【教学设计】《一元一次方程》示范教学方案
一元一次方程教学设计(共3篇)

一元一次方程教学设计(共3篇)第1篇:一元一次方程教学设计删繁就简三秋树领异标新二月花————“一元一次方程应用”教学实录及反思临沂高都中学王兴玲列方程解应用题,是整个初中阶段数学教学的重点。
因此,在教学中让学生掌握好它的原理、方法及实质则显得十分重要。
在本节课教学过程中始终贯穿一条主线,即为什么要列方程、怎样列方程、怎样简捷地列方程等来阐明列方程的优越性、实质性及规律性。
具体设计如下:一、引言——故事的开端(为什么要列方程)问题1:临沂高都中学组织学生参观小埠东橡胶坝和沂河大桥(多媒体展示小埠东橡胶坝的图片、沂河大桥的美图等)师:在途中,我们遇到了一些有趣的数学问题希望同学们一起解决。
在参观小埠东橡胶坝时,朋朋感叹道:“这座橡胶坝真是宏伟壮观,不知道刚才参观的沂河大桥有多长”?小波马上说:“我知道,小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米。
”朋朋想:那么沂河大桥有多长呢?同学们能帮朋朋解决这个问题吗?问题1、小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,那么沂河大桥有多长?生1:沂河大桥长为(米)(师板演)师:除了列算式外,还有别的方法吗?生2:可以列方程师:如果用列方程的方法来解,设哪个未知数为x?生2:设沂河大桥的长为x米。
师:根据怎样的相当关系来列方程?方程的解是多少?生2:根据小埠东橡胶坝长1135米,是沂河大桥的2倍还多55米,列方程1135=2x+55,解得:x=540(教师板演)师:以上两种方法,大家比较、体会一下,我们为什么有时要用列方程的方法来解决实际问题呢?列方程有什么优越性?生3:列方程就是直来直往。
师:非常棒,列方程是顺向思考,而算数方法是逆向思考,较繁琐,且有时易出错,所以才需要学习:一元一次应用题(教师板书课题)师:有的同学习惯了算数方法,不愿意列方程,但有的实际问题数量关系比较复杂,用算数方法不易解决,如下面问题……(设计意图:根据新课程的理念,本节课创造性的使用教材,以学生熟悉的背景引入,具有较强的感染力和吸引力教学内容并不陌生,关键是要学生清楚问什么要用列方程来解决问题,列方程比直接算数列式有何优越性,小学中的算术可以吗?问什么要换个角度研究呢?)二、故事的发展——怎样列方程师:参观完大桥后,在途中我们遇到一位老大爷正在吃力地拉着一辆装满大米和面粉的手推车上坡,几位同学立即上前帮助。
数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。
教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。
过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。
情感与态度:增强应用数学的意识,激发学习数学的热情。
教学重点:从实际问题中寻找相等关系。
教学难点:从实际问题中寻找相等关系。
学习路线:篇二1、阅读课本。
2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。
求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
《一元一次方程》的优秀教案(精选9篇)

《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
一元一次方程教案优秀7篇

一元一次方程教案优秀7篇元一次方程教案篇一一、背景与意义分析本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。
方程有悠久的历史,它随着实践需要而产生,被广泛应用。
从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。
从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。
本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。
以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。
分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。
列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。
在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。
本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。
这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。
算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。
列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的`突破。
正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。
二、学习与导学目标1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。
2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。
一元一次方程解法教学设计(共7篇)

《一元一次方程解法教学设计(共7篇)》摘要:(2)4(x+2)-3(2x-1)=12,C、y-2=0 D、110xm (2)、如果3x+2=0是关于x的一元一次方程,那么m=__ (3)如果(k+1)x|k|+21=0是一元一次方程,则k=_______,小组探究,合作互助(试解下列一元一次方程)(1)-2x=4 (2)x+5=2《一元一次方程的解法》教学设计初中数学七年级上册第三章一元一次方程解法二第四课时《一元一次方程的解法》教学设计初中数学七年级上册第三章第四课时木兰县第一中学宋立业【摘要】:一元一次方程的解法创设情景,复习引入、体验实例,导入新知、分组探究,合作交流、实践操作,总结方法、教学反馈,引导小结、辨析纠错,巩固提高。
【关键词】:解方程去分母【教材分析】2教学目标:知识与技能:1 使学生掌握用去分母的方法解决含有整数分母的一元一次方程求解问题;2 使学生能够熟练的经过去分母、去括号、移项、合并同类项、系数化为1解出方程。
过程和方法:采用实验探究学习法,让学生亲身实验、经历和体验用去分母的方法解方程的过程,总结方法和规律,并加以应用,加深学生对知识的理解和掌握。
情感态度与价值观:1 通过探究性学习实验,培养学生自主探究,勇于探索和实践的学习精神;2 通过学习解方程的方法和过程,培养学生严谨、细致的学习习惯和责任感;3 通过学习过程中的交流与合作,提高学生的合作意识。
教学重点和难点重点:掌握去分母的方法和依据并熟练运用难点:理解去分母的方法和依据【学生情况分析】:尽管学生已经在前面几节课学习了一些解一元一次方程的方法,在小学学段已接触过本节课所要学习的部分类容,但是去分母的原理和容易错的地方仍然是这节课需要解决的重点和难点。
通过合作探究让学生体验知识的形成和运用的过程,提高学生学习的主动性,帮助学生的数学学习。
【教学策略】教法:通过“观察,实验,尝试,探究,解决”,合作探究,激发学生学习数学兴趣,提高解决问题的能力。
一元一次方程教案(4篇)

一元一次方程教案〔4篇〕元一次方程教案篇一一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、学问与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:〔1〕通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进展猜测、推断。
〔2〕运用所学过的数学学问进展分析,演练、合作探究,体会数学学问在社会活动中的运用,提高应用学问的力气和社会实践力气。
3、情感态度与价值观:通过数学活动,激发学生学习数学兴趣,增加自信念,进一步进展学生合作沟通的意识和力气,体会数学与现实的联系,培育学生求真的科学态度。
三、重难点与关键1、重点:经受探究具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点3、关键:明确问题中的量与未知量间的关系,查找等量关系。
四、教具预备:投影仪,每人一根质地均匀的直尺,一些一样的棋了和一个支架。
五、教学过程:(一)活动1一种商品售价为2.2元件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品n件,争论下面问题:这个人买了n件商品需要多少元?教师活动:〔1〕把学生每四人分成一组,进展合作学习,并参入学生中一起探究。
〔2〕教师对学生在发表解法时存在的问题加以指正。
学生活动:〔1〕分组后对活动一的问题开放争论,探究解决问题的方法。
〔2〕学生派代表上黑板板演,并发表解法。
解:2.2nn1002.2100+2(n-100)n100问题转换:一种商品售价为2.2元/件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品共花了n元,争论下面的问题:〔1〕这个人买这种商品多少件?〔2〕假设这个人买这种商品的件数恰是0.48n,那么n的值是多少?教师活动:同上学生活动:同上解:(1)n220100+n220〔2〕=0.48nn=0100+=0.48nn=500(二)活动2:本活动课前布置学生做好活动前的预备工作:1、预备一根质地均匀的直尺,一些一样的棋子和一个支架。
解一元一次方程 教学设计【优秀3篇】

解一元一次方程教学设计【优秀3篇】篇一:解一元一次方程教学设计1白话文的我细心为您带来了解一元一次方程教学设计【优秀3篇】,希望能够帮助到大家。
篇一:解一元一次方程教案设计篇一一。
教学目标:1。
学问目标:了解一元一次方程的概念,驾驭含括号的一元一次方程的解法。
2。
实力目标:培育学生的运算实力与解题思路。
3。
情感目标:通过主动探究,合作学习,相互沟通,体会数学的严谨,感受数学的魅力,增加学习数学的爱好。
二。
教学的重点与难点:1。
重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。
难点:括号前面是负号时,去括号时遗忘变号。
移项法则的敏捷运用。
三。
教学方法:1。
教法:讲课结合法2。
学法:看中学,讲中学,做中学3。
教学活动:讲授四。
课型:新授课五。
课时:第一课时六。
教学用具:彩色粉笔,小黑板,多媒体七。
教学过程1。
创设情景:今日让我们一起做个小小的嬉戏,这个嬉戏的名字叫:猜猜你心中的她心里想一个数将这个数+2将所得结果最终+7将所得的结果告知老师(抽一个同学,让他把他计算的`结果告知老师,由老师通过计算得到他最起先所想的数字。
)老师:同学们知道老师是怎样猜到的吗?同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今日所要学习的内容解一元一次方程。
2。
探究新知:一元一次方程的概念:前面我们遇到的一些方程,例如 3老师:大家视察这些方程,它们有什么共同特征?(提示:视察未知数的个数和未知数的次数。
)(抽同学起来回答,然后再由老师概括。
)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来推断一个式子是否是一元一次方程吗?再次强调特征:(1)只含一个未知数;(2)未知数的次数为1;(3)是一个整式。
(留意:这几个特征必需同时满意,缺一不行。
)3。
例题讲解:例1推断如下的式子是一元一次方程吗?(写在小黑板上,让学生推断,并分别抽同学起来回答,假如不是,要说出理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章一元一次方程
3.1从算式到方程
《一元一次方程》教学设计
一、教学目标
1.了解方程及一元一次方程的概念.
2.使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.
二、教学重点及难点
重点:方程及一元一次方程的概念,方程思想.
难点:从列算式到列方程的思维习惯的转变.
三、教学用具
电脑、多媒体、课件
四、相关资源
视频《一元一次方程定义的应用》,与课本内容要保持一致 .
五、教学过程
(一)创设情境
一辆客车和一辆卡车同时从A 地出发沿同一公路同方向行驶,客车的行驶速度是70 km /h ,卡车的行驶速度是60 km /h ,客车比卡车早1 h 经过B 地.A ,B 两地间的路程是多少?
1.你会用算术方法解决这个问题吗?
师生活动:学生审题之后教师展示问题,学生分组讨论解决问题的方法,学生代表展示结果,教师及时给予肯定或帮助,并说明算术解法不便捷.教师提出进一步学习新解法的必要性.
小结:对于1 km 的路程,客车比卡车少用11h 6070⎛⎫- ⎪⎝⎭
,则A ,B 两地间的路程是: 111=420km 6070⎛⎫÷- ⎪⎝⎭
(). 2.在学生尝试算术方法解决问题之后,教师提问:
(1)此题中涉及哪些量,这些量之间有什么关系?如何表示?
(2)你认为应引进什么样的未知量?如何用方程表示这个问题中的相等关系?
(3)列方程的依据是什么?
师生活动:教师与学生一起进行分析,引导学生找出相等关系列出方程.
小结:(1)本题中涉及一个相等关系,是从时间上考虑,两车的行使时间之差为1 h .
(2)如果设A ,B 两地相距x km ,则A ,B 两地间的路程是:
16070
x x -=. (3)列方程的依据是根据问题中的相等关系列出等式.
设计意图:让学生感受用算术解法不容易,使学生认识到进一步学习新解法的必要性.
(二)合作探究
1.对于上面的问题,你还能列出其他方程吗?
师生活动:教师提出问题,学生思考回答.
小结:设客车行驶时间为x h ,根据路程相等列方程,得:70x =60(x +1).
设计意图:这是一个行程问题,用未知量表示路程、时间、速度,让学生体会到用字母也可以表示数量,找出相等关系是列方程的关键所在,通过对问题的思考有助于分析问题.体会一个问题中的相等关系往往不止一个,所以列出方程的角度不是唯一的.
2.比较列算式和列方程解决这个问题各有什么特点?
师生活动:小组交流、讨论,教师组间巡查,关注学生是否认真讨论.
小结:用算术方法解题时,列出的算式只能用已知数.而列方程时,方程中既含有已知数,又含有用字母表示的未知数. 这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.
设计意图:让学生知道用算术方法解题时,列出的算式只能用已知数,而用方程解决问题时,方程中既含有已知数,又含有用字母表示的未知数,也就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.
3.你能归纳出方程的定义吗?
师生活动:教师引导学生结合上面等式的特征,给出方程的定义.学生归纳出定义之后,教师提问:你能列举方程的一个例子吗?
归纳:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程.
设计意图:这是首次正式给出方程的定义,学生在小学已经学过简易方程,通过举例可让学生回顾已经学过的知识.
(三)例题分析
例1 根据下列问题,设未知数并列出方程:
(1)用一根长24 cm 的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已经使用1 700 h ,预计每月再使用150 h ,经过多少月这台计算机的使用时间达到规定的检修时间2 450 h ?
(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?
师生活动:教师出示问题,学生独立完成,学生代表分析并展示结果.
解:(1)设正方形的边长为x cm ,列方程得:4x =24.
(2)设经过x 月,这台计算机的使用时间达到2 450 h ,那么在x 月里这台计算机使用了150x h .列方程得:150x +1 700=2 450.
(3)设这个学校的学生数为x ,那么女生数为0.52x ,男生数为(1-0.52)x .列方程得: 0.52x -(1-52%)x =80.
设计意图:通过例题的学习,让学生再次熟悉列方程时的设未知数、寻找相等关系、列出方程的过程,为一元一次方程的定义奠定基础.
例2 插入视频《一元一次方程定义的应用》,学习一元一次方程定义的实际应用.与课本内
容要保持一致 .内容如下:
已知2
(1)50a x ax --+=式关于x 的一元一次方程,求a 的值. 分析:因为该方程式一元一次方程,所以二次项应为0,即其系数1a -=0,而一次项ax -的系数a -≠0,可求得a 的值。
(四)深入探究
1.观察上面的例题,列出的三个方程有什么特征?
师生活动:教师引导学生对列出的方程进行特征分析.教师可以提示:方程的特征可以从未知数的个数和次数等来观察.
归纳:只含一个未知数(元),未知数的指数都是1(次),等号两边都是整式的方程叫做一元一次方程.
设计意图:运用三个问题巩固列方程的一般步骤,强调列方程是依据了相等关系,进一步让学生体会相等关系是列方程的关键.在归纳方程特征的过程中,培养学生观察、分析、归纳的能力.
2.怎样从实际问题中列出方程?列方程的依据是什么?
师生活动:学生针对上面的问题做进一步的思考、归纳,教师帮助学生规范语言,并展示结论.
小结:实际问题——设未知数——列方程——一元一次方程.
列方程的依据是:根据实际问题中的数量关系,利用其中的相等关系列出方程.
设计意图:归纳得出分析实际问题中的数量关系并利用其中的相等关系列出方程的方法.
3.什么叫做方程的解?你能举例吗?
师生活动:学生回答问题,教师关注学生举例是否正确.
小结:使方程中等号左右两边相等的未知数的值,就是方程的解.
例如:x =5叫做方程1 700+150x =2 450的解.
设计意图:通过问题提出,使学生得出方程的解的概念,理解其内涵.
(五)练习巩固
1.下列式子哪些是方程,哪些是一元一次方程?
(1)2x +1;(2)2m +15=3;(3)3x -5=5x +4;(4)x 2+2x -6=0;(5)-3x +1.8=3y ;
(6)3a +9>15.
解:方程是:(2)(3)(4)(5);一元一次方程是(2)(3).
设计意图:让学生巩固对方程与一元一次方程的概念的认识.
2.根据下列问题,设未知数,列出方程,并指出是不是一元一次方程:
(1)环形跑道一周长400 m ,沿跑道跑多少周,可以跑3 000 m ?
(2)甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元买了两种铅笔共20支,两种铅笔各买了多少支?
(3)一个梯形的下底长比上底长多2 cm ,高是5 cm ,面积是40 2cm ,求上底长;
(4)用10个大水杯的钱,可以买15个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?
解:(1)设跑3 000 m 需跑x 周,依题意,得:400x =3 000.
(2)设买甲种铅笔x 支,乙种铅笔(20-x )支,依题意,得:0.3x +0.6(20-x )=9.
(3)设上底长x cm ,依题意,得:()52402
x x ++=. (4)设大水杯的单价为x 元,小水杯的单价为(x -5)元,依题意,得:10x =15(x -5). 设计意图:让学生巩固列方程的基本步骤,在教给学生数学知识的同时,渗透建立数学模型的思想方法.
六、课堂小结
1.列算式和列方程解决问题的特点:
用算术方法解题时,列出的算式只能用已知数.而列方程时,方程中既含有已知数,又含有用字母表示的未知数.这就是说,在方程中未知数(字母)可以和已知数一起表示问题中的数量关系.
2.方程的定义:
列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程.
3.一元一次方程的定义:
只含一个未知数(元),未知数的指数都是1(次),等号两边都是整式的方程叫做一元一次方程.
4.列方程解决问题的一般步骤:
(1)弄清题意,找出题中数量间的相等关系;
(2)依据等量关系设未知数,一般用x表示;列出包含x的方程.
设计意图:通过归纳,加深学生对所学内容的理解,培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.
七、板书设计
3.1.1一元一次方程
1.一元一次方程的定义:
只含一个未知数(元),未知数的指数都是1,等号两边都是整式的方程叫做一元一次方程.
2.列方程解决问题的一般步骤:
(1)弄清题意,找出题中数量间的相等关系;
(2)依据等量关系设未知数,一般用x表示;列出包含x的方程
八、课堂扩展
1.未知数
本图片资源介绍了未知数的历史,为引入方程打好了铺垫,增加了学习的趣味性,适用于方程的教学.若需使用,请插入【数学文化】未知数
2.丢番图
本图片资源介绍了丢番图墓碑上的经典数学题,让学生体会利用列方程解决此问题的方便性,增加了趣味性.适用于方程的教学.若需使用,请插入【数学文化】丢番图.。