人工智能发展史解读

合集下载

人工智能技术的历史发展

人工智能技术的历史发展

人工智能技术的历史发展
一、起步阶段
人工智能的发展可以追溯到上世纪50年代,这个阶段
主要是对人工智能的基本概念和可能性进行探索。

在这个阶段,科学家们开始尝试使用计算机来模拟人类的智能行为,如解决问题、进行逻辑推理等。

这个阶段的代表性成果是机器翻译和专家系统的出现,这些系统可以模拟人类专家的知识和判断,提供专业的建议和解决方案。

二、反思阶段
在70年代和80年代初,人工智能的发展进入了一个反思阶段。

在这个阶段,人们开始意识到人工智能面临的挑战和困难,如如何处理不确定性、如何进行有效的知识表达等。

这个阶段的研究工作更加深入和具体,科学家们开始深入研究人工智能的各个子领域,如自然语言处理、机器学习、认知科学等。

三、应用阶段
从80年代中期到90年代,人工智能开始进入实际应用阶段。

这个阶段的特点是大量的人工智能应用被开发出来,并应用于商业、军事等领域。

同时,随着计算机性能的提高和互联网的普及,人工智能技术得到了更广泛的应用和发展。

这个阶段的代表性成果是智能语音识别、智能图像识别、智能推荐等系统的出现和应用。

四、融合发展阶段
近年来,人工智能技术进入了一个融合发展阶段。

在这个阶段,人工智能技术与其他技术领域如物联网、云计算、大数据等开始融合,形成了一个更加完整和高效的技术体系。

这个阶段的代表性成果是智能家居、智能医疗、智能制造等领域的快速发展。

同时,人工智能技术在机器人、自动驾驶、智能金融等领域的应用也在不断扩展和深化。

简述人工智能的发展历史

简述人工智能的发展历史

简述人工智能的发展历史人工智能(Artificial Intelligence,简称AI)是指通过计算机模拟人类智能的一种技术。

人工智能的发展历史可以追溯到上世纪50年代,当时计算机科学家们开始尝试模拟人类思维和行为,以期实现人工智能。

在20世纪50年代初,人工智能的研究开始兴起。

当时,计算机科学家们主要关注的是如何让计算机能够像人类一样思考和解决问题。

他们开发了一些基于规则的系统,这些系统可以根据预先设定的规则来执行特定的任务。

但是,这些系统的能力非常有限,只能处理一些简单的问题。

到了20世纪60年代,人工智能的研究进入了一个新的阶段。

计算机科学家们开始尝试使用机器学习算法来让计算机自己学习如何解决问题。

他们开发了一些基于神经网络的系统,这些系统可以通过学习来提高自己的能力。

但是,由于当时计算机的处理能力非常有限,这些系统的效果并不理想。

到了20世纪80年代,计算机的处理能力得到了大幅提升,人工智能的研究也进入了一个新的高峰。

计算机科学家们开始尝试使用深度学习算法来让计算机自己学习如何解决问题。

他们开发了一些基于深度神经网络的系统,这些系统可以通过学习来提高自己的能力,并且可以处理更加复杂的问题。

到了21世纪,人工智能的研究取得了巨大的进展。

计算机科学家们开发了一些基于深度学习算法的系统,这些系统可以在图像识别、语音识别、自然语言处理等领域取得非常好的效果。

同时,人工智能也开始应用于各个领域,如医疗、金融、交通等。

总的来说,人工智能的发展历史可以分为三个阶段:基于规则的系统、基于机器学习的系统和基于深度学习的系统。

随着计算机处理能力的不断提升,人工智能的研究也在不断取得新的进展。

未来,人工智能将会在更多的领域得到应用,为人类带来更多的便利和创新。

人工智能的历史和发展趋势分析

人工智能的历史和发展趋势分析

人工智能的历史和发展趋势分析人工智能(Artificial Intelligence, AI)是指计算机在执行任务时表现出的智能行为。

它的历史可以追溯到上世纪50年代,但真正的发展始于20世纪80年代。

经过几十年的发展,人工智能已经得到了广泛的应用,并且在未来几年内还将继续迎来进一步的发展。

一、历史回顾人工智能的起源可以追溯到上世纪50年代,当时的研究人员开始尝试模拟人类的智能行为。

在这个时期,他们主要关注的是逻辑推理和问题解决能力。

然而,由于当时计算机技术和算法的限制,这些早期的尝试并没有取得很大的成功。

直到20世纪80年代,随着计算机性能的提升和算法研究的进步,人工智能开始展现出真正的潜力。

在这个时期,专家系统成为了人工智能研究的主要方向之一。

专家系统是通过模拟专家的知识和经验来解决复杂问题的系统。

它的出现引起了广泛的关注,并在某些领域取得了显著的成果。

在90年代和00年代,人工智能的发展进入了一个相对低迷的时期。

虽然基于规则的专家系统取得了一些成功,但由于其知识获取的困难和应用范围的限制,它并没有在商业应用中得到广泛应用。

同时,其他一些关键的技术,如机器学习和神经网络等,也还处于探索和发展的阶段。

二、发展趋势分析1. 大数据和云计算的发展随着大数据和云计算的快速发展,人工智能拥有了更多的数据和计算资源,从而使得算法的训练和应用更加高效和精确。

大数据和云计算为人工智能的发展提供了技术基础和实际应用场景。

2. 深度学习的兴起深度学习是近年来人工智能领域的一个重要技术突破。

它是一种模拟人脑神经网络的机器学习方法,通过多层次的神经网络结构实现对复杂模式和关系的识别和学习。

深度学习在图像识别、自然语言处理等领域取得了重大突破,并且成为了推动人工智能发展的重要引擎。

3. 自然语言处理和情感分析的进展自然语言处理(Natural Language Processing, NLP)是人工智能的一个重要研究方向。

人工智能发展简史

人工智能发展简史

人工智能发展简史“人工智能之父” 艾伦·图灵。

1、人工智能的诞生(20世纪40~50年代)1950年:图灵测试1950年,著名的图灵测试诞生,按照“人工智能之父”艾伦·图灵的定义:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。

同一年,图灵还预言会创造出具有真正智能的机器的可能性。

1954年:第一台可编程机器人诞生1954年美国人乔治·戴沃尔设计了世界上第一台可编程机器人。

1956年:人工智能诞生1956年夏天,美国达特茅斯学院举行了历史上第一次人工智能研讨会,被认为是人工智能诞生的标志。

会上,麦卡锡首次提出了“人工智能”这个概念,纽厄尔和西蒙则展示了编写的逻辑理论机器。

2、人工智能的黄金时代(20世纪50~70年代)1966年~1972年:首台人工智能机器人Shakey诞生1966年~1972年期间,美国斯坦福国际研究所研制出机器人Shakey,这是首台采用人工智能的移动机器人。

1966年:世界上第一个聊天机器人ELIZA发布美国麻省理工学院(MIT)的魏泽鲍姆发布了世界上第一个聊天机器人ELIZA。

ELIZA的智能之处在于她能通过脚本理解简单的自然语言,并能产生类似人类的互动。

1968年:计算机鼠标发明1968年12月9日,美国加州斯坦福研究所的道格·恩格勒巴特发明计算机鼠标,构想出了超文本链接概念,它在几十年后成了现代互联网的根基。

3、人工智能的低谷(20世纪70~80年代)20世纪70年代初,人工智能遭遇了瓶颈。

当时的计算机有限的内存和处理速度不足以解决任何实际的人工智能问题。

要求程序对这个世界具有儿童水平的认识,研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。

由于缺乏进展,对人工智能提供资助的机构(如英国政府、美国国防部高级研究计划局和美国国家科学委员会)对无方向的人工智能研究逐渐停止了资助。

简述人工智能的发展史

简述人工智能的发展史

简述人工智能的发展史人工智能,是计算机科学中研究如何使机器能够像人一样学习、思考和行动的一门学科。

自从 20 世纪 50 年代开始,人工智能已经经历了多个阶段的发展。

本文将从以下几个方面简述其发展史。

一、符号主义时期(1956-1974)1956 年,世界上第一次人工智能会议的召开正式标志着人工智能学科的产生。

早期的人工智能系统的核心思想是“符号主义”,即利用符号来描述问题和解决问题。

早期的人工智能主要应用于数学和逻辑问题,包括推理、证明和代数计算。

但由于符号主义无法处理实际问题中的复杂性和模糊性,因此在 70 年代末人工智能陷入低谷。

二、联结主义时期(1986-2006)20 世纪 80 年代,人工智能又迎来了新的发展阶段——联结主义时期。

联结主义模型从生物神经元的结构和行为中受到启发,它的基本思想是将一些简单的单元(即“神经元”)连接起来组成复杂的神经网络,通过学习来发现网络中规律性的东西。

这种方法是非常有前途地,主要应用于图像和语音识别、自然语言处理和机器翻译等方面。

但联结主义的方法很难造成一个明确和可解释的结论,这也限制了其发展。

三、统计学习时期(2006-至今)21 世纪初,统计学习开始成为主导。

统计学习是利用现有的数据和大量的统计分析方法来实现机器自学习的过程。

这种方法利用机器学习算法从数据中提取信息,并自适应地改变其行为。

利用大量的数据来训练机器学习算法是最大的优势。

这种方法主要应用于计算机视觉、自然语言处理、语音识别等领域,使得人工智能技术真正走向了实际应用。

总体来说,人工智能的发展历程充满曲折和挑战,但是观察其发展轨迹,可以看到这一领域正在持续成长和发展。

人工智能的技术也正在不断拓宽应用范围,其中一些领域已经成为商业上的成功案例,如机器翻译和智能客服。

未来,人工智能有望成为更加人性化和高效的工具,能够在更多领域取得令人难以置信的成就,使人类社会拥有更美好的未来。

AI发展历程

AI发展历程

AI发展历程人工智能(Artificial Intelligence,AI)发展历程人工智能(Artificial Intelligence,AI)是指机器在模仿人类智能方面所表现出的能力。

从上世纪50年代开始,人工智能领域迅速发展,取得了显著的进展。

本文将梳理人工智能的发展历程,并探讨其对社会和科技的影响。

一、初创时期(1950-1970年代)人工智能领域的先驱者是达特茅斯会议上的一群科学家。

在会议上,他们共同提出了人工智能的概念,并寻求通过机器模拟人类智能的方法。

这一时期的主要任务是开发机器能够进行逻辑推理和问题解决的能力,试图打造出类似于人脑的智能系统。

尽管人工智能在早期取得了一些进展,比如奠定了逻辑推理和问题解决的基础,但由于当时计算资源的限制以及对智能的理解不够深入,人工智能的发展进一步受到了挑战。

随着时间的推移,人工智能研究的热潮逐渐减退,被认为是一场“冬天”。

二、知识驱动时代(1980-1990年代)在1980年代,人工智能经历了一次复苏。

人们开始关注如何将知识编码到机器中,以便机器能够根据这些知识进行推理和决策。

专家系统成为当时人工智能的主流研究方向,专家系统是借助于专家知识库进行问题解决和决策的计算机程序。

然而,尽管专家系统在某些特定领域取得了一些成功,但由于它们往往依赖于专家知识的编码和维护,限制了其在更复杂问题上的应用。

此外,专家系统无法处理模糊信息和不确定性问题,这也成为了其发展的瓶颈。

三、统计学习时代(2000年代至今)随着1990年代末期统计学习方法的兴起,人工智能进入了一个新的发展阶段。

统计学习是一种通过分析大量数据并从中提取规律,来训练模型和进行预测的方法。

机器学习和深度学习等技术在这一时期得到广泛应用。

大数据的时代给人工智能的发展提供了巨大的助力。

机器学习算法的不断发展和优化,使得机器能够处理更复杂的任务,比如图像识别、语音识别、自然语言处理等。

深度学习的引入更是让机器能够实现类似于人脑的学习和决策过程。

人工智能的发展历程

人工智能的发展历程

人工智能的发展历程人工智能(Artificial Intelligence,简称AI)是一门致力于使计算机能够模拟人类智能的科学与技术。

自20世纪50年代出现以来,人工智能领域经历了数十年的发展和演进,取得了巨大的进展。

本文将从早期的探索开始,梳理人工智能的发展历程。

一、人工智能的起步阶段(1950年代-1960年代)人工智能的历史可以追溯到20世纪50年代,那时科学家们开始将计算机与智能相关的概念联系在一起。

1956年,一次在达特茅斯学院召开的会议上,人工智能这一术语正式被提出,并正式成为一门学科。

在这个起步阶段,人工智能主要关注于符号推理和问题解决。

代表性的成果包括逻辑推理和专家系统的开发。

二、人工智能的知识推理时代(1970年代-1980年代)进入1970年代,人工智能领域逐渐开始关注知识表示与推理。

研究者们意识到,要使计算机具备智能,需要使其能够模拟人类的知识结构和推理过程。

因此,知识表示和与之相关的推理成为人工智能研究的重要方向。

人工智能的一大里程碑是1986年,当时IBM的深蓝超级计算机打败了国际象棋世界冠军卡斯帕罗夫,展示了计算机在复杂领域中的推理和决策能力。

三、人工智能的机器学习时代(1990年代-2000年代)进入1990年代,随着计算能力的快速提升和数据的大量积累,人工智能的发展迎来了新的机遇。

机器学习成为人工智能的核心技术。

机器学习是一种通过对大量数据进行学习和训练,使计算机能够自动提取规律、做出预测和决策的方法。

支持向量机、神经网络和决策树等机器学习算法相继提出,并在图像识别、语音识别等领域取得了重要突破。

四、人工智能的深度学习时代(2010年代至今)进入21世纪,随着大数据和云计算的快速发展,人工智能进入了深度学习时代。

深度学习是机器学习的一种,它利用人工神经网络模拟人脑的神经结构和工作方式,并通过大规模数据训练模型。

深度学习在图像识别、自然语言处理、语音识别等领域取得了巨大的成功,例如谷歌的AlphaGo在围棋领域击败了世界冠军。

人工智能的发展演变及其特点

人工智能的发展演变及其特点

人工智能的发展演变及其特点
人工智能(AI)是一门相对广泛的学科,它涉及了许多整体性的研究技术和手段,包括强化学习、认知计算、模式识别、机器学习和图像处理等。

它试图在这些任务上开发运用软件和硬件系统,使机器拥有自主行为能力,以及智能程度接近于人类的能力。

1、第一阶段(1950年至1960年),由于这个阶段的研究者对计算机的理解有限,他们只能把计算机作为一个依赖于程序和指令的工具来使用,并且将其用于单一特定任务上。

当时的主要研究是把计算机用于处理自然语言任务,包括语音识别,语音合成,文本分析和情感分析等。

2、第二阶段(1960年至1970年),这个阶段的研究者开始试图通过定义规则来让计算机能够完成一定程度的自动推理。

有大量的研究被投入到构建“专家系统”中来,而且能够在一定程度上进行问答,并帮助专家完成一些诊断任务。

3、第三阶段(1970年至1980年),通过定义规则的方法让计算机完成自动推理的技术不符合实际应用,所以人们转向机器学习的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能学科诞生于20世纪50年代中期,当时由于计算机的产生与发展,人们开始了具有真正意义的人工智能的研究。

(虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间的联系. Norbert Wiener是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈回路的研究重要性在于: Wiener从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可能用机器模拟的.这项发现对早期AI的发展影响很大。

)1956年夏,美国达特莫斯大学助教麦卡锡、哈佛大学明斯基、贝尔实验室申龙、IBM公司信息研究中心罗彻斯特、卡内基——梅隆大学纽厄尔和赫伯特.西蒙、麻省理工学院塞夫里奇和索罗门夫,以及IBM公司塞缪尔和莫尔在美国达特莫斯大学举行了以此为其两个月的学术讨论会,从不同学科的角度探讨人类各种学习和其他职能特征的基础,并研究如何在远离上进行精确的描述,探讨用机器模拟人类智能等问题,并首次提出了人工智能的术语。

从此,人工智能这门新兴的学科诞生了。

这些青年的研究专业包括数学、心理学、神经生理学、信息论和电脑科学,分别从不同角度共同探讨人工智能的可能性。

他们的名字人们并不陌生,例如申龙是《信息论》的创始人,塞缪尔编写了第一个电脑跳棋程序,麦卡锡、明斯基、纽厄尔和西蒙都是“图灵奖”的获奖者。

这次会议之后,在美国很快形成了3个从事人工智能研究的中心,即以西蒙和纽威尔为首的卡内基—梅隆大学研究组,以麦卡锡、明斯基为首的麻省理工学院研究组,以塞缪尔为首的IBM公司研究组。

随后,这几个研究组相继在思维模型、数理逻辑和启发式程序方面取得了一批显著的成果:(1)1956年,纽威尔和西蒙研制了一个“逻辑理论家“(简称LT)程序,它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解问题,证明了怀特黑德与罗素的数学名著《数学原理》的第2章中52个定理中的38个定理。

1963年对程序进行了修改,证明了全部定理。

这一工作受到了人们的高度评价,被认为是计算机模拟人的高级思维活动的一个重大成果,是人工智能的真正开端。

(2)1956年,塞缪尔利用对策论和启发式搜索技术编制出西洋跳棋程序Checkers。

该程序具有自学习和自适应能力,能在下棋过程中不断积累所获得的经验,并能根据对方的走步,从许多可能的步数中选出一个较好的走法。

这是模拟人类学习过程第一次卓有成效的探索。

这台机器不仅在1959年击败了塞缪尔本人,而且在1962年击败了美国一个州的跳棋冠军,在世界上引起了大轰动。

这是人工智能的一个重大突破。

(3)1958年,麦卡锡研制出表处理程序设计语言LISP,它不仅可以处理数据,而且可以方便的处理各种符号,成为了人工智能程序语言的重要里程碑。

目前,LISP语言仍然是研究人工智能何开发智能系统的重要工具。

(4)1960年纽威尔、肖和西蒙等人通过心理学实验,发现人在解题时的思维过程大致可以分为3个阶段:1。

首先想出大致的解题计划;2。

根据记忆中的公理、定理和解题规划、按计划实施解题过程;3.在实施解题过程中,不断进行方法和目标分析,修改计划。

这是一个具有普遍意义的思维活动过程,其中主要是方法和目的的分析。

(也就是人们在求解数学问题通常使用试凑的办法进行的试凑是不一定列出所有的可能性,而是用逻辑推理来迅速缩小搜索范围的办法进行的),基于这一发现,他们研制了“通用问题求解程序GPS”,用它来解决不定积分、三角函数、代数方程等11种不同类型的问题,并首次提出启发式搜索概念,从而使启发式程序具有较普遍的意义。

(5)1961年,明斯基发表了一篇名为《迈向人工智能的步骤》的论文,对当时人工智能的研究起了推动作用。

正是由于人工智能在20世纪50年代到60年代的迅速发展和取得的一系列的研究成果,使科学家们欢欣鼓舞,并对这一领域给予了过高的希望。

纽威尔和西蒙在1958年曾作出以下预言:①不出十年,计算机将成为世界象棋冠军,除非规定不让它参加比赛;②.不出十年,计算机将发现并证明那时还没有被证明的数学定理;③.不出十年,计算机将谱写出具有较高美学价值并得到评论家认可的乐曲;④不出十年,大多数心理学家的理论将采用计算机程序来形成。

非常遗憾的是,到目前为止,这样的预言还没有一个得到完全的实现,人工智能的研究状况比纽威尔和西蒙等科学家的设想要复杂和艰难的多。

事实上,到了20世纪70年代初,人工智能在经历一段比较快速的发展时期后,很快就遇到了许多问题。

这些问题主要表现在:(1)1965年鲁宾逊发明了归结(消解)原理,曾被认为是一个重大的突破,可是很快这种归结法能力有限,证明两个连续函数之和还是连续函数,推证了十万步竟还没有得证。

(2)塞缪尔的下棋程序,赢得了周冠军后,没能赢全国冠军。

(3)机器翻译出了荒谬的结论。

如从英语→俄语→英语的翻译中,又一句话:“The spirit is willing but the flesh is weak”(心有余而力不足),结果变成了”The wine is good but the meat is spoiled”(酒是好的,肉变质了),闹出了笑话。

(4)大脑约有10的15次方以上的记忆容量,此容量相当于存放几亿本书的容量,现有的技术条件下在机器的结构上模拟人脑是不大可能的。

(5)来自心理学、神经生理学、应用数学、哲学等各界的科学家们对人工智能的本质、基本原理、方法及机理等方面产生了质疑和批评。

由于人工智能研究遇到了困难,使得人工智能在20世纪70年代初走向低落。

但是,人工智能的科学家没有被一时的困难所吓倒,他们在认真总结经验教训的基础上,努力探索使人工智能走出实验室,走向实用化的新路子,并取得了令人鼓舞的进展。

特别是专家系统的出现,实现了人工智能从理论研究走向实际应用,从一般思维规律探索走向专门知识应用的重大突破,是人工智能发展史上的重大转折,将人工智能的研究推向了新高潮。

下面是几个又代表性的专家系统:(1)1968年斯坦福大学费根鲍姆教授和几位遗传学家及物理学家合作研制了一个化学质谱分析系统(DENDARL),该系统能根据质谱仪的数据和核磁谐振的数据,以及有关化学知识推断有机化合物的分子结构,达到了帮助化学家推断分子结构的作用。

这是第一个专家系统,标志着人工之能从实验室走了出来,开始进入实际应用时代。

(2)继DENDARAL系统之后,费根鲍姆领导的研究小组又研制了诊断和治疗细菌感染性血液病的专家咨询系统MYCIN。

经专家小组对医学专家、实习医师以及MYCIN行为进行正式测试评价,认为MYCIN的行为超过了其他所有人,尤其在诊断和治疗菌血症和脑膜炎方面,显示了该系统作为临床医生实际助手的前途。

从技术的角度来看,该系统的特点是:1。

使用了经验性知识,用可信度表示,进行不精确推理。

2.对推理结果具有解释功能,时系统是透明的。

3.第一次使用了知识库的概念。

正是由于MYCIN基本解决了知识表示、知识获取、搜索策略、不精确推理以及专家系统的基本结构等重大问题(是怎样解决的呢?),对以后的专家系统产生了很大的影响。

(3)1976年,斯坦福大学国际人工智能中心的杜达等人开始研制矿藏勘探专家系统PROSPECTOR,它能帮助地质学家解释地质矿藏数据,提供硬岩石矿物勘探方面的咨询,包括勘探测评,区域资源估值,钻井井位选择等。

该系统用语义网络表示地质知识,拥有15中矿藏知识,采用贝叶斯概率推理处理不确定的数据和知识。

PROSPECTOR系统于1981年开始投入实际使用,取得了巨大的经济效益。

例如1982年,美国利用该系统在华盛顿发现一处矿藏,据说实用价值可能超过1亿美元。

(4)美国卡内基—梅隆大学于20世纪70年代先后研制了语音理解系统HEARSAY-I 加入HEARSAY-II,它完成从输入的声音信号转换成字,组成单词,合成句子,形成数据库查询语句,再到情报数据库中去查询资料。

该系统的特点是采用“黑板结构”这种新结构形式,能组合协调专家的知识,进行不同抽象级的问题求解。

在这一时期,人工智能在新方法、程序设计语言、知识表示、推理方法等方面也取得了重大进展。

例如70年代许多新方法被用于AI开发,著名的如Minsky的构造理论.另外David Marr提出了机器视觉方面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像.通过分析这些信息,可以推断出图像可能是什么,法国马赛大学的柯尔麦伦和他领导的研究小组于1972年研制成功的第一个PROLOG系统,成为了继LISP语言之后的另一种重要的人工智能程序语言;明斯基1974年提出的框架理论;绍特里夫于1975年提出并在MYCIN中应用的不精确推理;杜达于1976年提出并在PROSPECTOR中应用的贝叶斯方法;等等人工智能的科学家们从各种不同类型的专家系统和知识处理系统中抽取共性,总结出一般原理与技术,使人工智能又从实际应用逐渐回到一般研究。

围绕知识这一核心问题,人们重新对人工智能的原理和方法进行了探索,并在知识获取、知识表示以及知识在推理过程中的利用等方面开始出现一组新的原理、工具和技术。

1977年,在第五届国际人工智能联合会(IJCAI)的会议上,费根鲍姆教授在一篇题为《人工智能的艺术:知识工程课题及实例研究》的特约文章中,系统的阐述了专家系统的思想,并提出了知识工程(KnowledgeEngineering)的概念。

费根鲍姆认为,知识工程是研究知识信息处理的学科,它应用人工智能的原理和方法,对那些需要专家知识才能解决的应用难题提供了求解的途径。

恰当的运用专家知识的获取、表示、推理过程的构成与解释,是设计基于知识的系统的重要技术问题。

至此,围绕着开发专家系统而开展的相关理论、方法、技术的研究形成了知识工程学科。

知识工程的研究使人工智能的研究从理论转向应用,从基于推理的模型转向基于知识的模型。

为了适应人工智能和知识工程发展的需要,在政府的大力支持下,日本于1982年开始了为期10年的“第五代计算机的研制计划”,即“知识信息处理计算机系统KIPS”,总共投资4.5亿美元。

它的目的是使逻辑推理达到数值运算那样快。

日本的这一计划形成了一股热潮,推动了世界各国的追赶浪潮。

美国、英国、欧共体、苏联等都先后制订了相应的发展计划。

随着第五代计算机的研究开发和应用,人工智能进入一个兴盛时期,人工智能界一派乐观情绪。

然而,随着专家系统应用的不断深入,专家系统自身存在的知识获取难、知识领域窄、推理能力弱、只能水平低、没有分布式功能、实用性差等等问题逐步暴露出来。

日本、美国、英国和欧洲所制订对那些针对人工智能的大型计划多数执行到20世纪80年代中期就开始面临重重困难,已经看出达不到预想的目标。

相关文档
最新文档