为得到最坏情况,设C1=C+ΔC,其它电容为-ΔC。
对正弦波, 用分贝的形式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则 = IC ICEO
IB
当
IC
ICEO 时,
IC IB
是另一个电流放大系数。同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。
一般 >> 1 。
3. 三极管的三种组态
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示; 共集电极接法,集电极作为公共电极,用CC表示。
模拟电路知识体系
• 总的来说就是以三极管为核心,以集成运放为主 线。
• 集成运放内部主要组成单元是差分输入级、电压 放大级、功率放大级、偏置电路。
• 集成运放的两个不同工作状态:线性和非线性应 用。
• 模拟电路主要就是围绕集成运放的内部结构、外 部特性及应用、性能改善、工作电源产生、信号 源产生等展开。
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
VT
=
kT q
= 0.026V
= 26mV
PN结的伏安特性
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
热击穿——不可逆
雪崩击穿 齐纳击穿
电击穿——可逆
输出端
uS ~
Au
Ro
输出端
u’o
输出电阻的定义:
.
Ro
=
U’o
.
I’o
RL =∞ ,
US =0
输出电阻是表明放大电路带负载的能力,Ro越小,放 大电路带负载的能力越强,反之则差。
4. 通频带 A
Am 0.7Am
放大倍数随频率 变化曲线——幅 频特性曲线
3dB带宽
fL 下限截 止频率
上限截 fH 止频率
根据放大电路输入信号的条件和对输出信号的要求,放大器 可分为四种类型,所以有四种放大倍数的定义。
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻增益定义为: (4)互导增益定义为:
AU=UO/UI
AI=IO/II
Ar=UO/II Ag=IO/UI
2. 输入电阻Ri——从放大电路输入端看进去的等效电 阻,决定了放大电路从信号源吸取信号幅值的大小。
iD /mA
V (BR) IS
反 向
反向特性 O
正向特性 Vth uD /V
Vth = 0.5 V (硅管) 0.1 V (锗管)
V Vth
iD 急剧上升
击 穿
死区 电压
VD(on) = (0.6 0.8) V 硅管 0.7 V (0.2 0.4) V 锗管 0.3 V
︱V(BR) ︱> ︱V︱ > 0 iD = IS < 0.1 A(硅)几十 A (锗) ︱V︱> ︱U(BR) ︱ 反向电流急剧增大 (反向击穿)
iC=f(vCE) iB=const
输出特性曲线的三个区域:
饱和区:iC明显受vCE控制的区域, 该区域内,一般vCE<0.7V (硅管)。
此时,发射结正偏,集电结正偏或反 偏电压很小。
截止区:iC接近零的区域,相当iB=0
的曲线的下方。此时, vBE小于死区 电压。
放大区:iC平行于vCE轴的区域,曲
线基本平行等距。此时,发射结正偏, 集电结反偏。
4.1.4 BJT的主要参数
极限参数
(1) 集电极最大允许电流ICM (2) 集电极最大允许功率损耗PCM
PCM= ICVCE
• V(BR)CEO——基极开路时集电极和发射 极间的击穿电压。
4.3.1 图解分析法
1. 静态工作点的图解分析
• 在输入特性曲线上,作出直线 vBE = VBB iB Rb ,两线的交点 即是Q点,得到IBQ。
(a) NPN型管结构示意图 (b) PNP型管结构示意图 (c) NPN管的电路符号 (d) PNP管的电路符号
4.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通过载
流子传输体现出来的。
外部条件:发射结正偏 集电结反偏
由于三极管内有两种载流子(自由 电子和空穴)参与导电,故称为双极 型三极管或BJT (Bipolar Junction Transistor)。
• 在输出特性曲线上,作出直流负载线 VCE=VCC-iCRc,与IBQ曲 线的交点即为Q点,从而得到VCEQ 和ICQ。
2. 动态工作情况的图解分析 • 根据vs的波形,在BJT的输入特性曲线图上画出vBE 、 iB 的
波形
vs = Vsm sin ωt vBE = VBB vs iB Rb
1. 内部载流子的传输过程
发射区:发射载流子
集电区:收集载流子
基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= InC+ ICBO
放大状态下BJT中载流子的传输过程
2. 电流分配关系
根据传输过程可知 IE=IB+ IC
设
传输到集电极的电流
= 发射极注入电流
即 = InC
IE
通常 IC >> ICBO 则有 IC
o
u+ - u-
-Uo(sat)
理想运算放大器
理想运放及其分析依据
1)开环电压放大倍数 Auo→∞ 理想化条件: 2)差模输入电阻 rid→∞
3)开环输出电阻 ro→0 4)共模抑制比 KCMRR→∞
+
+
Vp
-
-
vN
+
-
+
Avo(vp-vN)
-
vo
理想运算放大器的特性
理想运算放大器具有“虚短”和“虚断”的特性, 这两个特性对分析线性运用的运放电路十分有用。为 了保证线性运用,运放必须在闭环(负反馈)下工作。
在本征半导体中掺入某些微量元素作为杂质, 可使半导体的导电性发生显著变化。掺入的杂质 主要是三价或五价元素。掺入杂质的本征半导体 称为杂质半导体。
N型半导体——掺入五价杂质元素(如磷)的 半导体。
P型半导体——掺入三价杂质元素(如硼)的半 导体。
3.2.1 载流子的漂移与扩散
漂移运动: 由电场作用引起的载流子的运动称为漂移运动。
IE
IC= InC+ ICBO
为电流放大系数。它只
与管子的结构尺寸和掺杂浓度 有关,与外加电压无关。一般
= 0.90.99 。
放大状态下BJT中载流子的传输过程
2. 电流分配关系
又设 = 1
根据 IE=IB+ IC
IC= InC+ ICBO
= InC
IE
且令 ICEO= (1+ ) ICBO (穿透电流)
特别注意: ▪ 小信号模型中的微变电阻rd与静态工作点Q有关。 ▪ 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
3.5 特殊二极管
(一)稳压二极管
I/mA
(1) 结构:面接触型硅二极管
(2) 主要特点: (a) 正向特性同普通二极管 (b) 反向特性
• 较大的 I 较小的 U •工作在反向击穿状态。 在一定范围内,反向击穿 具有可逆性。
第一章 绪 论
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
1.2 放大电路基本知识
一、放大电路的表示方法
放大电路主要用于放大微弱的电信号,输出电压或电流 在幅度上得到了放大。放大电路为双口网络,即一个信号 输入口和一个信号输出口。
1.3 放大电路的主要技术性能指 标
1.放大倍数(增益)——表征放大器的放大能力
f
通频带: fBW=fH–fL
第二章 运算放大器
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
开环电压放大倍数高(104-107); 输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
电压传输特性 Vo=Avo(vp-vN)
+Uo(sat)
理想特性 实际特性
内电场阻止多子扩散
最后,多子的扩散和少子的漂移达到动态平衡。
3.2.3 PN结的单向导电性
PN结加正向电压时,呈现低电阻, 具有较大的正向扩散电流;
PN结加反向电压时,呈现高电阻, 具有很小的反向漂移电流。
由此可以得出结论:PN结具有单向 导电性。
PN结V-I 特性表达式
iD = IS (evD /VT 1)
(1)虚短
由于运放的电压放大倍数很大,而运放的输出电 压是有限的,一般在10 V~14 V。因此运放的差模输入 电压不足1 mV,两输入端近似等电位,相当于 “短 路”。开环电压放大倍数越大,两输入端的电位越接 近相等。
“虚短”是指在分析运算放大器处于线性状态时, 可把两输入端视为等电位,这一特性称为虚假短路,简 称虚短。显然不能将两输入端真正短路。
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
共射极连接
4.1.3 BJT的V-I 特性曲线
2. 输出特性曲线
3.4.2 二极管电路的简化模型分析方法
1.二极管V-I 特性的建模 将指数模型 iD = IS(e分vD段VT线性1) 化,得到二极管特性的
等效模型。 (1)理想模型
(a)V-I特性 (b)代表符号 (c)正向偏置时的电路模型 (d)反向偏置时的电路模型
(2)恒压降模型
(3)折线模型
(a)V-I特性 (b)电路模型