高中数学 必修五数列导学案 加课后作业及答案

合集下载

人教A版高二数学必修五第二章 数列 导学案(含答案,精排版) 2.3 等差数列的前n项和

人教A版高二数学必修五第二章 数列 导学案(含答案,精排版)  2.3  等差数列的前n项和

§2.3 等差数列的前n项和班级: .组名: . 姓名: .时间:年月日【本卷要求】:1.动脑思考2.听懂是骗人的,看懂是骗人的,做出来才是自己的3.该背的背,该理解的理解,该练习的练习,该总结的总结,勿懈怠!4.多做多思,孰能生巧,熟到条件反射,这样一是能见到更多的出题方式,二是能提高做题速度5.循环复习6.每做完一道题都要总结该题涉及的知识点和方法7.做完本卷,总结该章节的知识结构,以及常见题型及做法8.独立限时满分作答9.步骤规范,书写整洁10.明确在学习什么东西,对其中的概念、定律等要追根溯源,弄清来龙去脉才能理解透彻、应用灵活11.先会后熟:一种题型弄懂了,再多做几道同类型的,总结出这种题型的做法,直到条件反射【一分钟德育】是谁这些年来,在茫茫的人海中,是谁最关心你最疼爱你?在你最需要帮助的时候,是谁向你伸出援助之手?在你出门在外的时候,是谁总是牵挂着你惦念着你?是谁总是盼着你回家等着你吃饭?在你生病的时候,是谁最紧张最着急?在你最高兴的时候,是谁比你更高兴?在你最痛苦的时候,是谁比你更痛苦?在你最失落无助的时候,是谁来安慰你鼓励你?在你最孤独寂寞的时候,是谁来陪伴你?是谁对你的生命影响最大?【导读导思】自主学习、课前诊断先通读教材,画出本节课中的基本概念及物理规律,回答导学案预习中涉及的问题,独立完成,限时25分钟。

一、等差数列前n项和公式是什么?你能推导出来吗?它们什么时候用比较合适?二、等差数列前n项和有什么性质?题目中出现什么特征时使用?三、如何找到前n 项和最大值或最小值,以及是前几项?如何应用等差数列前n 项和二次式的轴对称性的性质?四、在等差数列的基础上,加绝对值,再求前n 项和,如何处理?五、涉及等差数列奇数项和偶数项和,一般如何处理?六、如何证明构造的新数列为等差数列?七、1-1,1,2n n n S n a S S n =⎧=⎨-≥⎩什么时候使用?以及如何使用?【知识小结】1.()()()1121212()22a n n n n n n n n n S na d a a nS d S n n S S na na S λ+-⎧=+⎪⎪+⎪=⎪⎪⎪⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪=+⎨ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎪⎛⎫⎪ ⎪⎪⎪==⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎩11中首项和公差涉及末项时使用常数项为0的n 的二次式,二次项系数等于公差的一半,求首项a =S 轴对称性求最值自创性质选择、填空时用涉及与的转换时使用n 可扩展为任意正整数,即使无意义时,也不影响结果2.常用技巧1. 用首项和公差表示题中出现的量2. 特殊值法3. 罗列法【巩固练习】选择题、填空题每题6分,解答题、计算题每题12分题型一、等差数列前n 项和公式的基本应用 1.已知等差数列{}n a 中, (1)131,,1522n a d S ==-=-,求n 及n a ; (2)11,512,1022n n a a S ==-=-,求d ; (3)524S =,求24a a +2.等差数列{a n }中,a 1+a 7=42, a 10-a 3=21, 则前10项的S 10等于( ) A 、 720 B 、257 C 、255 D 、不确定3.已知数列{a n }的前n 项和S n =2n 2-3n ,而a 1,a 3,a 5,a 7,……组成一新数列{C n },其通项公式为 ( ) A 、 C n =4n-3 B 、 C n =8n-1 C 、C n =4n-5 D 、C n =8n-9 题型二、等差数列的前n 项和性质的应用4.等差数列的前10项的和是310,前20项的和是1220,由此可以确定其前n 项和的公式吗?5.等差数列的前10项之和是100,前100项之和是10,求前110项之和。

最新【人教A版】高中数学必修五学案设计(含答案)第二章 2.1(一)

最新【人教A版】高中数学必修五学案设计(含答案)第二章 2.1(一)

最新人教版数学精品教学资料[学习目标] 1.理解数列及其有关概念.2.理解数列的通项公式,并会用通项公式写出数列的任意一项.3.对于比较简单的数列,会根据其前n项写出它的通项公式.知识点一数列的概念1.数列与数列的项按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.2.数列的表示方式数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.3.数列中的项的性质:(1)确定性;(2)可重复性;(3)有序性.思考1数列的项和它的项数是否相同?答案数列的项与它的项数是不同的概念.数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.思考2数列1,2,3,4,5,数列5,3,2,4,1与{1,2,3,4,5}有什么区别?答案数列1,2,3,4,5和数列5,3,2,4,1为两个不同的数列,因为二者的元素顺序不同,而集合{1,2,3,4,5}与这两个数列也不相同,一方面形式上不一致,另一方面,集合中的元素具有无序性.知识点二数列的分类(1)根据数列的项数可以将数列分为两类:①有穷数列——项数有限的数列.②无穷数列——项数无限的数列.(2)按照数列的每一项随序号变化的情况分类:①递增数列——从第2项起,每一项都大于它的前一项的数列; ②递减数列——从第2项起,每一项都小于它的前一项的数列; ③常数列——各项相等的数列;④摆动数列——从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 思考 判断正误(1)数列1,2,3,4,…,2n 是无穷数列( ) (2)由所有的自然数构成的数列均为递增数列( ) 答案 (1)× (2)×解析 (1)中的数列是有穷数列,共有2n 个数.(2) 中“由自然数构成的数列”是否递增,取决于这些自然数排列的顺序,未必全是递增的,如2,1,3,4,5……并不是递增数列. 知识点三 数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的通项公式.思考1 数列的通项公式有什么作用?答案 (1)可以求得这个数列的任一项,即可以根据通项公式写出数列;(2)可以确定这个数列是有穷数列还是无穷数列,还可以知道这个数列是递增(减)数列、摆动数列,还是常数列;(3)可以判断一个数是不是数列中的项.思考2 数列{a n }的通项公式a n =-58+16n -n 2,则( ) A .{a n }是递增数列 B .{a n }是递减数列 C .{a n }先增后减,有最大值 D .{a n }先减后增,有最小值 答案 C解析 易于看出a n 是关于n 的二次函数,对称轴为n =8,故{a n }先增后减,有最大值.题型一 数列的概念与分类例1 (1)下列四个数列中,既是无穷数列又是递增数列的是( ) A .1,12,13,14,…B .sin π7,sin 2π7,sin 3π7,…C .-1,-12,-14,-18,…D .1,2,3,…,21(2)设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a 的取值范围是( )A .(94,3)B .[94,3) C .(1,3) D .(2,3)答案 (1)C (2)D解析 (1)中,A 是递减数列,B 是摆动数列,D 是有穷数列,故选C. (2)中,结合函数的单调性,要证{a n }递增,则应有 ⎩⎪⎨⎪⎧3-a >0,a >1,a 7=(3-a )×7-3<a 8=a8-6,解得2<a <3,选D.反思与感悟 (1)有穷数列与无穷数列:判断给出的数列是有穷数列还是无穷数列,只需观察数列是有限项还是无限项.若数列含有限项,则是有穷数列,否则为无穷数列.(2)数列的单调性:若满足a n <a n +1,则是递增数列;若满足a n >a n +1,则是递减数列;若满足a n =a n +1,则是常数列;若a n 与a n +1的大小不确定时,则是摆动数列. 跟踪训练1 已知下列数列: (1)2 000,2 004,2 008,2 012; (2)0,12,23,…,n -1n ,…;(3)1,12,14,…,12n -1,…;(4)1,-23,35,…,(-1)n -1·n 2n -1,…;(5)1,0,-1,…,sin n π2,…; (6)3,3,3,3,3,3.其中有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是______,摆动数列是________.(将正确答案的序号填在横线上) 答案 (1)(6) (2)(3)(4)(5) (1)(2) (3) (6)(4)(5)题型二 观察法写数列的一个通项公式例2 根据数列的前几项,写出数列的一个通项公式. (1)23,415,635,863,…; (2)12,2,92,8,252,…; (3)-1,2,-3,4,…; (4)2,22,222,2 222,….解 (1)分子均为偶数,分母分别为1×3,3×5,5×7,7×9,…是两个相邻奇数的乘积. 故a n =2n(2n -1)(2n +1).(2)将分母统一成2,则数列变为12,42,92,162,252,…,其各项的分子为n 2,∴a n =n 22.(3)该数列的前4项的绝对值与序号相同,且奇数项为负,偶数项为正,故a n =(-1)n ·n . (4)由9,99,999,9 999,…的通项公式可知,所求通项公式为a n =29(10n -1).反思与感悟 (1)用观察归纳法写出一个数列的通项公式,体现了由特殊到一般的思维规律,具体可参考以下几个思路:①先统一项的结构,如都化成分数、根式等.②分析这一结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的关系式. ③对于符号交替出现的情况,可先观察其绝对值,再以(-1)k 处理符号. ④对于周期数列可以考虑拆成几个简单数列之和的形式或利用周期函数来解决. (2)熟记一些基本数列的通项公式,如: ①数列-1,1,-1,1…的通项公式是a n =(-1)n . ②数列1,2,3,4,…的通项公式是a n =n . ③数列1,3,5,7,…的通项公式是a n =2n -1. ④数列2,4,6,8,…的通项公式是a n =2n . ⑤数列1,2,4,8,…的通项公式是a n =2n -1.⑥数列1,4,9,16,…的通项公式是a n =n 2.跟踪训练2 已知数列的前几项,写出下面数列的一个通项公式. (1)1,3,7,15,31,…; (2)4,44,444,4 444,…;(3)-114,329,-5316,7425,-9536,…;(4)2,-45,12,-411,27,-417,…;(5)1,2,1,2,1,2,…. 解 答案不唯一.(1)观察发现各项分别加上1后,数列变为2,4,8,16,32,…,新数列的通项为2n ,故原数列的通项公式为a n =2n -1.(2)各项乘94,变为9,99,999,…,各项加上1后,数列变为10,100,1 000,…,新数列的通项为10n ,故原数列的通项公式为a n =49(10n -1).(3)所给数列有这样几个特点: ①符号正、负相间 ②整数部分构成奇数列;③分母为从2开始的自然数的平方; ④分子依次大1.综合这些特点写出表达式,再化简即可. 由所给的几项可得数列的通项公式为:a n =(-1)n⎣⎢⎡⎦⎥⎤(2n -1)+n (n +1)2,所以a n =(-1)n2n 3+3n 2+n -1(n +1)2.(4)数列的符号规律是正、负相间,使各项分子为4,数列变为42,-45,48,-411,…,再把各分母分别加上1,数列又变为43,-46,49,-412,…,所以a n =4×(-1)n +13n -1.(5)可写成分段函数形式:a n =⎩⎪⎨⎪⎧1,n 为奇数,n ∈N *,2,n 为偶数,n ∈N *. 题型三 通项公式的应用例3 已知数列{a n }的通项公式为a n =1n (n +2)(n ∈N *),则(1)计算a 3+a 4的值;(2)1120是不是该数列中的项?若是,应为第几项?若不是,说明理由. 解 (1)∵a n =1n (n +2),∴a 3=13×5=115,a 4=14×6=124,∴a 3+a 4=115+124=13120.(2)若1120为数列{a n }中的项,则1n (n +2)=1120, ∴n (n +2)=120, ∴n 2+2n -120=0, ∴n =10或n =-12(舍), 即1120是数列{a n }的第10项. 反思与感悟 (1)利用数列的通项公式求某项的方法数列的通项公式给出了第n 项a n 与它的位置序号n 之间的关系,只要用序号代替公式中的n ,就可以求出数列的相应项.(2)判断某数值是否为该数列的项的方法先假定它是数列中的第n 项,然后列出关于n 的方程.若方程解为正整数,则是数列的一项;若方程无解或解不是正整数,则不是该数列的一项. 跟踪训练3 已知数列{a n }的通项公式为a n =-n 2+n +110. (1)20是不是{a n }中的一项? (2)当n 取何值时,a n =0.解 (1)令a n =-n 2+n +110=20, 即n 2-n -90=0,∴(n +9)(n -10)=0, ∴n =10或-9(舍).∴20是数列{a n }中的一项,且为数列{a n }中的第10项. (2)令a n =-n 2+n +110=0, 即n 2-n -110=0,∴(n -11)(n +10)=0, ∴n =11或n =-10(舍), ∴当n =11时,a n =0.1.下列数列的关系是( )(1)1,4,9,16,25 (2)25,16,9,4,1 (3)9,4,1,16,25 A .都是同一个数列 B .都不相同C .(1)、(2)是同一数列D .(2)、(3)是同一数列 答案 B解析 三个数列中的数字相同,但排列的顺序不同,故三个数列均不相同. 2.下列数列中,是有穷数列的是( )(1)1,1,1,1,…;(2)6,5,4,3,…;(3)110,18,16,14,12;(4)2,-2,2,-2.A .(2),(3)B .(2),(3),(4)C .(1),(2),(3),(4)D .(3),(4)答案 D解析 (1)、(2)是无穷数列,(3)、(4)是有穷数列. 3.数列{a n }满足a n +1=a n +1,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列答案 A解析 ∵a n +1-a n =1>0,∴{a n }为递增数列.4.数列-1,85,-157,249,…的一个通项公式是( )A .a n =(-1)n·n 2+n2n +1B .a n =(-1)n·n 2+32n -1C .a n =(-1)n·(n +1)2-12n -1D .a n =(-1)n ·n (n +2)2n +1答案 D解析 数列的奇数项为负,偶数项为正,分母是3、5、7、9,可表示为2n +1,分子可调整为1×3,2×4,3×5,4×6,…故通项a n =(-1)nn (n +2)2n +1.5.已知数列1,3,5,7,…,2n -1,…,则35是它的( ) A .第28项 B .第24项 C .第23项 D .第22项答案 C解析 数列的通项公式为a n =2n -1.令2n -1=35,∴n =23.6.已知数列{a n }的前4项分别为2,0,2,0,…,则下列各式不可以作为数列{a n }的通项公式的一项是( ) A .a n =1+(-1)n +1B .a n =2sinn π2C .a n =1-cos n πD .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数答案 B解析 将n =1,2,3,4代入各选择项,验证得a n =2sinn π2不能作为通项公式.1.与集合中元素的性质相比较,数列中的项也有三个性质:(1)确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的. (2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的“数”有关,而且与这些“数”的排列次序也有关. 2.观察法写通项公式的注意事项据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.3.并非每一个数列均有通项公式,如2的不同近似值,依不同的近似值,可得数列1,1.4,1.41,1.414,…,便无通项公式,有些数列通项公式也不唯一. 4.通项公式的应用.一、选择题1.若数列{a n }满足a n =2n ,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .摆动数列答案 A解析 a n +1-a n =2n +1-2n =2n >0,∴a n +1>a n ,即{a n }是递增数列. 2.数列{a n }:-3,3,-33,9,…的一个通项公式是( ) A .a n =(-1)n 3n (n ∈N *) B .a n =(-1)n 3n (n ∈N *) C .a n =(-1)n+13n (n ∈N *) D .a n =(-1)n +13n (n ∈N *)答案 B解析 把前四项统一形式为-3,9,-27,81,可知它的一个通项公式为a n =(-1)n ·3n . 3.已知数列-1,14,-19,…,(-1)n 1n 2,…,则它的第5项的值为( )A.15 B .-15C.125 D .-125答案 D解析 易知,数列的通项公式为(-1)n ·1n 2,当n =5时,该项为(-1)5·152=-125.4.已知数列的通项公式为a n =⎩⎪⎨⎪⎧3n +1(n 为奇数),2n -2(n 为偶数),则a 2a 3等于( )A .20B .28C .0D .12答案 A解析 a 2=2×2-2=2,a 3=3×3+1=10, ∴a 2a 3=2×10=20.5.已知数列{a n }的通项公式是a n =n -1n +1,那么这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列答案 A解析 a n +1-a n =n n +2-n -1n +1=2(n +1)(n +2)>0,∴{a n }是递增数列.6.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 答案 B解析 令2n 2-3=125得n =8或n =-8(舍),故125是第8项.7.已知数列{a n }的通项公式为a n =25-2n ,下列各数中,不是{a n }的项的是( ) A .1 B .-1 C .2 D .3 答案 C解析 ∵a 12=1,a 13=-1,a 11=3,故选C. 8.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021D.2223 答案 C解析 由数列的前4项可知,数列的一个通项公式为a n =2n 2n +1,当n =10时,a 10=2×102×10+1=2021. 二、填空题9.数列{a n }的通项公式a n =1n +n +1,则10-3是此数列的第________项.答案 9 解析 令1n +n +1=10-3,即n +1-n =10-3,∴n =9.10.如图1是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图2中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.答案 n解析 ∵OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…,∴a 1=1,a 2=2,a 3=3,…,a n =n .11.已知{a n }是递增数列,且对任意n ∈N *,都有a n =n 2+λn 恒成立,则实数λ的取值范围是________.答案 (-3,+∞)解析 若a n =n 2+λn ,则a n +1-a n =(n +1)2+λ(n +1)-(n 2+λn )=2n +1+λ. ∵{a n }递增,∴2n +1+λ>0对任意n ∈N *成立,即λ>-2n -1对任意n ∈N *成立,又-2n -1的最大值为-3,∴λ>-3.三、解答题12.写出下列数列的一个通项公式.(1)-11+1,14+1,-19+1,116+1,…; (2)2,3,5,9,17,33,…;(3)12,25,310,417,526,…; (4)1,43,2,165,…; (5)-13,18,-115,124,…; (6)2,6,12,20,30,….解 (1)奇数项为负,偶数项为正,各项分子都是1,分母是n 2+1,所以a n =(-1)n ·1n 2+1. (2)a 1=2=20+1,a 2=3=2+1,a 3=5=22+1,a 4=9=23+1,a 5=17=24+1,a 6=33=25+1,…,所以a n =2n -1+1.(3)a 1=12=112+1,a 2=25=222+1,a 3=310=332+1,a 4=417=442+1,…, 所以a n =n n 2+1. (4)a 1=1=22,a 2=43,a 3=2=84,a 4=165,…, 所以a n =2n n +1. (5)a 1=-13=-11×3,a 2=18=12×4, a 3=-115=-13×5,a 4=124=14×6,…, 所以a n =(-1)n ·1n (n +2). (6)a 1=2=1×2,a 2=6=2×3,a 3=12=3×4,a 4=20=4×5,a 5=30=5×6,…所以a n =n (n +1).13.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式;(2)88是不是数列{a n }中的项?解 (1)设a n =kn +b ,则⎩⎪⎨⎪⎧ a 1=k +b =2,a 17=17k +b =66,解得⎩⎪⎨⎪⎧ k =4,b =-2.∴a n =4n -2.(2)令a n =88,即4n -2=88,解得n =22.5∉N *,∴88不是数列{a n }中的项.。

高中数学必修五数列知识点+练习含答案解析(非常详细)

高中数学必修五数列知识点+练习含答案解析(非常详细)

第一部分必修五数列知识点整理第二章 数列1、数列的定义及数列的通项公式:①. ()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值②i.归纳法若00S =,则n a 不分段;若00S ≠,则n a 分段iii. 若1n n a pa q +=+,则可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +iv. 若()nn S f a =,先求1a 11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式例如:21n n S a =+先求1a ,再构造方程组:112121n n n n S a S a ++=+⎧⎨=+⎩⇒(下减上)1122n n n a a a ++=-2.等差数列:① 定义:1n n a a +-=d (常数),证明数列是等差数列的重要工具。

② 通项0d ≠时,n a 为关于n 的一次函数;d >0时,na 为单调递增数列;d <0时,n a 为单调递减数列。

③ 前n 1(1)2n n na d -=+,0d ≠时,n S 是关于n 的不含常数项的一元二次函数,反之也成立。

④ 性质:ii. 若{}n a 为等差数列,则m a ,m k a +,2m k a +,…仍为等差数列。

iii. 若{}n a 为等差数列,则n S ,2n n S S -,32n n S S -,…仍为等差数列。

iv 若A 为a,b 的等差中项,则有2a bA +=。

3.等比数列: ① 定义:1n na q a +=(常数),是证明数列是等比数列的重要工具。

② 通项时为常数列)。

③.前n 项和需特别注意,公比为字母时要讨论.④.性质:ii.{}仍为等比数列则为等比数列 ,,,,2k m k m m n a a a a ++,公比为k q 。

iii. {}232,,,,n n n n n n a S S S S --K 为等比数列则S 仍为等比数列,公比为n q 。

人教A版高二数学必修五导学案及答案全套高二数学必修五导学案:课程整合《数列求和》第1课时

人教A版高二数学必修五导学案及答案全套高二数学必修五导学案:课程整合《数列求和》第1课时

第二章数列课程整合1数列乞降共两课时** 学习目标 **1.掌握数列乞降的方法;2.能依照和式的特点采纳相应的方法乞降.** 要点精讲 **1.公式法:等差、等比数列乞降公式;nk2 12 22 32 n 2 1n( n 1)(2n 1) ,公式:k 1 6n2 k3 13 23 n 31n( n 1) 等。

k 122.错位相减法:若a n 是等差数列,b n是等比数列,则求数列a n b n的前 n 项和 S n,常用错位相减法。

3.裂项相消法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项。

4.分组乞降法:把一个数列分成几个可以直接乞降的数列。

5.并项乞降法:特点是数列的前后两项和或差可以组成一个我们熟悉的数列形式6.倒序相加法:近似于等差数列前 n 项和公式的推导方法.** 模范解析 **例 1.乞降:S 1 (1 q) (1 q q2 ) (1 q q2 q n ) .n例 2.( 1)已知数列a n 满足 a n1,求 S n。

n n 1( n 1 n)( 2)已知数列 a 的通项公式 a1 ,求 S 。

n2n n 2n n( 3)已知数列 a 的通项公式 a4n2 ,求 S 。

n n (2n 1)(2n 1) n( 4)乞降:S n 11 1 1。

1 2 1 2 3 1 2 3 n例 3 .( 1)乞降:1 2 2 33 4(1)n nS n( 2)乞降: S 1 3 57 9( 1)n (2n1)n( 3)已知函数对所有 x R , f (x)f (1 x) 1 。

新 课 标第一 网乞降: Sf (0) f ( 1 ) f ( 2 )f (n2 )f (n 1) f (1) 。

n n nn例 4.在等差数列 { a n } 中 ,首项 a 11,数列 { b n } 满足 b n(1) a n ,且 b 1b 2 b 3 1 。

264( 1)求数列 { a n } 的通项公式;( 2)求证: a 1b 1 a 2b 2a nb n 2 。

【B版】人教课标版高中数学必修五导学案1-数列-新版

【B版】人教课标版高中数学必修五导学案1-数列-新版

§2.1 数列学习目标:了解数列的概念,体会数列是一种特殊函数,能根据数列的前几项写出简单数列的通项公式.类比函数理解数列的几种表示方法(列表、图象、通项公式等),能根据项数多少、数列的性质对数列分类.了解递推公式是给出数列的一种方法.掌握根据递推公式写出数列的前n 项的技巧.会利用一些简单的递推公式求出数列的通项.学习重难点:数列概念;数列的表示方法;递推公式.知识要点1、数列的定义:按照一定 排列的一列数叫数列.数列中的 都叫做这个数列的项.各项依次叫做这个数列的第1项(或首 项),第2项, …,第n 项, …数列的一般形式可以写成: ,,,,,321n a a a a ,其中n a 是数列的 ,叫做数列的 ,我们通常把一般形式的数列简记作 。

2、数列的表示:(1)列举法:将每一项一一列举出来表示数列的方法.(2)图像法:由(n,a n )点构成的一些孤立的点;(3)解析法:用通项公式a n =f(n)(*∈N n )表示.通项公式:如果数列{n a }中的第n 项n a 与n 之间的关系可以用一个公式来表示,则称此公式为数列的 .数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.思考与讨论:①数列与数集有什么区别?与集合中元素的性质相比较,数列中的项也有三个性质;确定性:一个数在不在数列中,即一个数是不是数列中的项是确定的。

可重复性:数列中的数可以重复。

有序性:一个数列不仅与构成数列的“数”有关,而且与这些数的排列次序也有关。

②是否所有的数列都有通项公式?③{n a }与n a 有什么区别?(4)递推公式法:用前n 项的值与它相邻的项之间的关系表示各项. 递推公式也是求数列的一种重要的方法,但并不是所有的数列都有递推公式。

3、数列与函数从函数的观点看,数列可以看作是一个定义域为 (或它的 )的函数)(n f a n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值.数列的 是相应的函数的解析式,它的图像是 。

高中必修五导学案 第二章 数列(含答案)

高中必修五导学案  第二章  数列(含答案)

第二章 数列§2.1数列的概念与简单表示法【学习目标】1. 理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式;2. 了解数列的递推公式,明确递推公式与通项公式的异同;会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法.【学习过程】1、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?2、新课导学探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式. 反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?5.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.6.通项公式法:试试:上图中每层的钢管数n a 与层数n 之间关系的一个通项公式是 .7.图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y 轴的 侧,而点的个数取决于数列的 .从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.8. 递推公式法:递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.试试:上图中相邻两层的钢管数n a 与1n a +之间关系的一个递推公式是 .9. 列表法:试试:上图中每层的钢管数n a 与层数n 之间关系的用列表法如何表示?反思:所有数列都能有四种表示方法吗?【学习评价】1.数列{}n a ,()n a f n =是一个函数,则它的定义域为( ) A. 非负整数集 B. 正整数集C. 正整数集或其子集D. 正整数集或{}1,2,3,4,,n2.已知数列{}n a ,1()(2)n a n N n n +=∈+,那么1120是这个数列的第( )项. A. 9 B. 10 C. 11 D. 12 3.数列,10,6,3,1……的一个通项公式是( ).A.12+-n n B.2)1(+n n C.2)1(-n n D.321-+n 4.以下通项公式中,不是数列3,5,9,……的通项公式的是( ) A 21n n a =+ B 23n a n n =-+C 21n a n =+D 1.5(2)(3)5(1)(3) 4.5(1)(2)n a n n n n n n =-----+-- 5.已知数列{}n a 满足12a =,111nn na a a ++=-(*n ∈N ),则3a 的值为( ) A. 12-B. 12C. 13-D. 136.在数列{}n a 中,12n n n a a a ++=+,122,5a a ==,则6a 的值是 ( ) A.3- B.11- C.5- D.19 7.正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列}{n a 有以下结论,①155=a ;②620a =;③数列}{n a 的递堆公式),(11*+∈++=N n n a a n n 其中正确的是( )A .①②B .①③C .②③D .①②③8.记数列{}n a 的前n 项和为n S ,且)1(2-=n n a S ,则=2a AA .4B .2C .1D .2-9.{}n a 满足1111,1,2n n a a a -==-则9a 的值为 ( ) A.12B.1- C .2 D.2- 10.试探究下列一组数列的基本规律:0,2,6,14,30,…,根据规律写出第6个符合规律的数,这个数是( )A.60B.62C.64D.94【总结与提升】※ 学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项.3. 数列的递推公式. ※ 知识拓展数列可以看作是定义域为正整数集的特殊函数. n 刀最多能将比萨饼切成几块? 意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n 刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n 刀最多与前n -1刀的切痕都各有一个不同的交点,因此第n 刀的切痕最多被前n -1刀分成n 段,而每一段则将相应的一块饼分成两块. 也就是说n 刀切下去最多能使饼增加n 块. 记刀数为1时,饼的块数最多为1a ,……,刀数为n 时,饼的块数最多为n a ,所以n a =1n a n -+.由此可求得n a =1+2)1(+n n .、§2.2等差数列【学习目标】1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.【学习过程】1、课前准备(预习教材P36 ~ P39 ,找出疑惑之处)复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?2、新课导学※学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征?① 0,5,10,15,20,25,…② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第项起,每一项与它一项的等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的,常用字母表示.2.等差中项:由三个数a,A,b组成的等差数列,这时数叫做数和的等差中项,用等式表示为A=探究任务二:等差数列的通项公式问题2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+43a a -= ,即:431a a d a =+=+……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a . .【学习评价】1.已知等差数列:5,3,1,1,---.则下列不是该数列的项的是 ( )A.11B.29n -C.45n -D.522.{an}是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .24B .27C .30D .33 3.在正整数100至500之间能被11整除的个数为( )A .34B .35C .36D .374.等差数列{an}中,已知a 1=-6,a n =0,公差d ∈N*,则n (n ≥3)的最大值为( )A .5B .6C .7D .8 5.设{a n }为等差数列,则下列数列中,成等差数列的个数为( )①{a n 2} ②{pa n } ③{pa n +q } ④{na n }(p 、q 为非零常数)A .1B .2C .3D .4 6.已知c b 、、a 成等差数列,则二次函数c bx ax ++=2y 2的图像与x 轴交点的个数是( )A .0B .1C .2D .1或27.由1a =1,131nn n a a a +=+给出的数列{}n a 的第34项为( )A 、10334 B 、100 C 、1001 D 、1041 8.已知数列的通项公式是()()3122n n n a n n ⎧+⎪=⎨-⎪⎩是奇数是偶数,则23a a ⋅等于( )A.70B.28C.20D.89.已知数列{}n a ,25n a n =-+,它的前n 项的和最大时,n 的值为( )A .2B .3C .12D .1310.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列【总结与提高】※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).3. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.4. 在等差数列中,公差m na a d m n-=-.※ 知识拓展1. 等差数列通项公式为1(1)n a a n d =+-或()n m a a n m d =+-. 分析等差数列的通项公式,可知其为一次函数,图象上表现为直线1(1)y a x d =+-上的一些间隔均匀的孤立点.2. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++3.判别一个数列是否等差数列的三种方法,即: (1)1n n a a d +-=;(2)(0)n a pn q p =+≠; (3)2n S an bn =+.§2.3 等差数列的前n 项和【学习目标】1. 掌握等差数列前n 项和公式及其获取思路;2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.【学习过程】1、课前准备(预习教材P 42 ~ P 44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?2、新课导学 ※ 学习探究探究:等差数列的前n 项和公式问题:1. 计算1+2+…+100=?2. 如何求1+2+…+n =?新知:数列{}n a 的前n 项的和:一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S =小结:1. 用1()2n n n a a S +=,必须具备三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .等差数列前n 项和公式就是一个关于11n a a n a n d 、、或者、、的方程,已知几个量,通过解方程,得出其余的未知量.3.数列通项n a 和前n 项和n S 关系为n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a . 等差数列前项和的最大(小)值的求法.(1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值;当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.【学习评价】1.已知等差数列{a n }中,a 1=1,d=1,则该数列前9项和S 9等于( ) A.55 B.45 C.35 D.252.已知等差数列{an}的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .180B .-180C .90D .-903.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为( )A .9B .10C .19D .294. 等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列{nS n}的前11项和为 ( )A.-45B.-50C.-55D.-66 5.将棱长相等的正方体按下图所示的形状摆放,从上往下依次为第1层,第2层,第3层,……. 则第2008层正方体的个数是( ).A .4011B .4009C .2017036D .2009010 6.已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )A.18B.27C.36D.457.某乡建设线路,有48根电线杆,最近一根竖直离电线杆堆放处1000m ,以后每隔50m 竖一根,如果一辆车一次能运6根,全部运完返回,这辆车共走了( ).A .18400mB .18450mC .36800mD .36900m 8.等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d .9. 数列{a n },{b n }满足a n b n =1, a n =n 2+3n +2,则{b n }的前10次之和为 10.已知整数对排列如: ()()()()()()()1,1,1,2,2,1,1,32,2,3,1,1,4,()2,3,()()3,2,4,1,()()1,5,2,4,,则第60个整数对是_______________.【总结与提升】※ 学习小结1. 等差数列前n 项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个. ※ 知识拓展1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .3.等差数列奇数项与偶数项的性质如下: (1)若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;(2)若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;S n 偶奇=.…… ……§2.4等比数列【学习目标】1.理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2.能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3.体会等比数列与指数函数的关系.4.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;5. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.【学习过程】1、课前准备(预习教材P 48 ~ P 51,找出疑惑之处) 复习1:等差数列的定义?复习2:等差数列的通项公式n a = , 等差数列的性质有:2、新课导学 ※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n aa -= (q ≠0)2. 等比数列的通项公式:21a a = ; 3211()a a q a q q a === ;24311()a a q a q q a === ; … …∴ 11n n a a q a -==⋅ 等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:【学习评价】1. 设{}n a 是由正数组成的等比数列,且公比不为1,则18a a +与45a a +的大小关系为( ) A .1845a a a a +>+ B .1845a a a a +<+ C . 1845a a a a +=+ D .与公比的值有关 2.已知{}n a 是等比数列,且0n a >,243546225a a a a a a ++=,那么35a a +=( ) A . 10 B . 15 C . 5 D .6 3.设{}n a 是正数组成的等比数列,公比2q =,且30123302a a a a =,那么36930a a a a =( )A . 102 B . 202 C . 162 D .1524.三个数成等比数列,其和为44,各数平方和为84,则这三个数为( ) A .2,4,8 B .8,4,2 C .2,4,8,或8,4,2 D .142856,,333- 5.等比数列{}n a 的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列1{}n a ,由1{}na 的前n 项的和是( ) A .15 B . 1n q S C .1n S q- D .n q S7.一个直角三角形三边的长成等比数列,则( ) A .三边边长之比为3:4:5,B .三边边长之比为,CD.较大锐角的正弦为12, 8.等比数列1a 2a 3a 的和为定值m(m>0),且其公比为q<0,令123t a a a =,则t 的取值范围是( )A . 3[,0)m -B . 3[,)m -+∞C . 3(0,]mD .3(,]m -∞ 9.若数列是等比数列,下列命题正确的个数是( ) ①2{}n a ,2{}n a 是等比数列 ②{lg }n a 成等差数列 ③1{}na ,{}n a 成等比数列 ④{}n ca ,{}n a k ±(0)k ≠成等比数列。

高中数学必修5课后习题答案(共10篇)

高中数学必修5课后习题答案(共10篇)

高中数学必修5课后习题答案(共10篇)高中数学必修5课后习题答案(一): 人教版高一数学必修5课后习题答案课本必修5,P91练习2,P93习题A组3和B组3,全部都是线性规划问题, 生产甲乙两种适销产品,每件销售收入分别为3000元,2023元。

甲乙产品都需要A、B两种设备上加工,每台A、B设备上加工1件甲设备工时分别为1h,2h,加工乙设备工时2h,1h,A、B两种设备每月有效使用台时数分别为400h和500h,如何安排生产可使收入最大?2.电视台应某企业之约播放两套电视剧,其中,连续剧甲每次播放时间为80分钟,其中广告时间为1分钟,收视观众为60万;连续剧乙每次播放时间为40分钟,广告时间1分钟,收视观众20万。

已知和电视台协议,要求电视台每周至少播放6分钟广告,二电视台每周只能为该企业提供不多于320分钟的节目时间。

如果你是电视台制片人,电视台每周应播映两套连续剧各多少次,才能获得更高的收视率?P91练习 2 答案:解设每月生产甲商品x件,生产乙商品y件,每月收入z元,目标函数z=3X+2y,需要满足的条件是:x+2y≤400 2X+y≤500 x≥0 y≥0作图略作直线z=3x+2y,当直线经过A点时,z 取最大值解方程组{x+2y=400 2x+y=500 可取点A 《200,100》所以z的最大值为800高中数学必修5课后习题答案(二): 高一人教版数学必修5课后习题答案知道下列各项·写出同项公式1,√2/2,1/2,√2/4 1/4关于数列问题1,√2/2=1*√2/2,1/2=1*(√2/2)^2,√2/4=1*(√2/2)^31/4=1*(√2/2)^4……所以是以首项为1,公比为√2/2的等比数列An=(√2/2)^(n-1)高中数学必修5课后习题答案(三): 高中数学必修5课后习题1.1A组第一第二题答案要有步骤解三角形A=70° B=30° c=20cm b=26cm c=15cm C=23° a=15cm,b=10cm,A=60° b=40cm,c=20cm,C=25°1.180°--70° --30° =80°所以角C=80°然后用正弦定理2.还是正弦定理3.还是正弦定理4.还是正弦定理很简单的正弦定理a比上sinA=b比上sinB=c比上sinCa是边长,A是角高中数学必修5课后习题答案(四): 数学必修五课后习题答案数学必修五第五页(也可能是第四页)课后习题答案,要有解题过程,大神们呐,帮帮我吧参考书里没有解题过程!2在三角形ABC中,已知下列条件,解三角形(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°画图题2个题做法基本一样比如第1小题,先根据已知角度画出已知角B,然后以角点B为圆心,以20为半径画圆弧,和B的某一线相交一点C,再以该点为圆心,以11cm为半径画圆弧,和B角的另一角边相交,这样得到A点,到此,三角形就画好了.高中数学必修5课后习题答案(五): 数学必修5练习x^2-(2m+1)x+m^2+m分析x -(2m+1)x+m +m高中数学必修5课后习题答案(六): 高一数学必修5解三角形正弦定理课后练习B组第一题(1) a=2RsinA,b=2RsinB,c=2RsinC; (2) sinA :sinB :sinC = a :b :c;高中数学必修5课后习题答案(七): 高二数学必修5答案,人民教育出版社的,习题2—3A的练习题,P51页,急用,我的同学瞧不起我,我非要做个全对不可,可我数学一点都不好,我不想就这样被同学踩在脚底下,希望谁有答案,帮忙写一下,拜托了,我先拿30分,不够的话,再说.看看这个,参考参考.高中数学必修5课后习题答案(八): 高中数学必修5第三章不等式复习参考题答案【高中数学必修5课后习题答案】有本书叫《中学教材全解》,是陕西出版社的金星教育那上面有详细的解答准确度很高同时发几个网址,看有没有你需要的高中数学必修5复习题及答案(A组)人教版高中数学必修模块(1-5)全部精品课件集高中数学必修5课后习题答案(九): 高一数学作业本必修5的题目..11.(1)已知x>0,y>0.且(1/x)+(9/y)=1.求x+y的最大值.(2)已知x【高中数学必修5课后习题答案】11.(1) (1/x+1/y)*(x+y)=1+9+9x/y+y/x=10+9x/y+y/x9x/y+y/x>=2√9x/y*y/x1/x+9/y>=16(2)y=4x-5+1/(4x-5)+3>=2√(4x-5)*1/(4x-5)+3>=5(3)跟第一题是一样的,就是除以xy,答案是18高中数学必修5课后习题答案(十): 人教版数学必修5习题2.2B组1答案求高中数学必修5的40页B组第一题的答案.(1)从表看出,基本是一个等差数列,d=2023,a2023=a2023+8d=0.26x10^5,在加上原有的9x10^5,答案为:9.26x10^5.(2)2023年底,小于8x10^5hm略。

必修五第二章数列导学案加章末检测

必修五第二章数列导学案加章末检测
式中不 是数列 1, 1 ,1, 1 ,1, 1 ,…的通项公式的是( . A. an (1)n B. an (1)n1 C. an (1)n1 ) D. an 3n 3 D. an
【自学评价】
1.数列的定义:___________________叫做数列(sequence of number).
【例 3】在数列 {an } 中,a1=2,a17=66,通项公式是项数 n 的一次函数. (1)求数列 {an } 的通项公式; (2)88 是否是数列 {an } 中的项.
叫做这个数列的通项公式(the formula of general term). 注意: (1)并不是所有数列都能写出其通项公式,如数列 1,1.4,1.41, 1.414,…; (2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是 a n 也可以是 a n | cos
第二章
数列的概念及其通项公式 【学习导航】
数列也可根据其通项公式画出其对应图象. 6.数列的表示形式:_______________________________________.
【精典范例】
【例1】 已知数列的第 n 项 an 为 2n 1 ,写出这个数列的首项、第 2 项和第 3 项. 【例 2】根据下面数列 an 的通项公式,写出它的前 5 项,并作出它的图象:
n为奇数 1, 1,n为偶数

【注意】⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不
同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 思考:简述数列与数集的区别.______________________________. 2.数列的项:________都叫做这个数列的项(term). 各项依次叫做这个数列的第 1 项(或首项) ,第 2 项,…,第 n 项,…. 3.数列的分类: 按项分类:有穷数列(项数有限) ;无穷数列(项数无限). 4.数列的通项公式:如果数列 an 的第 n 项与 之间的关系可以用一个公式来表示,那么这个公式就
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五数列导学案§2.1 数列的概念及简单表示(一)【学习要求】1.理解数列的概念,认识数列是反映自然规律的基本数学模型. 2.探索并掌握数列的几种简单表示法.3.能根据数列的前几项写出数列的一个通项公式.【学法指导】1.在理解数列概念时,应区分数列与集合两个不同的概念. 2.类比函数的表示方法来理解数列的几种表示方法.3.由数列的前几项,写出数列的一个通项公式是本节的难点之一,突破难点的方法:把序号标在项的旁边,观察项与序号的关系,从而写出通项公式. 【知识要点】1.按照一定顺序排列的一列数称为 ,数列中的每一个数叫做这个数列的 .数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做___项),排在第二位的数称为这个数列的第2项,……,排在第n 位的数称为这个数列的第 项. 2.数列的一般形式可以写成a 1,a 2,…,a n ,…,简记为 .3.项数有限的数列叫做 数列,项数无限的数列叫做_____数列. 4.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的 公式.【问题探究】探究点一 数列的概念问题 先看下面的几组例子:(1)全体自然数按从小到大排成一列数:0,1,2,3,4,…; (2)正整数1,2,3,4,5的倒数排成一列数:1,12,13,14,15;(3)π精确到1,0.1,0.01,0.001,…的不足近似值排成一列数:3,3.1,3.14,3.141,…; (4)无穷多个1排成一列数:1,1,1,1,1,…;(5)当n 分别取1,2,3,4,5,…时,(-1)n 的值排成一列数:-1,1,-1,1,-1,…. 请你根据上面的例子尝试给数列下个定义.探究 数列中的项与数集中的元素进行对比,数列中的项具有怎样的性质? 探究点二 数列的几种表示方法问题 数列的一般形式是什么?回忆一下函数的表示方法,想一想除了列举法外,数列还有哪些表示方法? 探究 下面是用列举法给出的数列,请你根据题目要求补充完整. (1)数列:1,3,5,7,9,…①用公式法表示:a n = ; ②用列表法表示:(2)数列:1,12,13,14,15,…①用公式法表示:a n = . ②用列表法表示:③用图象法表示为(在下面坐标系中绘出): 探究点三 数列的通项公式问题 什么叫做数列的通项公式?谈谈你对数列通项公式的理解?探究 根据所给数列的前几项求其通项公式时,需仔细观察数列的特征,并进行联想、转化、归纳,同时要数列通项公式 -1,1,-1,1,… a n = 1,2,3,4,… a n = 1,3,5,7,… a n = 2,4,6,8,… a n = 1,2,4,8,… a n = 1,4,9,16,… a n = 1,12,13,14,… a n =【典型例题】例1 根据数列的通项公式,分别写出数列的前5项与第2 012项. (1)a n =cosn π2; (2)b n =11×2+12×3+13×4+…+1nn +1. 小结 由数列的通项公式可以求出数列的指定项,要注意n =1,2,3,….如果数列的通项公式较为复杂,应考虑运算化简后再求值.跟踪训练1 根据下面数列的通项公式,写出它的前4项.(1)a n =2n +1;(2)b n =2)1(1n-+例2 根据数列的前几项,写出下列各数列的一个通项公式: (1)1,-3,5,-7,9,…; (2)12,2,92,8,252,…;(3)9,99,999,9 999,…; (4)0,1,0,1,….小结 据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征.并对此进行联想、转化、归纳.跟踪训练2 写出下列数列的一个通项公式: (1)212,414,618,8116,…;(2)0.9,0.99,0.999,0.999 9,…; (3)-12,16,-112,120,….例3 已知数列{a n }的通项公式a n =-1nn +12n -12n +1.(1)写出它的第10项;(2)判断233是不是该数列中的项.小结 判断某数列是否为数列中的项,只需将它代入通项公式中求n 的值,若存在正整数n ,则说明该数是数列中的项,否则就不是该数列中的项. 跟踪训练3 已知数列{a n }的通项公式为a n =1n n +2(n ∈N *),那么1120是这个数列的第______项.【当堂检测】1.下列叙述正确的是 ( )A .数列1,3,5,7与7,5,3,1是相同的数列B .数列0,1,2,3,…可以表示为{n }C .数列0,1,0,1,…是常数列D .数列{nn +1}是递增数列2.观察下列数列的特点,用适当的一个数填空:1,3,5,7,___,11,…. 3.已知下列数列:(1)2 000,2 004,2 008,2 012; (2)0,12,23,…,n -1n,…;(3)1,12,14,…,12n -1,…; (4)1,-23,35,…,-1n -1·n 2n -1,…;(5)1,0,-1,…,sin n π2,…; (6)6,6,6,6,6,6.其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________,周期数列是________.(将合理的序号填在横线上) 4.写出下列数列的一个通项公式: (1)a ,b ,a ,b ,…; (2)-1,85,-157,249,….【课堂小结】1.{a n }与a n 是不同的两种表示,{a n }表示数列a 1,a 2,…,a n ,…,是数列的一种简记形式.而a n 只表示数列{a n }的第n 项,a n 与{a n }是“个体”与“整体”的从属关系.2.数列的表示方法:①图象法;②列表法;③通项公式法;④递推公式法.3.由数列的前几项归纳其通项公式的关键是观察、归纳各项与对应的项数之间的联系.同时,要善于利用我们熟知的一些基本数列,通过合理的联想、转化而达到问题的解决.【课后作业】一、基础过关1.数列23,45,67,89,…的第10项是( )A .1617B .1819C .2021D .22232.数列{n 2+n }中的项不能是 ( )A .380B .342C .321D .306 3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+14.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有( )A .1个B .2个C .3个D .4个5.在数列2,2,x,22,10,23,…中,x =______. 6.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是 ____________.7.写出下列数列的一个通项公式:(可以不写过程) (1)3,5,9,17,33,…; (2)23,415,635,863,…;(3)1,0,-13,0,15,0,-17,0,….8.已知数列{n (n +2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项?二、能力提升9.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( )A .19(10n -1)B .13(10n -1)C .13(1-110n )D .310(10n -1)10.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( )A .12n +1B .12n +2C .12n +1+12n +2D .12n +1-12n +211.由花盆摆成以下图案,根据摆放规律,可得第5个图形中的花盆数为________.12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式; (2)88是否是数列{a n }中的项?三、探究与拓展13.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1: (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么?(3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由.§2.1 数列的概念及简单表示(二)【学习要求】1.理解递推公式的含义,能根据递推公式求出数列的前几项. 2.能从函数的观点研究数列,掌握数列的一些简单性质.【学法指导】1.数列的递推公式是给出数列的另一重要形式.一般只要给出数列的首项或前几项以及数列的相邻两项或几项之间的运算关系,就可以依次求出数列的各项.2.由于数列可以看作是一类特殊的函数,因此许多函数的性质可以应用到数列中.例如,数列的单调性、数列的最值、数列的周期性都可以类比函数的性质.【知识要点】1.如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的 公式.2.数列可以看作是一个定义域为 (或它的有限子集{1,2,3,…,n })的函数,当自变量按照从小到大的顺序依次取值时,对应的一列 .3.一般地,一个数列{a n },如果从 起,每一项都大于它的前一项,那么这个数列叫做 数列.如果从第2项起,每一项都小于它的前一项,那么这个数列叫做 数列.如果数列{a n }的各项都 ,那么这个数列叫做常数列.4.已知数列{a n }满足:a 1=1,a n +1-a n =1,则a n = ,从单调性来看,数列是单调 数列.【问题探究】公元前13世纪意大利数学家斐波那契的名著《算盘全书》中,记载了一个著名的问题,某人有一对新生的兔子饲养在围墙中,如果它们每个月生一对兔子,且新生的兔子从第三个月开始也是每个月生一对兔子,问一年后围墙中共有多少对兔子?该问题在原书中作了分析:第一个月和第二个月都是最初的一对兔子,第三个月生下一对兔子,围墙内共有两对兔子,第四个月仍是最初的一对兔子生下一对兔子,共有3对兔子.到第五个月除最初的兔子新生一对兔子外,第一个月生的兔子也开始生兔子,因此共有5对兔子.继续推下去,第12个月时最终共有144对兔子.书中还提出,每个月的兔子总数可由前两个月的兔子数相加而得.据载首先是由19世纪法国数学家吕卡将级数{a n }:1,1,2,3,5,8,13,21,34,…,a n +1=a n +a n -1命名为斐波那契数列,它在数学的许多分支中有广泛应用.数列的这种表达形式,是用前面的项来表达后面的项,我们称之为数列的递推公式,数列的递推公式有什么应用呢?这一节我们就来学习数列的递推公式. 探究点一 数列的函数特性问题 数列是一种特殊的函数,与函数相比,数列的特殊性表现在哪些方面?谈谈你的认识. 探究1 数列的单调性下面给出了一些数列的图象:a n =2n -1a n =1na n =(-1)n观察上述数列项的取值的变化规律,请类比单调函数的定义,把下列单调数列的定义补充完整.一般地,一个数列{a n },如果从第2项起,每一项都大于它前面的一项,即 ,那么这个数列叫做递增数列;如果从第2项起,每一项都小于它前面的一项,即 ,那么这个数列叫做递减数列;如果数列{a n }的各项都相等,那么这个数列叫做常数列.因此,要证明数列{a n }是单调递增数列,只需证明a n +1-a n 0;要证明数列{a n }是单调递减数列,只需证明a n +1-a n 0.探究2 数列的周期性已知数列{a n }中,a 1=1,a 2=2,a n +2=a n +1-a n ,试写出a 3,a 4,a 5,a 6,a 7,a 8,你发现数列{a n }具有怎样的规律?你能否求出该数列中的第2 012项是多少?探究点二 由简单的递推公式求通项公式问题 递推公式与通项公式,都可以用来写出数列中的任意项,都是给出数列的一种方法,那么它们究竟有什么不同呢?探究1 对于任意数列{a n },等式:a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n 都成立.试根据这一结论,求解下列问题.已知数列{a n }满足:a 1=1,a n +1-a n =2,试求通项a n .探究2 若数列{a n }中各项均不为零,则有:a 1·a 2a 1·a 3a 2·…·a na n -1=a n 成立.试根据这一结论求解下列问题.已知数列{a n }满足:a 1=1,a n a n -1=n -1n (n ≥2),试求通项a n .【典型例题】例1 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项. 小结 已知数列递推公式求数列通项时,依次将项数n 的值代入即可.跟踪训练1 已知数列{a n }中,a 1=1,a 2=23,1a n -2+1a n =2a n -1(n ∈N *,n ≥3),求a 3,a 4.例2 已知数列{a n }的通项公式为a n =n 2n 2+1.求证:数列{a n }为递增数列.小结 数列是一种特殊的函数,因此可用函数单调性的方法来研究数列的单调性.跟踪训练2 已知数列{a n }的通项公式是a n =anbn +1,其中a 、b 均为正常数,那么a n 与a n +1的大小关系是 ( )A .a n >a n +1B .a n <a n +1C .a n =a n +1D .与n 的取值相关例3 已知a n =9nn +110n(n ∈N *),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.小结 数列的最大、最小项问题,可以通过研究数列的单调性加以解决,若求最大项a n ,n 的值可通过解不等式组⎩⎪⎨⎪⎧ a n ≥a n -1a n ≥a n +1来确定;若求最小项a n ,n 的值可通过解不等式组⎩⎪⎨⎪⎧a n ≤a n -1a n ≤a n +1来确定.跟踪训练3 在数列{a n }中,a n =n 3-an ,若数列{a n }为递增数列,试确定实数a 的取值范围.【当堂检测】1.已知a n +1-a n -3=0,则数列{a n }是 ( ) A .递增数列 B .递减数列 C .常数列 D .不能确定 2.数列1,3,6,10,15,…的递推公式是 ( ) A .a n +1=a n +n ,n ∈N * B .a n =a n -1+n ,n ∈N *,n ≥2 C .a n +1=a n +(n +1),n ∈N *,n ≥2 D .a n =a n -1+(n -1),n ∈N *,n ≥2 3.数列{a n }中,a n =-2n 2+29n +3,则此数列中最大项的值是( ) A .107B .108C .10818D .1094.已知数列{a n }满足a 1=2,a n +1-a n +1=0(n ∈N +),则此数列的通项a n 等于 ( ) A .n 2+1 B .n +1 C .1-n D .3-n【课堂小结】1.同数列的通项公式一样,数列的递推公式也是表示数列的常用方法之一.递推公式法与通项公式法统称为公式法.2.函数与数列的联系与区别一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题.另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N *或它的有限子集{1,2,…,n },因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即a n >a n -1),则图象呈上升趋势,即数列递增,即{a n }递增⇔a n +1>a n 对任意的n (n ∈N *)都成立.类似地,有{a n }递减⇔a n +1<a n 对任意的n (n ∈N *)都成立.【课后作业】一、基础过关1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1B .12C .34D .582.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 ( ) A .259B .2516C .6116D .31153.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项是( )A .116B .117C .119D .1254.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是 ( ) A .9B .17C .33D .655.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,n ∈N *,则使a n >100的n 的最小值是________. 6.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,则通项公式a n =________.7.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.8.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.二、能力提升9.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n-1 ⎝⎛⎭⎫12≤a n<1.若a 1=67,则a 2 012的值为( )A .67B .57C .37D .1710.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 3011.已知数列{a n }满足:a n ≤a n +1,a n =n 2+λn ,n ∈N *,则实数λ的最小值是________. 12.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.三、探究与拓展13.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求{a n }的通项公式.§2.2 等差数列(一)【学习要求】1.理解等差数列的意义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题. 3.掌握等差中项的概念,深化认识并能运用.【学法指导】1.要善于通过实例的观察、分析、归纳、提炼来理解等差数列的概念,同时,还应准确理解等差数列的关键词“从第2项起”,“差是一个常数”等;要善于用归纳或叠加法探求等差数列的通项公式. 2.利用a n +1-a n =d (n ∈N +)可以帮助我们判断一个数列是否为等差数列.【知识要点】1.如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做 数列,这个常数叫做等差数列的 ,公差通常用字母d 表示.2.若三个数a ,A ,b 构成等差数列,则A 叫做a 与b 的_________,并且A = . 3.若等差数列的首项为a 1,公差为d ,则其通项a n = ________.4.等差数列{a n }中,若公差d >0,则数列{a n }为 数列;若公差d <0,则数列{a n }为 数列.【问题探究】1.1682年,英国天文学家哈雷发现一颗大彗星运动的轨迹和1531年、1607年的彗星的运动轨迹惊人地相似,便大胆断定这是同一天体的三次出现,并预言它将于76年后再度回归.这就是著名的哈雷彗星,它的回归周期大约是76年.请你查找资料,列出哈雷彗星的回归时间表,并预测它在本世纪回归的时间.哈雷彗星的回归时间表(单位:年)1607,1682,1759,1835,1910,1986,2061,…. 预测它在本世纪回归的时间是2061年.2.第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.这样举行奥运会的年份数构成一个数列,这个数列有什么特征呢?这个数列叫什么数列呢?这个数列从第2项起,每一项与它的前一项的差都等于同一个常数,像这样的数列叫做等差数列.等差数列有很多的应用,这一节我们就来学习等差数列及其通项公式. 探究点一 等差数列的概念问题1 我们先看下面几组数列: (1)3,4,5,6,7,…;(2)6,3,0,-3,-6,…; (3)1.1,2.2,3.3,4.4,5.5,…;(4)-1,-1,-1,-1,-1,….观察上述数列,我们发现这几组数列的共同特点是问题2 判断下列数列是否为等差数列,如果是,指出首项a 1和公差d ;如果不是,请说明理由: (1)4,7,10,13,16,…; (2)31,25,19,13,7,…; (3)0,0,0,0,0,…;(4)a ,a -b ,a -2b ,…; (5)1,2,5,8,11,….探究 如何准确把握等差数列的概念?谈谈你的理解. 探究点二 等差数列的通项公式问题 如果等差数列{a n }的首项是a 1,公差是d ,你能用两种方法求其通项吗?探究1 根据等差数列的定义:a n +1=a n +d ,可以依次得到a 1,a 2,a 3,a 4,…,然后观察规律,归纳概括出通项公式a n .探究2 由等差数列的定义知:a n -a n -1=d (n ≥2),可以采用叠加法得到通项公式a n . 探究点三 等差中项问题1 如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,试用x ,y 表示A . 探究 若数列{a n }满足:a n +1=a n +a n +22,求证:{a n }是等差数列. 【典型例题】例1 已知{a n }为等差数列,分别根据下列条件写出它的通项公式. (1)a 3=5,a 7=13;(2)前三项为:a,2a -1,3-a .小结 在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.跟踪训练1 若{a n }是等差数列,a 15=8,a 60=20,求a 75.例2 已知1a ,1b ,1c 成等差数列,求证:b +c a ,a +c b ,a +b c也成等差数列.跟踪训练2 已知a ,b ,c 成等差数列,那么a 2(b +c ),b 2(c +a ),c 2(a +b )是否能构成等差数列?例3 梯子的最高一级宽33 cm ,最低一级宽110 cm ,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.跟踪训练3 在通常情况下,从地面到10 km 高空,高度每增加1 km ,气温就下降某一个固定数值.如果1 km 高度的气温是8.5℃,5 km 高度的气温是-17.5℃,求2 km ,4 km ,8 km 高度的气温.【当堂检测】1.若数列{a n }满足3a n +1=3a n +1,则数列是( )A .公差为1的等差数列B .公差为13的等差数列C .公差为-13的等差数列 D .不是等差数列2.若a ≠b ,则等差数列a ,x 1,x 2,b 的公差是( ) A .b -aB .b -a 2C .b -a 3D .b -a 43.在等差数列{a n }中,(1)已知a 1=2,d =3,n =10,则a n =___; (2)已知a 1=3,d =2,a n =21,则n =___; (3)已知a 1=12,a 6=27,则d =___; (4)已知d =-13,a 7=8,则a 1=___.4(1)你能建立一个等差数列的模型,表示甲虫的爬行距离和时间之间的关系吗? (2)利用建立的模型计算,甲虫1 min 能爬多远?它爬行49 cm 需要多长时间?【课堂小结】1.等差数列的判定关键要看a n +1-a n (n ∈N *)是否为一个与n 无关的常数.由于a n +1-a n =a n +2-a n +1⇔2a n +1=a n +a n +2,所以也可以利用2a n +1=a n +a n +2(n ∈N *)来判定等差数列.注意数列的项中含有字母时是否需要分类讨论. 2.等差数列的通项公式及其变形a n =a 1+(n -1)d =a m +(n -m )d 的应用极其灵活,公式中的四个量a 1,a n ,n ,d 中知三可求一.充分利用等差数列的函数特性可使解题过程更为简捷. 3.数列的应用题在数列中占有很重要的地位.【课后作业】一、基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0,则数列的通项a n 等于( )A .n 2+1B .n +1C .1-nD .3-n 2.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项3.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( )A .26B .29C .39D .52 4.{a n }是首项a 1=1,公差d =3的等差数列,若a n =2 011,则n 等于( )A .671B .670C .669D .668 5.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A .15B .30C .31D .646.已知a =13+2,b =13-2,则a 、b 的等差中项是________. 7.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值.8.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?二、能力提升9.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是 ( ) A .-2B .-3C .-4D .-610.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差为d 1和d 2,则d 1d 2的值为________.11.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,那么项数n 的取值有____种可能. 12.若1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列.三、探究与拓展13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由.(2)若a p ,a q (p ,q ∈N *)是数列{a n }中的项,则2a p +3a q 是数列{a n }中的项吗?并说明你的理由.§2.2 等差数列(二)【学习要求】1.能根据等差数列的定义推出等差数列的重要性质. 2.能运用等差数列的性质解决有关问题.【学法指导】1.灵活运用等差数列的性质,可以减少计算量,因此要熟练掌握等差数列的有关性质.2.掌握等差数列与一次函数之间的关系,就能站在较高的角度整体把握等差数列的内涵和本质.【知识要点】1.等差数列的通项公式:a n = .2.等差数列的项的对称性:有穷等差数列中,与首末两项“等距离”的两项之和等于首末两项的和,即:a 1+a n =a 2+ =…=a k + . 3.等差数列的性质(1)若{a n }是等差数列,且k +l =m +n (k 、l 、m 、n ∈N *),则 .(2)若{a n }是等差数列,且公差为d ,则{a 2n -1}和{a 2n }都是等差数列,且公差为 .(3)若{a n },{b n }分别是公差为d 1,d 2的等差数列,则数列{pa n +qb n }(p 、q 是常数)是公差为 的等差数列.【问题探究】探究点一 等差数列的常用性质问题 设等差数列{a n }的首项为a 1,公差为d ,则有下列 性质:(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q . (2)若m +n =2k (m ,n ,k ∈N *),则a m +a n =2a k . 请你给出证明.探究 已知等差数列{a n }、{b n }分别是公差为d 和d ′,则由{a n }及{b n }生成的“新数列”具有以下性质,请你补充完整.①{a n }是等差数列,则a 1,a 3,a 5,…仍成等差数列(首项不一定选a 1),公差为 ;②下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N +)组成公差为 的等差数列; ③数列{λa n +b }(λ,b 是常数)是公差为 的等差数列; ④数列{a n +b n }仍是等差数列,公差为 ;⑤数列{λa n +μb n }(λ,μ是常数)仍是等差数列,公差为 . 探究点二 等差数列与一次函数的联系探究 由于等差数列{a n }的通项公式a n =dn +(a 1-d ),与一次函数对比可知,公差d 本质上是相应直线的斜率.如a m ,a n 是等差数列{a n }中的任意两项,由a n =a m +(n -m )d ,可知点(n ,a n )分布以 为斜率,以 为纵截距的直线上.请你类比一次函数的单调性,研究等差数列的单调性,并完成下表.【典型例题】例1 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值.小结 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练1 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.例2 三个数成等差数列,和为6,积为-24,求这三个数.小结 利用等差数列的定义巧设未知量,从而简化计算.一般地有如下规律:当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…a -2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…a -3d ,a -d ,a +d ,a +3d ,…,这样可减少计算量.跟踪训练2 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数.例3 已知数列{a n },满足a 1=2,a n +1=2a na n +2.(1)数列{1a n}是否为等差数列?说明理由.(2)求a n .小结 判断一个数列是等差数列的基本方法是紧扣定义:a n +1-a n =d (d 为常数),也可以用a n +1-a n =a n -a n -1(n ≥2)进行判断.本题属于“生成数列问题”,关键是形成整体代换的思想方法,运用方程思想求通项公式. 跟踪训练3 正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n . (1)数列{a n }是否为等差数列?说明理由. (2)求a n .【当堂检测】1.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( ) A .3B .-3C .32D .-322.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d =____ 3.已知等差数列{a n }中,a 2+a 3+a 10+a 11=36,求a 5+a 84.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数.【课堂小结】1.判断一个数列{a n }是否是等差数列,关键是看a n +1-a n 是否是一个与n 无关的常数.2.三个数成等差数列可设为:a -d ,a ,a +d 或a ,a +d ,a +2d ;四个数成等差数列可设为:a -3d ,a -d ,a +d ,a +3d 或a ,a +d ,a +2d ,a +3d .3.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.【课后作业】一、基础过关1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( )A .45B .75C .180D .3002.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) A .1B .2C .4D .63.等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是 ( ) A .a n =2n -2 (n ∈N *)B .a n =2n +4 (n ∈N *)C .a n =-2n +12 (n ∈N *)D .a n =-2n +10 (n ∈N *)4.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为( ) A .0B .1C .2D .1或25.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于 ( ) A .120B .105C .90D .756.在等差数列{a n }中,已知a 1+a 2+a 3+a 4+a 5=20,那么a 3=________. 7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值.8.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.二、能力提升9.一个等差数列的首项为a 1=1,末项a n =41 (n ≥3)且公差为整数,那么项数n 的取值个数是( ) A .6B .7C .8D .不确定10.等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=______.11.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______.12.已知数列{a n }满足a 1=4,a n =4-4a n -1 (n ≥2),令b n =1a n -2.(1)求证:数列{b n }是等差数列; (2)求数列{a n }的通项公式.三、探究与拓展13.已知数列{a n }满足a 1=15,且当n >1,n ∈N *时,有a n -1a n =2a n -1+11-2a n ,设b n =1a n ,n ∈N *.(1)求证:数列{b n }为等差数列.(2)试问a 1a 2是否是数列{a n }中的项?如果是,是第几项; 如果不是,请说明理由.§2.3等差数列前n 项和(一)【学习要求】1.理解等差数列前n 项和公式的推导过程.2.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个. 3.掌握等差数列前n 项和公式及性质的应用.【学法指导】1.运用等差数列的前n 项和公式的关键在于准确把握它们的结构特征,这样才能根据具体情境(已知条件和待求目标)选用恰当的公式解决问题.2.要善于从推导等差数列的前n 项和公式中,归纳总结出一般的求和方法——倒序相加法.【知识要点】1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做 .例如a 1+a 2+…+a 16可以记做 ;a 1+a 2+a 3+…+a n -1= (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n = ;若首项为a 1,公差为d ,则S n 可以表示为S n =3.写出下列常见等差数列的前n 项和 (1)1+2+3+…+n = . (2)1+3+5+…+(2n -1)= . (3)2+4+6+…+2n = . 4.等差数列{a n }中(1)已知d =2,n =15,a n =-10,则S n =________; (2)已知a 1=20,a n =54,S n =999,则d =________; (3)已知a 1=56,d =-16,S n =-5,则n =_______【问题探究】“数学王子”高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名.高斯十岁那年,老师布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,老师刚叙述完题目,高斯即刻把写着答案的小石板交了上去.老师起初并不在意这一举动,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊.而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数的和是101,第二个数加倒数第二个数的和也是101,…共有50对这样的数,用101乘以50得到5 050,这种算法是教师未曾教过的方法,高斯自己就想出来了,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,这一节我们就来学习等差数列的求和方法. 探究点一 等差数列前n 项和公式的推导 问题 求和:1+2+3+…+100=?对于这个问题,著名数学家高斯十岁时就能很快求出它的结果.当时他的思路和解答方法是:S =1+2+3+…+99+100,把加数倒序写一遍:S =100+99+98+…+2+1.所以有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S =50×101=5 050. 请你利用“高斯的算法”求1+2+3+…+n =?探究 设等差数列{a n }的首项为a 1,公差为d ,你能利用“倒序相加法”求等差数列{a n }的前n 项和S n 吗? 探究点二 等差数列前n 项和的性质探究1 设{a n }是等差数列,公差为d ,S n 是前n 项和,易知a 1+a 2+…+a m ,a m +1+a m +2+…+a 2m ,a 2m +1+a 2m +2+…+a 3m 也成等差数列,公差为 .上述性质可以用前n 项和符号S n 表述为:若{a n }成等差数列,则S m , ,_________也成等差数列.探究2 若数列{a n }是公差为d 的等差数列,求证:数列{S nn }也是等差数列.探究3 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,证明:a n b n =S 2n -1T 2n -1.【典型例题】例1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .小结 在解决等差数列问题时,如已知a 1,a n ,n ,d ,S n 中任意三个,可求其余两个,这种问题在数学上常称为“知三求二”型.跟踪训练1 已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d .例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.小结 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练2 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .例3 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?小结 建立等差数列的模型时,注意相遇时甲、乙两人的路程和是两个等差数列的前n 项和.跟踪训练3 现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )。

相关文档
最新文档