初中数学知识点总结:多边形新选

合集下载

八年级数学上册 11.3《多边形及其内角和》多边形的内角和知识点解读素材 新人教版(2021学年)

八年级数学上册 11.3《多边形及其内角和》多边形的内角和知识点解读素材 新人教版(2021学年)

八年级数学上册11.3《多边形及其内角和》多边形的内角和知识点解读素材(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册11.3《多边形及其内角和》多边形的内角和知识点解读素材(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册11.3《多边形及其内角和》多边形的内角和知识点解读素材(新版)新人教版的全部内容。

知识点解读:多边形的内角和知识点一:多边形的内角和定理(重点)多边形的定义:由三条或三条以上的线段首尾顺次连接所组成的封闭图形叫做多边形.多边形的定义:从n边形的一个顶点出发,可以引(n—3)条对角线,它们将n边形分为(n-2)个三角形,n边形的内角和等于180°×(n—2).知识详析:观察上图可得:(1)从五边形的一个顶点出发,可以引2条对角线,它们将五边形分为3个三角形,五边形的内角和等于180°×3.(2)从六边形的一个顶点出发,可以引3条对角线,它们将六边形分为4个三角形,六边形的内角和等于180°×4.(3)从n边形的一个顶点出发,可以引(n-3)条对角线,它们将n边形分为(n-2)个三角形,n边形的内角和等于180°×(n-2).结论:多边形的内角和与边数的关系是180°×(n-2).【典例】1、一个多边形的内角和为1440°,求其边数.分析:根据n边形的内角和是(n-2)•180°,即可列方程求解.解:(n-2)•180°=1440°,解得n=10.答:边数为10.2、已知一个多边形的每一内角都等于150°,求这个多边形的内角和.分析:已知一个多边形的每一内角都相同,故可设该多边形共有n条边,根据多边形内角和公式列出等式求解.解:设这个多边形的边数为n,则(n—2)×180°=n×150°,180°n-360°=150°n,得30°n=360°解得n=12.∴12×150°=1800°.答:这个多边形的内角和为1800°.知识点二:多边形的外角和知识详析:如图,在六边形的每个顶点处各取一个外角,•这些外角的和叫做六边形的外角和.六边形的外角和等于360°.将六边形换为n边形(n是大于等于3的整数),结果仍相同.结论:多边形的外角和等于360°.【典例】1、一个多边形的外角中,钝角的个数不可能是( )A。

多边形内角和总结知识点总结

多边形内角和总结知识点总结

多边形内角和总结知识点总结多边形内角和知识点总结在数学的广阔天地中,多边形内角和是一个重要且基础的概念。

它不仅在几何学习中频繁出现,还在解决实际问题中发挥着关键作用。

接下来,让我们一起深入探索多边形内角和的相关知识。

一、多边形的定义多边形是由在同一平面且不在同一直线上的多条线段首尾顺次连接且不相交所组成的封闭图形。

常见的多边形有三角形、四边形、五边形、六边形等等。

二、多边形内角和的公式多边形内角和的公式为:$(n 2)×180°$,其中$n$为多边形的边数。

这个公式的推导其实很有趣。

我们以三角形为例,三角形的内角和是 180°。

当我们增加一条边,变成四边形时,可以通过连接其中一个顶点和不相邻的顶点,将四边形分成两个三角形,所以四边形的内角和就是 2×180°= 360°。

以此类推,每增加一条边,就多了一个三角形,内角和也就增加 180°。

三、不同边数多边形内角和的计算1、三角形三角形是最基本的多边形,它的内角和是 180°。

2、四边形四边形可以分为矩形、平行四边形、梯形等。

根据内角和公式,$(4 2)×180°= 360°$。

3、五边形五边形的内角和为$(5 2)×180°= 540°$。

4、六边形六边形的内角和是$(6 2)×180°= 720°$。

四、多边形内角和的性质1、多边形的内角和随着边数的增加而增加。

2、任意多边形的外角和都为360°。

这是一个很重要且固定的数值,与多边形的边数无关。

3、多边形的内角中,最多只能有三个锐角。

因为如果锐角过多,内角和就会小于$(n 2)×180°$。

五、应用实例1、已知一个多边形的内角和为 1080°,求它的边数。

我们可以设这个多边形的边数为$n$,则根据内角和公式可得:$(n 2)×180°= 1080°$$n 2 = 6$$n = 8$所以这个多边形是八边形。

初中数学——(47)多边形的有关概念

初中数学——(47)多边形的有关概念

初中数学——(47)多边形的有关概念一、多边形(一)定义:在平面内,由一些线段首尾顺次相接组成的图形(二)内角:多边形相邻两边组成的角叫做它的内角(三)外角:多边形的边与邻边的延长线组成的角叫多边形的外角(四)对角线:连接多边形不相邻的两个顶点的线段二、多边形的性质(一)多边形的内角和:n 边形的内角和等于(n-2)×180°(二)多边形的外角和:任意多边形的外角和等于360°(三)多边形对角线的条数:1、从n边形的一个顶点出发可以引(n-3)条对角线2、从n边形的一个顶点出发可以把多边形分(n-2)个三角形2、n边形共有23)-n(n条对角线三、镶嵌(一)同一种正三边形、正方形、正六边形可以进行平面镶嵌(二)正三角形与正四边形、正三角形与正六边形、正四边形与正八边形、正三角形与正十二边形可以进行平面镶嵌(三)同一种任意三角形、任意四边形可以进行镶嵌四、练习题(一)正方形每个内角都是_____,每个外角都是 ____(二)多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条(三)将一个三角形截去一个角后,所形成的一个新的多边形的内角和(四)若一个多边形的内角和与外角和相等,则这个多边形是()A、三角形B、六边形B、五边形 D、四边形(五)一个多边形内角和是1080°,则这个多边形的边数为()A、 6B、 7C、 8D、 9(六)若一个多边形的内角和与外角和相加是1800°,则此多边形是( )A、八边形B、十边形C、十二边形D、十四边形(七)下列正多边中,能铺满地面的是()A、正方形B、正五边形C、等边三角形D、正六边形(八)下列正多边形的组合中,不能够铺满地面的是( )A、正六边形和正三角形B、正三角形和正方形C、正八边形和正方形D、正五边形和正八边形。

初中数学——正多边形

初中数学——正多边形

初中数学——正多边形
考点一、正多边形和圆
1、正多边形的定义
各边相等,各角也相等的多边形叫做正多边形。

2、正多边形和圆的关系
只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

考点二、与正多边形有关的概念
1、正多边形的中心
正多边形的外接圆的圆心叫做这个正多边形的中心。

2、正多边形的半径
正多边形的外接圆的半径叫做这个正多边形的半径。

3、正多边形的边心距
正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

4、中心角
正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。

考点三、正多边形的对称性
1、正多边形的轴对称性
正多边形都是轴对称图形。

一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心。

2、正多边形的中心对称性
边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3、正多边形的画法
先用量角器或尺规等分圆,再做正多边形。

考点四、弧长和扇形面积
1、弧长公式
n°的圆心角所对的弧长l 的计算公式为180
r
n l π=2、扇形面积公式
lR R n S 2
13602==π扇其中n 是扇形的圆心角度数,R 是扇形的半径,l 是扇形的弧长。

3、圆锥的侧面积
rl r l S ππ=∙=22
1其中l 是圆锥的母线长,r 是圆锥的地面半径。

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。

我们以正n边形来进行讨论,其中n表示边的个数。

二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。

2.外角和:正n边形的外角和为360°。

3.内角和:正n边形的内角和为(2n-4)×90°。

4.中心角和:正n边形的中心角和为360°。

5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。

三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。

四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。

圆心角的大小等于其对应的圆弧的度数。

2.弧长:圆心角对应的圆弧的长度称为弧长。

如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。

3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。

4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。

即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。

单位为弧度。

6.周长和面积:圆的周长等于2πR,面积等于πR²。

五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。

2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。

3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。

以上就是《正多边形与圆》的一些重要知识点的归纳。

在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。

加油!。

多边形的特性与分类知识点总结

多边形的特性与分类知识点总结

多边形的特性与分类知识点总结多边形是由若干条线段构成的封闭图形,它在几何学中占据着重要的地位。

本文将总结多边形的特性与分类知识点,以帮助读者更好地理解和应用多边形的相关概念。

一、多边形的特性1. 边和顶点:多边形由若干条线段组成,这些线段被称为边。

对于多边形内的每个交点,我们称之为顶点。

2. 闭合性:多边形是封闭的,即它的起点和终点相连,形成一个封闭的图形。

3. 内角和外角:多边形的内角是指多边形内部两条邻边之间的角度。

而多边形的外角是指多边形的一条边的延长线与相邻边之间的角度。

4. 对角线:多边形内部的两个非相邻顶点可以通过一条线段连接,这条线段被称为对角线。

二、多边形的分类根据边的数量和长度,多边形可分为以下几类:1. 三角形:三角形是指有三条边和三个顶点的多边形。

根据三条边的长度关系,三角形可以进一步分为等边三角形、等腰三角形和一般三角形。

- 等边三角形:三条边的长度相等。

- 等腰三角形:两条边的长度相等。

- 一般三角形:三条边的长度都不相等。

2. 四边形:四边形是指有四条边和四个顶点的多边形。

根据四条边的性质,四边形可以进一步分为矩形、正方形、平行四边形和菱形。

- 矩形:四个角都是直角的四边形。

- 正方形:四条边的长度都相等且四个角都是直角的四边形。

- 平行四边形:有两对边是平行的四边形。

- 菱形:四条边的长度都相等的四边形。

3. 多边形(五边形及以上):多边形除了三角形和四边形之外,还包括五边形、六边形等。

根据边的数量,多边形可以被进一步细分。

通过边数分类:- 五边形:有五条边和五个顶点的多边形。

- 六边形:有六条边和六个顶点的多边形。

- 七边形:有七条边和七个顶点的多边形。

- 八边形:有八条边和八个顶点的多边形。

通过角数分类:- 正多边形:所有内角和边数相等的多边形。

- 凸多边形:从多边形内部选择两个顶点,与其他顶点的连线完全在多边形内部的多边形。

需要注意的是,多边形的分类并不是互斥的,一个多边形可能符合多个分类标准。

八年级数学上学期期中核心考点 专题04 多边形(含解析) 新人教版-新人教版初中八年级全册数学试题

八年级数学上学期期中核心考点 专题04 多边形(含解析) 新人教版-新人教版初中八年级全册数学试题

专题04 多边形重点突破知识点一多边形相关知识多边形概念:在平面中,由一些线段首尾顺次相接组成的图形叫做多边形内角:多边形中相邻两边组成的角叫做它的内角。

外角:多边形的边与它邻边的延长线组成的角叫做外角。

对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

【对角线条数】一个n边形从一个顶点出发的对角线的条数为(n-3)条,其所有的对角线条数为2)3(nn(重点)凸多边形概念:画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形概念:各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)知识点二多边形的内角和外角(重点)n边形的内角和定理:n边形的内角和为(n−2)∙180°n边形的外角和定理:多边形的外角和等于360°(与多边形的形状和边数无关)。

考查题型考查题型一多边形的基础典例1.(2019·某某市期末)下列图中不是凸多边形的是()A.B.C.D.【答案】A【解析】根据凸多边形的概念,如果多边形的边都在任何一条边所在的直线的同旁,该多边形即是凸多边形.否则即是凹多边形,故A不是凸多边形;B是凸多边形;C是凸多边形;D是凸多边形.故选A.变式1-1.(2020·揭阳市期末)下列说法中,正确的是()A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角【答案】D【详解】A. ∵直线没有端点,向两方无限延伸,故不正确;B. ∵射线有一个端点,向一方无限延伸,故不正确;C. ∵有六边相等且六个角也相等的多边形叫做正六边形,故不正确;D. ∵有公共端点的两条射线组成的图形叫做角,故正确;故选D.变式1-2.(2019·某某市期末)关于正多边形的概念,下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等或各角相等的多边形是正多边形D.各边相等且各角相等的多边形是正多边形【答案】D【提示】根据正多边形的定义判定即可.【详解】解:A.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;B.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;C.各边相等、各角也相等的多边形是正多边形,故本选项不合题意;D.各边相等且各角相等的多边形是正多边形,正确,故本选项符合题意.故选:D.【名师点拨】本题考查了正多边形的定义、熟记各边相等、各角也相等的多边形是正多边形是解决问题的关键.考查题型二多边形截角后的边数问题典例2.(2018·某某市期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】试题解析:当截线为经过四边形对角2个顶点的直线时,剩余图形为三角形;当截线为经过四边形一组对边的直线时,剩余图形是四边形;当截线为只经过四边形一组邻边的一条直线时,剩余图形是五边形;∴剩余图形不可能是六边形,故选A.变式2-1.(2017·某某市期末)一个四边形截去一个角后内角个数是()A.3 B.4 C.5 D.3、4、5【答案】D【解析】如图可知,一个四边形截去一个角后变成三角形或四边形或五边形,故内角个数是为3、4或5.故选D.变式2-2.(2019·海淀区期末)把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.三角形B.四边形C.五边形D.六边形【答案】D【提示】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形,由此即可解答.【详解】当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选D.【名师点拨】剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.考查题型三多边形的对角线条数问题典例3.(2019·某某市期中)一个多边形从一个顶点最多能引出三条对角线,这个多边形是()A.三角形B.四边形C.五边形D.六边形【答案】D【解析】试题提示:对于n边形,经过一个顶点能引出(n-3)条对角线,故本题选择D.变式3-1.(2018·松北区期末)若一个多边形的内角和为540°,那么这个多边形对角线的条数为()A.5 B.6 C.7 D.8【答案】A【解析】提示: 先根据多边形的内角和公式求出多边形的边数,再根据多边形的对角线的条数与边数的关系求解.详解: 设所求正n边形边数为n,则(n-2)•180°=540°,解得n=5,∴这个多边形的对角线的条数=5(53)2⨯-=5.故选:A.名师点拨: 本题考查根据多边形的内角和计算公式及多边形的对角线的条数与边数的关系,解答时要会根据公式进行正确运算、变形和数据处理.变式3-2.(2018·某某市期中)若一个多边形的对角线共有14条,则这个多边形的边数是()A.6 B.7 C.10 D.14【答案】B【提示】根据多边形的对角线的条数公式()32n n-列式计算即可求解.【详解】解:设这个多边形的边数是n,则()32n n-=14,整理得,n2﹣3n﹣28=0,解得:n=7,n=﹣4(舍去).故选:B.【名师点拨】本题考查一元二次方程的应用,解题的关键是掌握多边形对角线条数与边数的关系,并据此列出方程.考查题型四多边形的内角和问题典例4.(2018·红桥区期中)已知一个多边形的内角和等于900º,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【答案】C【解析】试题提示:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=7.变式4-1.(2019·某某市期若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.12【答案】B【解析】试题提示:设多边形的边数为n,则180(2)nn-=135,解得:n=8∠+∠+∠+∠+∠+∠的度数为()变式4-2.(2018·宿迁市期末)如图所示,A B C D E FA.180o B.360o C.540o D.720o【答案】B【解析】提示:根据三角形外角的性质,四边形的内角和计算即可.详解:∵∠A+∠1+∠D+∠E=360°,∠1=∠B+∠2,∠2=∠C+∠F,∠+∠+∠+∠+∠+∠=360°.∴A B C D E F故选B.名师点拨:本题考查了多边形内角和公式和三角形外角的性质,三角形的外角等于和它不相邻的两个内角的和,四边形的内角和等于360°.考查题型五多(少)算一个角的内角和问题典例5.(2020·某某市期中)当多边形的边数增加1时,它的内角和会()A.增加160B.增加180C.增加270D.增加360【答案】B【提示】根据n边形的内角和为180°(n-2),可得(n+1)边形的内角和为180°(n-1),然后作差即可得出结论.【详解】解:∵n边形的内角和为180°(n-2)∴(n+1)边形的内角和为180°(n+1-2)=180°(n-1)而180°(n-1)-180°(n-2)=180°∴当多边形的边数增加1时,它的内角和会增加180故选B.【名师点拨】此题考查的是多边形的内角和,掌握多边形的内角和公式是解决此题的关键.变式5-1.(2018·某某市期末)小明在计算一个多边形的内角和时,漏掉了一个内角,结果得1000°,则这个多边形是( )A.六边形B.七边形C.八边形D.十边形【答案】C【提示】根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1000度.则内角和是(n-2)•180°与1000°的差一定小于180度,并且大于0度.因而可以解方程(n-2)•180°>1000°,多边形的边数n一定是最小的整数值即可,【详解】解:设多边形的边数是n.依题意有(n-2)•180°>1000°,解得:n>759,则多边形的边数n=8;故选C.【名师点拨】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.变式5-2.(2019·某某市期末)马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7 B.8 C.7或8 D.无法确定【答案】C【提示】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选C.【名师点拨】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.考查题型六多边形截角后的内角和问题典例6.(2018·某某市期中)如图,在三角形纸片ABC中,∠B=∠C=35°,过边BC上的一点,沿与BC垂直的方向将它剪开,分成三角形和四边形两部分,则在四边形中,最大的内角的度数为()A.110°B.115°C.120°D.125°【答案】D【解析】提示:根据三角形的内角和,可得∠A,根据四边形的内角和,可得答案.详解:由三角形的内角和,得∠A=180°-35°-35°=110°,由四边形的内角和,得360°-90°-110°-35°=125°,故选D.名师点拨:本题考查了多边形的内角,利用多边形的内角和是解题关键.变式6-1.(2019·某某市期中)一个四边形,截一刀后得到新多边形的内角和将()A.增加180°B.减少180°C.不变D.以上三种情况都有可能【答案】D【解析】试题提示:根据一个四边形截一刀后得到的多边形的边数即可得出结果.解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选D.变式6-2.(2020·某某市期末)如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形(含三角形),+不可能是().若这两个多边形的内角和分别为M和N,则M NA.360︒B.540︒C.720︒D.630︒【答案】D【解析】如图,一条直线将该矩形ABCD分割成两个多边(含三角形)的情况有以上三种,①当直线不经过任何一个原来矩形的顶点,此时矩形分割为一个五边形和三角形,∴M+N=540°+180°=720°;②当直线经过一个原来矩形的顶点,此时矩形分割为一个四边形和一个三角形,∴M+N=360°+180°=540°;③当直线经过两个原来矩形的对角线顶点,此时矩形分割为两个三角形,∴M+N=180°+180°=360°.故选D.考查题型七正多边形外角和问题典例7.(2020·某某市期末)已知正多边形的一个外角为36°,则该正多边形的边数为( ). A.12 B.10 C.8 D.6【答案】B【提示】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B.【名师点拨】本题主要考查了多边形的外角和定理.是需要识记的内容.变式7-1.(2020·某某市期中)正十边形的外角和为()A.180°B.360°C.720°D.1440°【答案】B【提示】根据多边的外角和定理进行选择.【详解】解:因为任意多边形的外角和都等于360°,所以正十边形的外角和等于360°,.故选B.【名师点拨】本题考查了多边形外角和定理,关键是熟记:多边形的外角和等于360度.变式7-2.(2019·某某市期中)如图,某人从点A出发,前进8m后向右转60°,再前进8m后又向右转60°,按照这样的方式一直走下去,当他第一次回到出发点A时,共走了()A.24m B.32m C.40m D.48m【答案】D【提示】从A点出发,前进8m后向右转60°,再前进8m后又向右转60°,…,这样一直走下去,他第一次回到出发点A 时,所走路径为正多边形,根据正多边形的外角和为360°,判断多边形的边数,再求路程.【详解】解:依题意可知,某人所走路径为正多边形,设这个正多边形的边数为n,则60n=360,解得n=6,故他第一次回到出发点A时,共走了:8×6=48(m).故选:D.【名师点拨】本题考查了多边形的外角和,正多边形的判定与性质.关键是根据每一个外角判断多边形的边数.考查题型八多边形内角和与外角和综合典例8.(2020·某某市期中)若正多边形的一个外角是60︒,则该正多边形的内角和为()A.360︒B.540︒C.720︒D.900︒【答案】C【提示】根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和.【详解】由题意,正多边形的边数为360660n︒==︒,其内角和为()2180720n-⋅︒=︒.故选C.【名师点拨】考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.变式8-1.(2019·某某市期末)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【名师点拨】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.变式8-2.(2020·某某市期末)一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( ) A.5 B.6 C.7 D.8【答案】C【提示】解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.【详解】多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.设所求n边形边数为n,则(n-2)•180°=360°×3-180°,解得n=7,故选C.【名师点拨】本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.考查题型九平面镶嵌典例9.(2020·某某市期末)下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【名师点拨】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.变式9-1.(2019·临清市期末)能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【提示】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【名师点拨】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.变式9-2.(2018·某某市期末)用边长相等的两种正多边形进行密铺,其中一种是正八边形,则另一种正多边形可以是()A.正三角形B.正方形C.正五边形D.正六边形【答案】B【解析】提示:正八边形的每个内角为:180°-360°÷8=135°,分别计算出正五边形,正六边形,正三角形,正四边形的每个内角的度数.利用“围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角”作为相等关系列出多边形个数之间的数量关系,利用多边形的个数都是正整数可推断出能和正八边形一起密铺的多边形是正四边形.详解:正八边形的每个内角为180°−360°÷8=135°,A. 正三角形的每个内角60∘,得135m+60n=360°,n=6−94m,显然m取任何正整数时,n不能得正整数,故不能铺满;B. 正四边形的每个内角是90°,得90°+2×135°=360°,所以能铺满;C. 正五边形每个内角是180°−360°÷5=108°,得108m+135n=360°,m取任何正整数时,n不能得正整数,故不D. 正六边形的每个内角是120度,得135m+120n=360°,n=3−98m,显然m取任何正整数时,n不能得正整数,故不能铺满.故选B.名师点拨:本题考查了平面密铺的知识,用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.。

多边形的概念和性质

多边形的概念和性质

多边形的概念和性质在几何学中,多边形是指由直线段组成的一个闭合图形。

它是一种简单多边形,由线段所构成的边连接了相邻的顶点。

多边形是我们日常生活中常见的图形,了解多边形的概念和性质有助于我们更好地理解和应用几何学知识。

一、多边形的概念多边形由至少三条线段组成,且这些线段相互连接闭合而形成的图形。

这些线段被称为边,相连的两条边形成一个顶点。

多边形一般用大写字母表示,如图形ABCDEF可以表示为多边形ABCDEF。

多边形的边数可以不限,而且不同长度的边也是允许的。

根据边长或角度的不同,多边形可以进一步分类为等边多边形、等角多边形、凸多边形和凹多边形等。

二、多边形的性质1. 内角和外角多边形的内角是指多边形内部相邻两条边之间所夹的角。

对于n边形,内角的和公式为:(n-2) × 180°。

例如,四边形的内角和为360°,五边形的内角和为540°。

多边形的外角是指多边形内部一条边与其相邻边的延长线所夹的角。

外角的和总是等于360°。

例如,六边形的外角和为360°。

2. 边长多边形的边长是指多边形上相邻两个顶点之间的距离。

在一些特殊的多边形中,边长可能会相等,构成等边多边形。

等边三角形是最常见的等边多边形,其三条边长度相等。

3. 内外接圆对于凸多边形,可以将一个圆完全置于多边形内部,这个圆称为内接圆。

内接圆与多边形的所有边相切于一点。

凸多边形的内接圆中心和多边形的重心一致。

另外,可以将一个圆完全包围住多边形,这个圆称为外接圆。

外接圆的圆心位于多边形的外部,且与多边形的每条边都相切于一点。

4. 对角线多边形的对角线是指不相邻的顶点之间所连结的线段。

对角线可以将多边形分成不重叠的三角形。

对角线的条数可以通过公式n(n-3)/2来计算,其中n表示多边形的边数。

5. 面积多边形的面积是指多边形所围成的区域的大小。

根据不同的多边形形状,计算面积的方法也不同。

例如,三角形的面积可以通过底边长度和高的乘积再除以2来计算,而正多边形的面积则可以通过边长和高的乘积再除以2来计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档