(完整)2019年高考文科数学全国2卷含答案
2019年全国II卷高考数学(文科)试题(带答案)

R心A,B,E,所以LABB一k4,EB1 •45° ,故儿在从巨3,
从I •2庄=6.
.心一作EFJ.BBl,垂足为F,则EF J.平面BB,C,C,且
EF
3.
D
所以,四棱锥E-BB1C 1C的体积V=3�Ix3x6x3:zl8.
Ai
18. (12分)
已知{心是各项均为正数的等比数列,q1 =2 , a, 罩 2ai +16.
• 4•
即
(2)由题意可知,
如 2 缸 16
湖,上 足x +条c件·上 的 x-点C ·p(一x1-,Y, )存了 ;在+当ib且' 仅-l当,
0
clyl..16,
@
X2 +y2 _礼
牛立. a b2 I. .
@
4
0知 由吵及a2..b2+c2得y2斗c , 又由
.
2
y
162 "'_ C2 ,
故b=4.
;
✓2 由嫡"
..
2
气 C 2 c2
平),所以c2
�b 2,
从而a2=b2
+C2 �劝2
=32,故a�4
.
当b=4, a�4✓2时 , 存在满足条件的点P.
所以丘4, a的取值范围为[众厅,+oo).
21. (12分) 已知函数f(x)=(x一l)lnx 丁 - 1.证明:
(1) /(x)存在唯一的极值点;
坐标原点. (1)若么沁只为等边三角形,求 C的离心率; (2)如果存在点P,使得PE.LP片 且纽PF:,.的面积等千16,求b的值和a的
取值范围. 解1 (1)连结P只.由t;;.POF,为等边三角形可知在ARPE中,OiPF2
2019年高考全国2卷文科数学试题含答案解析

2019年高考全国2卷文科数学试题解析1.设集合{1,2,3},{2,3,4}A B ==,则AB =A .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 【答案】A 【解析】由题意{1,2,3,4}A B =,故选A.2.(1i)(2i)++=A .1i -B .13i +C .3i +D .33i + 【答案】B3.函数π()sin(2)3f x x =+最小正周期为 A .4π B .2π C . π D .π2【答案】C【解析】由题意2ππ2T ==,故选C. 4.设非零向量a ,b 满足+=-a b a b ,则A .a ⊥bB .=a bC .a ∥bD .>a b 【答案】A【解析】由+=-a b a b 平方得222222+⋅+=-⋅+a a b b a a b b ,即0⋅=a b ,则⊥a b ,故选A.5.若1a >,则双曲线2221x y a-=的离心率取值范围是A .)+∞B .2)C .D .(1,2) 【答案】C6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为221π36π3463π2V =⋅⋅⋅+⋅⋅=,故选B. 7.设,x y 满足约束条件2+330,2330,30,x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩则2z x y =+的最小值是A .15-B .9-C .1D .9 【答案】A【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()6,3B --处取得最小值,最小值为min 12315z =--=-.故选A.8.函数2()ln(28)f x x x =--的单调递增区间是A .(,2)-∞-B . (,1)-∞C . (1,)+∞D . (4,)+∞ 【答案】D9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙结果则知道自己的结果,丁看到甲的结果则知道自己结果,故选D.10.执行下面的程序框图,如果输入的1a=-,则输出的S=A.2 B.3 C.4 D.5【答案】B11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【解析】如下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:总计有25种情况,满足条件的有10种. 所以所求概率为102255=. 12.过抛物线2:4C y x =的焦点F ,3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A 5B .2C . 23D . 33【答案】C二、填空题,本题共4小题,每小题5分,共20分. 13.函数()2cos sin f x x x =+的最大值为 . 5【解析】2()215f x ≤+=14.已知函数()f x 是定义在R 上函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f = .【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.15.长方体的长,宽,高分别为3,2,1,其顶点都在球O 球面上,则球O 的表面积为 . 【答案】14π【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===16.ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B = .【答案】π3【解析】由正弦定理可得1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=. 17.(12分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S . 18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,90.2AB BC AD BAD ABC ==∠=∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积. 19.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100个网箱,测量各箱水产品产量(单位:kg ), 其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:22()()()()()n ad bc K a b c d a c b d -=++++.K 2=22006266343815.70510010096104⨯⨯-⨯⨯⨯⨯()≈.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法. 20.(12分)设O 为坐标原点,动点M 在椭圆C 错误!未找到引用源。
2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年普通高等学校招生全国统一考试全国2卷含语文,理科数学,英语学科绝密★启用前2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。
而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。
杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。
这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。
就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。
我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。
就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。
2019年全国卷Ⅱ文数高考试题文档版有答案【优选真题】

2019年普通高等学校招生全国统一考试文科数学本试卷共5页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2)C .(-1,2)D .∅2.设z =i(2+i),则z = A .1+2i B .-1+2iC .1-2iD .-1-2i3.已知向量a =(2,3),b =(3,2),则|a -b |=A B .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23 B .35 C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6.设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+ 7.设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面8.若x 1=4π,x 2=43π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω= A .2 B .32C .1D .129.若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3 C .4 D .8 10.曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=11.已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=A .15BCD12.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 ABC .2D二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国2卷真题(含语文,理科数学,英语)及答案

2019年普通高等学校招生全国统一考试语文本试卷共22题,共150分,共10页。
考试结束后,将本试卷和答题卡一并交回。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。
而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。
杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物蒙蔽与局限,做到博观兼美而无所偏失。
这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。
就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。
我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。
就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。
其次值得注意的,则是杜甫严肃中之幽默与担荷中之欣赏,我以为每一位诗人对于其所面临的悲哀与艰苦,都各有其不同的反应态度,如渊明之任化,太白之腾跃,摩诘之禅解,子厚之抑敛。
2019年高考全国二卷数学试题答案解析-全国二卷数学答案解析

2
3p p
∴ p 2 p ,∴ p 8 . 2
9.
下列函数中,以
2
为周期且在区间
4
, 2
单调递增的是(
)
A. f (x) | cos 2x |
B. f (x) | sin 2x |
C. f (x) cos | x |
D. f (x) sin | x |
M1
3 3
3
M2 3M 1
,可得
r
3
M2 3M1
R
。
5. 演讲比赛共有 9 位评委分别给出某位选手的原始评分,评定该选手的成绩时,从 9 个原 始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分。7 个有效评分与 9 个原始评分 相比,不变的数字特征是( ) A. 中位数 B.平均数 C.方差 D.极差 A
对于 D,函数 f (x) sin | x | 的周期T ,不符合题意.
10. 已知 (0, ) , 2 sin 2 cos 2 1,则 sin (
)
2
1
A.
5
5
B.
5
C. 3 3
25
D.
5
B
(0, ) , 2 sin 2 cos 2 1 4 sin cos 2 cos2 , 2
足方程 M1 (R r)2
M2 r2
(R
r)
M1 R3
。设= r R
。由于
的值很小,因此在近似计算中
3 3 +3 4 5 (1 )2
3 3 ,则 r 的近似值为(
2019年全国卷2文科数学及答案

甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
丙:我的成绩比乙高.
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为
A .甲、乙、丙
B .乙、甲、丙
C .丙、乙、甲
D .甲、丙、乙
6.设 f(x)为奇函数,且当 x≥0时, f(x)= ex 1 ,则当 x<0 时, f(x)=
所以,四棱锥 E
BB1C1C 的体积 V
1 3 6 3 18 .
3
18.解:(1)设 an 的公比为 q,由题设得 2q2 4q 16 ,即 q2 2q 8 0 . 解得 q 2 (舍去)或 q=4. 因此 an 的通项公式为 an 2 4n 1 22 n 1 .
( 2)由( 1)得 bn (2 n 1) log 2 2 2n 1,因此数列 bn 的前 n项和为 1 3
2019年普通高等学校招生全国统一考试
全国卷 2文科数学·参考答案
1. C
2.D
3. A
4. B
5. A
6. D
7. B
8.A
9. D
10.C
11.B
12.A
13. 9
14. 0.98
3π
15.
4
16. 2 1
17.解:(1)由已知得 B1C1⊥平面 ABB1A1, BE 平面 ABB1A1,
故 B1C1 BE .
( 1)当 0 = 时,求 0 及 l 的极坐标方程; 3
( 2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程 .
23. [选修 4-5:不等式选讲 ]( 10 分)
已知 f ( x) | x a | x | x 2 | ( x a). ( 1)当 a 1 时,求不等式 f (x) 0的解集; ( 2)若 x ( ,1) 时, f (x) 0,求 a 的取值范围 .
2019年全国新课标2卷高考文科数学试题及答案

2019普通高等学校招生全国统一考试II卷文科数学第_卷选择题:本大题共124、题,每4、题5分,在每4、题给出的四个选项中,只有一项是符合题目要求的。
⑴已知集合a=M t<x<2},B=H0<x<3},则AU3=A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)2+ai日.顽----—=3+z,贝!J q=(2)若a实数,且1+,A.-4B.-3C.3D.4(3)根据下面给出的2019年至2019年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是C.2019年以来我国二氧化碳排放量呈减少趋势;D.2019年以来我国二氧化碳年排放量与年份正相关。
(4)已知向量"=(O,T)E=(-1,2),则(2a+i)・a=A.-1B.0C.1D.2/[-\、S〃是等差数列}的前〃项和,—%+%+%=3,则S5=A.5B.7C.9D.11(6)—个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为J.£££A.8b.7 c.6 D.5⑺已知三点A(1,O),B(O,g),C(2,73),则AABC夕卜接圆的圆,《到原点的距>离为5恒2^54A.3b.3 C.3 D.3(8)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术,执行该程序框图,若输入的a,b分别为14,18,则输出的a为开始输入a,b{a“}丫两——=4(。
4—1),则。
2=(9)已知等比数列4C2_1A.2B.1C.2D.8(10)已知A,B是球0的球面上两点,ZAO3=90°,C为该球面上动点,若三棱锥0_ABC 体积的最大值为36,则球0的表面积为A.367tB.647tC.144冗D. 256兀(11)如图,长方形的边AB=2,BC=1,0是AB的中点,点P沿着边BC,CD,与DA运动,记ZBOP=x,将动点P到两点距离之和表示为函数/■"),贝昕⑴的图像大致为/(x)=ln(l+|x|)-—二,则使得f3)>y(2x-1)成立的x的范围是(12)设函数1+尤("I)(-8,;)U(l,+8)(—;,!)(—8,—:)U(:,+8) A.3 B.3 C.33d.33第二卷填室题:本大题共4个小题,每小题5分己知国数八工)=心'―2工的图像过点(-1,4),贝此=%+y-5<0,<2x-y-l>0,贝!Jz=2尤+y的最大值为(14)若x,y满足约束条件—2'+1'°‘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试(全国II 卷)文科数学1.设集合1-|x x A,2|xx B ,则BA( )A.),1(B.)2,(C.)2,1(D.2.设(2)z i i ,则z( )A. 12iB. 12iC. 12iD.12i3.已知向量(2,3)ra,(3,2)rb,则r ra b()A. 2B. 2C.52D. 504.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙6. 设()f x 为奇函数,且当0x时,()1xf x e,则当0x时,()f x ()A. 1xe B. 1xe C. 1xe D .1xe7. 设,为两个平面,则//的充要条件是( )A.内有无数条直线与平行B.内有两条相交直线与平行C.,平行于同一条直线D.,垂直于同一平面8.若123,44x x 是函数()sin (0)f x x 两个相邻的极值点,则=A .2B.32C. 1D.129.若抛物线)0(22p px y的焦点是椭圆1322pyp x 的一个焦点,则p()A.2B.3C.4D.8 10. 曲线2sin cos y x x 在点(,1)处的切线方程为( )A.10x y B.2210x y C.2210x y D.1xy11.已知(0,)2,2sin 2cos21,则sin()A.15B.55C.33D.25512.设F 为双曲线2222:1(0,0)x y C a b ab的右焦点,0为坐标原点,以OF 为直径的圆与圆222x ya 交于,P Q 两点,若PQOF,则C 的离心率为:A.2B.3C.2D.5二、填空题13.若变量,x y 满足约束条件236302x y x y y 则3zxy 的最大值是.14. 我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站的高铁列车所有车次的平均正点率的估计值为 .15.ABC 的内角,,A B C 的对边分别为,,a b c .已知sin cos 0b A a B,则B.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共有个面,其棱长为 .(本题第一空2分,第二空3分.)三、解答题17.如图,长方体1111ABCDA B C D 的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.(1)证明:BE 平面11EB C (2)若1AEAE ,3AB,求四棱锥11EBB C C 的体积.18.已知n a 是各项均为正数的等比数列,162,2231a a a .(1)求n a 的通项公式:(2)设n na b 2log ,求数列n b 的前n 项和.19. 某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组0.20,00,0.200.20,0.400.40,0.600.60,0.80企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:748.602.20. 已知12,F F 是椭圆C :22221(0,0)x y a bab的两个焦点,P 为C 上的点,O 为坐标原点. (1)若2POF 为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ,且12F PF 的面积等于16,求b 的值和a 的取值范围.21. 已知函数()(1)ln 1f x x x x .证明:(1)()f x 存在唯一的极值点;(2)()0f x 有且仅有两个实根,且两个实根互为倒数.四、选做题(2选1)22.在极坐标系中,O 为极点,点0(,)M 0(0)在曲线:=4sinC 上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当3时,求及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.23.[选修4-5:不等式选讲]已知()|||2|()f x x a x x x a (1)当1a 时,求不等式()0f x 的解集:(2)若(,1)x 时,()0f x ,求a 得取值范围.2019年普通高等学校招生全国统一考试(全国II 卷)文科数学答案1. 答案:C 解析:1-|xx A ,2|xx B,∴)(2,1B A .2.答案:D 解析:因为(2)12zi i i ,所以12z i .3.答案:A 解答:由题意知(1,1)r ra b,所以2r ra b.4.答案:B 解答:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B 2,3,2,3,2,,3,,A BA B A B,则恰好有两只测量过的有6种,所以其概率为35.5.答案:A 解答:根据已知逻辑关系可知,甲的预测正确,乙丙的预测错误,从而可得结果.6. 答案:D 解答:当0x时,0x ,()1xf x e,又()f x 为奇函数,有()()1xf x f x e.7. 答案:B解析:根据面面平行的判定定理易得答案.8.答案:A 解答:由题意可知32442T即T=,所以=2.9.答案:D 解析:抛物线)0(22p px y的焦点是)0,2(p ,椭圆1322pyp x的焦点是)0,2(p ,∴p p 22,∴8p.10. 答案:C 解析:因为2cos sin y x x ,所以曲线2sin cos y x x 在点(,1)处的切线斜率为2,故曲线2sin cos yx x 在点(,1)处的切线方程为2210xy.11.答案:B 解答:(0,)2,22sin 2cos214sin cos 2cos,则12sin cos tan2,所以2125cos1tan5,所以25sin 1cos5.12. 答案:A解析:设F 点坐标为)0,2c (,则以OF 为直径的圆的方程为2222)2c yc x(-----①,圆的方程222a yx-----②,则①-②,化简得到cax2,代入②式,求得cab y,则设P 点坐标为),2c ab c a (,Q 点坐标为),2cabc a (,故c ab PQ2,又OF PQ ,则,2c cab 化简得到2222b acab,b a ,故2222aa ab aac e.故选A. 二、填空题13.答案:9解答:根据不等式组约束条件可知目标函数3z xy 在3,0处取得最大值为9.14.答案:0.98解答:平均正点率的估计值0.97100.98200.99100.9840.15.答案:34解析:根据正弦定理可得sin sin sin cos 0B A A B,即sin sin cos 0A B B ,显然sin 0A ,所以sin cos 0B B,故34B.16.答案:26 21解析:由图2结合空间想象即可得到该正多面体有26个面;将该半正多面体补成正方体后,根据对称性列方程求解.三、解答题17.答案:(1)看解析(2)看解析解答:(1)证明:因为11B C C 面11A B BA ,BE 面11A B BA∴11B C BE ⊥又1111C EB C C ,∴BE平面11EB C ;(2)设12AA a 则229BEa ,22118+a C E,22194C Ba 因为22211=C B BEC E∴3a ,∴11111h3EBB C CBB C C V S 1363=18318.答案:(1)122n n a ;(2)2n解答:(1)已知162,2231a a a ,故162121qa q a ,求得4q 或2q ,又0q ,故4q,则12111242n n n nqa a .(2)把n a 代入n b ,求得12n b n ,故数列n b 的前n 项和为22)]12(1[n nn .19. 答案:详见解析解答:(1)这类企业中产值增长率不低于40%的企业比例是14721100100,这类企业中产值负增长的企业比例是2100.(2)这类企业产值增长率的平均数是0.1020.10240.30530.50140.7071000.30这类企业产值增长率的方差是222220.100.3020.100.30240.300.30530.500.30140.700.3071000.0296所以这类企业产值增长率的标准差是220.0296748.6020.172040.17100100.20. 答案:详见解析解答: (1)若2POF 为等边三角形,则P 的坐标为3,22c c ,代入方程22221xy ab,可得22223144c c ab,解得2423e,所以31e .(2)由题意可得122PF PF a u u uu ru u u u r ,因为12PF PF ,所以222124PF PF c u uu ru u u u r ,所以22121224PF PF PF PF c u u u r uu u u r u uu r u u u u r ,所以222122444PF PF a cb u uu ru uu u r ,所以2122PF PF b uu u r uu u u r ,所以122121162PF F SPF PF bu u u r u u u u r ,解得4b .因为212124PF PF PF PF u u u r u uu u r u uu r u uu u r,即21224aPF PF u uu r u uu u r ,即212aPF PF u u u r uu u u r,所以232a,所以42a .21. 答案:见解析解答:(1)1()ln (0)f x xx x,设1()ln g x xx,211()g x xx则()g x 在(0,)上递增,(1)10g ,11(2)ln 2ln 022g e,所以存在唯一0(1,2)x ,使得00()()0f x g x ,当00x x 时,0()()0g x g x ,当0x x 时,0()()0g x g x ,所以()f x 在0(0,)x 上递减,在0(,)x 上递增,所以()f x 存在唯一的极值点.(2)由(1)知存在唯一0(1,2)x ,使得0()0f x ,即01ln x x ,000000011()(1)ln 1(1)1()0f x x x x x x x x x ,22221113()(1)(2)110f e e e e,2222()2(1)130f e e ee,所以函数()f x 在0(0,)x 上,0(,)x 上分别有一个零点. 设12()()0f x f x ,(1)20f ,则121x x x ,有1111111(1)ln 10ln 1x x x x x x ,2222221(1)ln 10ln 1x x x x x x ,设1()ln 1x h x xx ,当0,1x x 时,恒有1()()0h x h x,则12()()0h x h x 时,有121x x .22.答案:(1)23,l 的极坐标方程:sin()26;(2)P 点轨迹的极坐标方程为=4cos(,)42.解析:(1)当03时,=4sin4sin233,以O 为原点,极轴为x 轴建立直角坐标系,在直角坐标系中有(3,3)M ,(4,0)A ,3OM k ,则直线l 的斜率33k,由点斜式可得直线l :3(4)3y x ,化成极坐标方程为sin()26;(2)∵lOM ∴2OPA,则P 点的轨迹为以OA 为直径的圆,此时圆的直角坐标方程为22(2)4x y,化成极坐标方程为=4cos ,又P 在线段OM 上,由4sin 4cos可得4,∴P 点轨迹的极坐标方程为=4cos(,)42.23.答案(1)看解析(2)看解析解答:(1)当1a 时,22242(2),()12(1)22(12),242(1).xx x f x x x x x x xxxx所以不等式()0f x 等价于224202x x x或22012x x或224201x x x 解得不等式的解集为2x x 。