matlab解析法画凸轮轮廓线

合集下载

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB 画法1 凸轮轮廓方程*()()*()()*()*()X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。

E :从动件的偏心距。

R :凸轮的基园半径。

J :凸轮的转角。

S :S=f(J)为从动件的方程。

So :22O S R E =-H 为从动件的最大位移(mm )。

J1、J2、J3、J4为从动件的四个转角的区域。

S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。

2 实例R=40,E=10,H=50,J1=J2=J3=J4=900。

3 MATLAB 程序设计用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组:J=[J1,J2,J3,J4];S=[S1,S2,S3,S4];X=[X1,X2,X3,X4];Y=[Y1,Y2,Y3,Y4];用函数plot (X,,Y )画出凸轮的轮廓曲线;用plot (J,S )函数位移S 的曲线;对于速度曲线V-t 和加速度曲线a-t ,ds ds ds dt dt V dJ dJ dtω=== 在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以ds ds ds ds dt dt V dJ dt dJ dtω====速度 同理可得:dJ ds dt dv a 22==加速度4 程序运行结果图一:余弦速运动规律下的凸轮轮廓曲线图二:余弦加速作用下的S-α曲线5 附程序:1、程序实例说明R=40;E=10;H=50;J1=90;J2=90;J3=90;J4=90;S0=(R^2-E^2)^(1/2);syms J S dJ dS d2J d2S syms定义符号变量,定义后字符变量才能用J11=linspace(0,J1,500);linspace用于产生两点间的N点行矢量。

基于MATLAB的凸轮轮廓曲线设计

基于MATLAB的凸轮轮廓曲线设计

tulun=@(x) (200*((x./pi)-1/(2*pi)*sin(2*x))).*(x>=0&x<= pi)+(-200/pi*x+400).*(x>=pi&x<=2*pi); i=1; (下转第174页)
《科技传播》 2011•8(上) 176
应用技术 Applied Technology
4 结论
在隧道施工的整个工程中 , 一旦发生灾害性事故 , 不仅延误 工期、大幅度提高工程费用 , 同时如处理不当 , 还会遗留工程质 量后患 , 甚至出现人生伤害 , 但由于隧道施工地质条件的不断变 化, 当一些不能预计到的突发现象发生时 , 应采取各种应变措施 , 按照安全、优质、高效、投资节约的总原则对事故进行处理 , 这 就是动态施工管理的本质含义。 在软弱围岩中的隧道施工 , 导致塌方的原因虽然是多种多样 的, 但如果在施工管理和技术上加以认真地改善 , 遵循“先预探、 管超前、预注浆、短进尺、弱爆破、强支护、早封闭、勤量测、 图 23.1.3 差动变压器结构示意图 图 3 差动变压器原理图 锚杆 快反馈、紧衬砌”的施工原则 , 加强超前地质预报和监控量测信 当铁芯由中心向上端移动时, L1 和 L2 的电感耦合增加, e2 增大, 而 L1 和 L3 的电感耦合减小, 锚杆是隧道施工过程中维护围岩稳定 , 保证施工安全的重要 息反馈 , 及时调整设计参数 , 就会使塌方事故得到有效控制 , 因 e3 变小,故两个次级绕组便产生电压差△e(△e=e2—e3) ,此输出电压△e 与铁芯的位移在一定范 支护手段之一 , 施工完成后 , 在一定程度上还可以作为永久支护 此要更多地从施工方面去分析塌方的原因 , 如由于抢工期心切而 围内成线性关系,因此差动变压器就将铁芯的位移量转换成电量。当铁芯由中心向下移动时,L1 结构的一部分发挥作用。对于软弱围岩中的隧道施工 , 锚杆能有 忽略地质因素 ; 片面追求进尺而不及时封闭断面或不及时跟进衬 与 L3 的电感耦合增大, e3 增大,而 L1 与 L2 的耦合减小,e2 变小,故次级输出电压△ e =e3—e2 , 此输出电压在相位上改变了 180º。在图(四)中,铁芯由中心零点向任一端移动时,次级输出电压 效限制约束围岩变形 , 制止围岩强度的恶化 , 其加固作用 , 可使 砌; 在出现塌方迹象时不采取或被动采取辅助措施 ; 破碎岩层中 △e 均为交流,若△ e 直接使用电压表测量,只能反映位移的大小,不能反映方向,为了达到消除 围岩中松动区的节理裂隙及破裂面等得以联结 , 使锚固区围岩形 不设超前支护或支护不到位等 , 都是造成塌方或是塌方扩大的原 零点残余电压及辨别方向的目的,必须经过放大和相位调节,才能得到正、负极性的输出电压,从 成整体加固带 , 大幅提高围岩强度 , 同时锚杆群可有效提高层状 因。 而判断出铁芯的正、负方向。 围岩的层间结合力 , 以提高隧道的整体稳定性。 若忽略涡流损耗、铁损等因素,差动变压器的输出由下式确定: 参考文献 锚杆施工中 , 要合理确定锚杆参数 , 充分发挥群锚作用 , 避 若铁芯处于中间平衡位置 [1]关宝树,杨其新.地下工程概论[M].成都:西南交通大学 免不配置垫板、布置不合理、砂浆充填不密实及长锚短打等现象 △e = 0 出版社,2001. 若铁芯上升时 发生。 [2]铁道部.铁路隧道工程施工技术指南(TZ 204-2008)[S]. ui 3.2 塌方处理效果 △e = 2ω△M 北京:中国铁道出版社,2008. 2 2 R p + ( ωL p ) 本次塌方处理从 7 月 24 日开始 , 至 9 月底处理完毕 , 整个处 [3]铁道部.铁路隧道喷锚构筑法技术规范[S].北京:中国铁 理过程历时 2 个多月 , 实际注浆量 224.0m3。注浆完毕后 , 开挖情 道出版社,2002. 若铁芯下降时 况显示 , 坍体泥岩破碎体及土石松散体相当于凝结成一个低标号 [4]铁路工程施工技术手册——隧道(上、下册)[M].北京: ui ,经量测资料分析 , 的混凝土整体 , 隧道拱部也具备了自稳能力 中国铁道出版社,2003. △e = -2ω△M

凸轮轮廓线的绘制(MATLAB)

凸轮轮廓线的绘制(MATLAB)

H a r b i n I n s t i t u t e o f T e c h n o l o g y课程名称:精密机械学基础设计题目:直动从动件盘形凸轮的设计院系:航天学院控制科学与工程系班级: 0904102班设计者:陈学坤学号: ********** 设计时间: 2011年10月直动从动件盘形凸轮机构的计算机辅助设计说明:凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。

此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。

首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。

1 凸轮轮廓方程*()()*()()*()*()X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+-(X,Y):凸轮轮廓线上的任意一点的坐标。

E :从动件的偏心距,OC 。

R :凸轮的基园半径,OA 。

J :凸轮的转角。

S :S=f(J)为从动件的方程。

So :O S =H 为从动件的最大位移(mm )。

J1、J2、J3、J4为从动件的四个转角的区域。

S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。

2 实例R=40,E=10,H=50,J1=J2=J3=J4=900。

3 MATLAB 程序设计用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组:J=[J1,J2,J3,J4];S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4];用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,ds ds ds dt dt V dJ dJ dtω===在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以ds ds ds ds dt dt V dJ dt dJ dtω====速度 同理可得:dJds dtdva 22==加速度4 程序运行结果图一:余弦速运动规律下的凸轮轮廓曲线图二:余弦加速作用下的S-α曲线图三:余弦加速作用下的v-t曲线图四:余弦加速作用下的a-t曲线5 附程序:function tulunR=40;E=10;H=50;J1=90;J2=90;J3=90;J4=90;S0=(R^2-E^2)^(1/2);syms J S dJ dS d2J d2SJ11=linspace(0,J1,500);S1=(H/2).*(1-cos(pi.*J11/J1));X1=E.*cos(J11.*pi/180)+(S0+S1).*sin(J11.*pi/180); Y1=(S0+S1).*cos(J11.*pi/180)-E.*sin(J11.*pi/180);J22=linspace(J1,J1+J2,300);S2=J22./J22.*H;X2=E.*cos(J22.*pi/180)+(S0+H).*sin(J22.*pi/180); Y2=(S0+H).*cos(J22.*pi/180)-E.*sin(J22.*pi/180);J33=linspace(J1+J2,J1+J2+J3,300);S3=H-(H/2).*(1-cos(pi*J33/J3));X3=E*cos(J33*pi/180)+(S0+S3).*sin(J33*pi/180);Y3=(S0+S3).*cos(J33*pi/180)-E*sin(J33*pi/180);J44=linspace(J1+J2+J3,J1+J2+J3+J4,300);X4=E.*cos(J44*pi/180)+S0*sin(J44*pi/180);Y4=S0.*cos(J44*pi/180)-E*sin(J44*pi/180);S4=J44./J44.*0;X=[X1,X2,X3,X4];Y=[Y1,Y2,Y3,Y4];figure(1);plot(X,Y);hold on;t=linspace(0,2*pi,500);x=R*cos(t);y=R*sin(t);plot(x,y);title('凸轮的轮廓曲线');axis([-90,90,-90,90]);axis square;figure(2);plot(J11,S1);hold on;plot(J22,S2);plot(J33,S3);plot(J44,S4);ylabel('S');xlabel('α/rad');title('S-α曲线');J=[J11,J22,J33,J44];S=[S1,S2,S3,S4];dS=diff(S)./diff(J); %通过对位移求导后可得速度。

基于matlab的凸轮轮廓曲线的分析与研究

基于matlab的凸轮轮廓曲线的分析与研究
流 程 如 图 2所 示 。
型凸轮的理论廓线和实际廓线( 如图 3所 示) 。
4 应 用 实例
例: 已知凸轮基圆半径 =0m , 5
直 动 从 动 件 滚 子 半 径 r =1 f , r 2n n 偏
哪 }
0…、… . } 一j.. 一} \: I’一 、 一 …

: _( y y_ )
() 3
观化、 单化、 简 精
确化 。
2 求 凸轮 轮 廓 曲线
如图 1 示 。 所 已 知 凸 轮 基 圆 半 径 r、 距 e 滚 子 n偏 、
一d) 吖y )J 二 l /I √d ( 毒寒 + t b (
d x
:㈩ 、 … 源自半 径 r 其 从 动 。及
n s wih t e ma lb c m iig tch i u ,a a t h o e i a im t h ta o pln e n q es n d drwsis te r tc a d ra itc o ti e c r e y wa fa x m pe. n e si u ln u v s b y o e a l l n K e r s:h r fe v lp; u ln ure; i ei ul ft e flo r ma ab y wo d te y o n eo o ti e c v k n tc r e o h o lwe ; d o
1 引言
凸轮机 构设计 的关键 是凸轮廓线 的设计 , 凸轮的廓 线 而 形状 取决于从 动件的运动规律 。采用包络原理来求解凸轮廓
线 是 分 析 和 研究 凸 轮机 构 的一 种 很 重 要 的 方 法 。
M t b是 M tWok 公司于 18 al a ah rs 92年 推 出的一 套商性 能 的数值 计算和可视化 软件 , 它集数值 分析 、 矩阵运算 、 号处 信

凸轮廓线设计MATLAB程序

凸轮廓线设计MATLAB程序

凸轮轮廓及其综合1. 凸轮机构从动件的位移凸轮是把一种运动转化为另一种运动的装置。

凸轮的廓线和从动件一起实现运动形式的转换。

凸轮通常是为定轴转动,凸轮旋转运动可被转化成摆动、直线运动或是两者的结合。

凸轮机构设计的内容之一是凸轮廓线的设计。

定义一个凸轮基圆r b 作为最小的圆周半径。

从动件的运动方程如下:L(ϕ)=r b +s(ϕ)设凸轮的推程运动角和回程运动角均为β,从动件的运动规律均为正弦加速度运动规律,则有:s(ϕ)=h(βϕ-π21sin(2πϕ/β)) 0≤ϕ≤β s(ϕ)=h -h(ββϕ--π21sin(2π(ϕ-β/β)) β≤ϕ≤2β s(ϕ)=0 2β≤ϕ≤2π上式是从动件的位移,h 是从动件的最大位移,并且0≤β≤π。

如果假设凸轮的旋转速度ω=d ϕ/dt 是个常量,则速度υ、加速度a 和瞬时加速度j (加速度对时间求异)分别如下:速度:υ(ϕ)=βωh (1-cos(2πϕ/β)) 0≤ϕ≤β υ(ϕ)=-βωh (1-cos(2π(ϕ-β)/β) β≤ϕ≤2β υ(ϕ)=0 2β≤ϕ≤2π加速度:a(ϕ)=222βπωhsin(2πϕ/β)) 0≤ϕ≤βa(ϕ)=-222βπωhsin(2π(ϕ-β)/β) β≤ϕ≤2βa(ϕ)=0 2β≤ϕ≤2π瞬时加速度:j(ϕ)=3324βωπhcos(2πϕ/β)) 0≤ϕ≤βj(ϕ)=-3324βωπhcos(2π(ϕ-β)/β) β≤ϕ≤2βj(ϕ)=0 2β≤ϕ≤2π定义无量纲位移S=s/h 、无量纲速度V=υ/ωh 、无量纲加速度A=a/h ω3和无量纲瞬时加速度J=j/h ω3。

若β=60°,则如下程序可以对以上各个量进行计算。

beta=60*pi/180;phi=linspace(0,beta,40);phi2=[beta+phi];ph=[phi phi2]*180/pi;arg=2*pi*phi/beta;arg2=2*pi*(phi2-beta)/beta;s=[phi/beta-sin(arg)/2/pi 1-(arg2-sin(arg2))/2/pi];v=[(1-cos(arg))/beta-(1-cos(arg2))/beta];a=[2*pi/beta^2*sin(arg)2*pi/beta^2*sin(arg2)];j=[4*pi^2/beta^3*cos(arg)4*pi^2/beta^3*cos(arg2)]:subplot(2,2,1)plot(ph,s,ˊK ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊDisplacement(S)ˊ)g=axis; g(2)=120; axis(g)subplot(2,2,2)plot(ph,v,ˊk ˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊVelocity(V)ˊ)g=axis; g(2)=120; axis(g)subplot(2,2,3)plot(ph,a,ˊk ˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊAcceleration(A)ˊ)g=axis;g(2)=120;axis(g)subplot(2,2,4)plot(ph,j,ˊkˊ,[0 120],[0 0],ˊk--ˊ)xlabel(ˊCam angle(degrees)ˊ)ylabel(ˊJerk(J)ˊ)g=axis;g(2)=120;axis(g)2 平底盘形从动作参考下图得到如下关系:在(x,y)坐标系中,凸轮轮廓的坐标为Rx和Ry,刀具的坐标为Cx和Cy:Rx=Rcos( θ+ϕ) Ry=Rsin( θ+ϕ)C x=Ccos( γ+ϕ) C y=Ccos( γ+ϕ)其中, R=θcos L θ=arctan ⎪⎪⎭⎫ ⎝⎛ϕd dL L 1 c=γγcos c L + γ=arctan ⎪⎪⎭⎫ ⎝⎛+c L d dL γϕ/ r c 是刀具的半径,且dL/d ϕ=V(ϕ)/ω。

matlab凸轮轮廓设计及仿真说明书

matlab凸轮轮廓设计及仿真说明书
1.2
滚子半径
=40
1
第一章:工作意义
1.1本次课程设计意义1.2已知条件
第二章:工作设计过程5
2.1:设计思路5
2.2:滚子从动件各个阶段相关方程6
2.பைடு நூலகம்:盘型凸轮理论与实际轮廓方程7
工工“..A作……'A程过A程
3.1:滚子从动件各各阶段MATLAB程序编制…*8
3.2:凸轮的理论实际运动仿真程序编制
12
第四章…?: •……
运行结果
17
4.1:滚子运动的位移图17
4.2:滚子运动的速度图17
4.3:滚子运动的加速度图,局部加速度图……18—
44滚子运动的仿真图19
4.5:滚子运动的理论与实际轮廓图20
6.1:参考文献
22
第一章:工作意义
1.1 本次课程设计意义凸轮是一个具有曲线轮廓或凹槽的构件, 一般为主动件, 作等速回转运动或往复直线运动。与凸轮轮廓接触,并传递 动力和实 现预定的运动规律的构件, 一般做往复直线运动或 摆动,称为从动件。凸轮机构在应用中的基本特点在于能使
程和回程。凸轮轮廓曲线决定于位移曲线的
形状。在某些机械中,位移曲线由工艺过程决定,但一般
情况下只有行程和对应的凸轮转角根据工作需要决定,而
曲线的形状则由设计者选定,可以有多种运动规律。传统的凸轮运动
规律有等速、等加速-等减速、余弦加速度和正弦 加速度等。等速运 动规律因有速度突变,会产生强烈的刚性 冲击,只适用于低速。等加 速-等减速和余弦加速度也有加速度突变,会引起柔性冲击,只适用
思路口。因此,基于MATLAB件进行凸轮机构的解析法设计,可以解
决设计工作量大的问题。
本此课程设计基于MATLAB软件进行凸轮轮廓曲线的 解析法 设计,并 对的运动规律凸轮进行仿真,其具体方法为首先精确地 计算出轮 廓线

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB 画法1 凸轮轮廓方程*()()*()()*()*()X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。

E :从动件的偏心距。

R :凸轮的基园半径。

J :凸轮的转角。

S :S=f(J)为从动件的方程。

So :22O S R E =-。

H 为从动件的最大位移(mm )。

J1、J2、J3、J4为从动件的四个转角的区域。

S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。

2 实例R=40,E=10,H=50,J1=J2=J3=J4=900。

3 MATLAB 程序设计用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组:J=[J1,J2,J3,J4];S=[S1,S2,S3,S4];X=[X1,X2,X3,X4];Y=[Y1,Y2,Y3,Y4];用函数plot (X,,Y )画出凸轮的轮廓曲线;用plot (J,S )函数位移S 的曲线;对于速度曲线V-t 和加速度曲线a-t ,ds ds ds dt dt V dJ dJ dtω=== 在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以ds ds ds ds dt dt V dJ dt dJ dtω====速度 同理可得:dJ ds dt dv a 22==加速度4 程序运行结果图一:余弦速运动规律下的凸轮轮廓曲线图二:余弦加速作用下的S-α曲线5 附程序:1、程序实例说明R=40;E=10;H=50;J1=90;J2=90;J3=90;J4=90;S0=(R^2-E^2)^(1/2);syms J S dJ dS d2J d2S syms定义符号变量,定义后字符变量才能用J11=linspace(0,J1,500);linspace用于产生两点间的N点行矢量。

基于MATLAB语言的凸轮轮廓曲线的解析法设计

基于MATLAB语言的凸轮轮廓曲线的解析法设计

obtained, so that 也e accuracy is higher and the fitting is more accurate.
Keywords: cam mechanism; oscillating follower; simulation design; MATLAB
。引言 凸轮机构结构筒单而且紧凑,能传递较大功率以及任
Abstrad: Taking the oscillating follower and disk c皿1 mechanism as examples, this paper analyzes 也e contour curve
of oscillating follower and disk cam mechanism based on MATLAB. The powerful data processing and drawing
I 网址,刷刷.jxg臼 com 电邮 hrbengineer@163 ∞m 囚18 年第 7 期
1
机械工程师
MECHANICAL ENGINEER
样的状况,所以也会有柔性的冲击,这种运动规律的凸轮 结构只适用于中速凸轮机构。如果从动件在整个运动过 程中不会停止时,加速度的曲线是连续不断的,因而就不 会发生冲击现象,这种情况下就适用于高速凸轮机构中, 具体公式如下。
基金项目:河北省研究生创新资助项目 (CXZZSS2017173 );
北华航天工业学院科研创新项目 (YKY201502 ,
YKY201616)
能采用传统的人工处理方法,否则就会严重影响数据的 准确度以及图形的精度。解析法可以精确计算轮廓线上 各点的坐标,误差比较小。当从动件运动比较复杂,工作 量大时,用 MATLAB 软件可以很容易进行凸轮轮廓曲线 的解析法设计归呵。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m a t l a b解析法画凸轮
轮廓线
-CAL-FENGHAI.-(YICAI)-Company One1
班级:姓名:学号:
基于matlab的凸轮轮廓设计
一、设计凸轮机构的意义
在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作表面具有一定形状的凸轮。

凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。

如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。

所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、计算机的辅助装备及农业机具等,都可以找到凸轮机构。

在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。

设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。

因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。

Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。

其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。

因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。

运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。

二、设计凸轮机构的已知条件
凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。

从动件在推程做等加/减速运动,在回程做余弦加速运动。

基圆半径rb=50mm,滚子半径
rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100o,远休止角fs=60o,回程运动角fh=90o。

三、分析计算
1、建立坐标系
以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。

2、推杆运动规律计算
凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。

根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为:
推程加速阶段(0~)
推程减速阶段()
远休止阶段()推杆运动方程为
根据已知条件,在回程做余弦加速运动,因此回程阶段()的运动方程为
近休止阶段)的运动方程为
3、凸轮理论轮廓线计算
式中,为推杆滚子中心到X轴的垂直距离。

4、实际轮廓线计算
根据3的计算结果有
可得
凸轮实际轮廓线为
四、程序代码
rb = 50;
rt = 10;
e = 10;
h = 50;
ft = 100;
fs = 60;
fh = 90;
hd= pi / 180;
du = 180 / pi;
se=sqrt( rb^2 - e^2 );
d1 = ft + fs;
d2 = ft + fs + fh;
n = 360;
s = zeros(n);
ds = zeros(n);
x = zeros(n);
y = zeros(n);
dx = zeros(n);
dy = zeros(n);
xx = zeros(n);
yy = zeros(n);
xp = zeros(n);
yp = zeros(n);
for f = 1 : n
if f <= ft/2
s(f) = 2 * h * f ^ 2 / ft ^ 2; s = s(f);
ds(f) = 4 * h * f * hd / (ft * hd) ^ 2; ds = ds(f);
elseif f > ft/2 & f <= ft
s(f) = h - 2 * h * (ft - f) ^ 2 / ft ^ 2; s = s(f);
ds(f) = 4 * h * (ft - f) * hd / (ft * hd) ^ 2; ds = ds(f);
elseif f > ft & f <= d1
s = h;ds = 0;
elseif f > d1 & f <= d2
k = f - d1;
s(f) = .5 * h * (1 + cos(pi * k / fh)); s = s(f);
ds(f)= * pi * h * sin(pi * k / fh) / (fh * hd); ds = ds(f);
elseif f > d2 & f <= n
s = 0;ds = 0;
end
xx(f) = (se + s) * sin(f * hd) + e * cos(f * hd); x = xx(f);
yy(f) = (se + s) * cos(f * hd) - e * sin(f * hd); y = yy(f);
dx(f) = (ds - e) * sin(f * hd) + (se + s) * cos(f * hd); dx = dx(f); dy(f) = (ds - e) * cos(f * hd) - (se + s) * sin(f * hd); dy = dy(f); xp(f) = x + rt * dy / sqrt(dx ^ 2 + dy ^ 2);xxp = xp(f);
yp(f) = y - rt * dx / sqrt(dx ^ 2 + dy ^ 2);yyp = yp(f);
end
disp ' 凸轮转角理论x 理论y 实际x 实际y'
for f = 10 : 10 :ft
nu = [f xx(f) yy(f) xp(f) yp(f)];
disp(nu)
end
disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = d1 : 10 : d2
nu = [f xx(f) yy(f) xp(f) yp(f)];
disp(nu)
end
plot(xx,yy,'r-.')
axis ([-(rb+h-10) (rb+h+10) -(rb+h+10) (rb+rt+10)])
axis equal
text(rb+h+3,0,'X')
text(0,rb+rt+3,'Y')
text(-5,5,'O')
title('偏置移动从动件盘形凸轮设计')
hold on;
plot([-(rb+h) (rb+h)],[0 0],'k')
plot([0 0],[-(rb+h) (rb+rt)],'k')
plot([e e],[0 (rb+rt)],'k--')
ct = linspace(0,2*pi);
plot(rb*cos(ct),rb*sin(ct),'g')
plot(e*cos(ct),e*sin(ct),'c--')
plot(e + rt*cos(ct),se + rt*sin(ct),'m')
plot(xp,yp,'b')
五、运行结果截图。

相关文档
最新文档