矩阵的秩与初等变换

合集下载

矩阵求秩方法

矩阵求秩方法

矩阵求秩方法
求矩阵的秩是线性代数中常见的问题,以下是关于矩阵求秩的10条方法及其详细描述:
1. 奇异值分解法:通过对矩阵进行奇异值分解,将矩阵变换为一个对角矩阵,其中非零元素的个数即为矩阵的秩。

2. 初等变换法:利用矩阵的初等行(列)变换,将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。

3. 极大线性无关组法:通过逐步选择矩阵中的列,构建一个极大线性无关组,其中向量的个数即为矩阵的秩。

4. 秩-零空间法:矩阵的秩与其零空间的维数之和为矩阵的列数。

可以通过计算矩阵的零空间 (null space) 的维数来求解矩阵的秩。

5. 行列式法:矩阵的行列式非零的最大子阵的阶数就是矩阵的秩。

6. 直接检验法:将矩阵转换为梯形矩阵或行阶梯矩阵,其中非零行的个数即为矩阵的秩。

7. 特征值法:矩阵的秩等于其特征值不为零的个数。

8. 与单位矩阵求秩法:通过将矩阵与单位矩阵进行连接,得到一个增广矩阵,进而将其化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。

9. Gauss-Jordan消元法:通过高斯消元法和高斯约当消元法将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。

10. 极大线性无关组与生成组比较法:利用极大线性无关组与生成组的关系来求解矩阵的秩,其中生成组的个数等于矩阵的秩。

矩阵的初等变换与矩阵的秩课堂ppt

矩阵的初等变换与矩阵的秩课堂ppt

行最简形矩阵
有限次初等行变换
有限次初等列变换 标准形矩阵
h
20
四、初等矩阵与矩阵的初等变换的关系:
定义2 对单位矩阵I施以一次初等变换得到的矩阵称为初 等矩阵。
初等矩阵有下列三种: I(i, j)、I(i(k))、I (i, j(k))。
例如,下面是几个4阶初等矩阵:
1000
1000
I
0 1 0 0 r2r4 ———
这是因为
I(i, j)I(i, j)I, I(i(k1))I(i(k))I ,
I(i,j(k))I(i, j(k) )I 。
h
24
首页
五、初等变换与矩阵乘法的关系
定理1 设A是一个mn矩阵。 对A施行一次初等行变换 相当于在A的左边乘以相应的m阶初等矩阵;对A施行一次 初等列变换相当于在A的右边乘以相应的n 阶初等矩阵。
0010
0010
0001
0001
h
23
下页
四、初等矩阵与矩阵的初等变换的关系:
初等矩阵的可逆性: 容易验证:
(1) |I(i, j) |-1, (2)|I(i(k)) | k, (3)| I (i, j(k)) | 1,
因此初等矩阵都是可逆的,且它们的逆矩阵仍是初等矩阵:。
I(i, j)1I(i, j),I(i(k))1I(i(k1)),I(i,j(k))1I(i ,j (k)) 。
交换第i列与第j列记为cicj。例如
1 5 1 1 1 2 1 3 3 8 1 1 1 9 3 7
c1c3
———
1 5 1 2 1 8 3 9
1 1 13 31 17
h
5
下页
一.矩阵的初等变换

矩阵的初等变换与矩阵的秩

矩阵的初等变换与矩阵的秩
对于 AT, 显有 R( AT ) R( A).
15
例3
求矩阵
A
1 2
2 3
3 5
的秩.
4 7 1

在 A 中,1
2 0.
23
又 A的 3 阶子式只有一个 A,且 A 0,
R( A) 2.
16
2 1 0 3 2
例4
求矩阵
B
0 0
3 0
1 0
2 4
5 3
的秩.
0 0 0 0 0
ri rj;
ri
(1) k

ri
k;
ri (k)rj 或 ri krj .
3
定义 如果矩阵 A 经有限次初等变换变成矩阵 B, 就称矩阵 A 与 B 等价,记作 A B. 等价关系的性质: (1) 反身性 A A;
(2)对称性 若 A B ,则 B A; (3)传递性 若 A B,B C,则 A C.
k n),位于这些行列交叉 处的个 k 2 元素,不改
变它们在 A中所处的位置次序而得 的k阶行列式,
称为矩阵 A 的 k 阶子式.
1 2 3 0
12 3 2 3 0
例如
A
2 4
3 7
5 1
2 4


2 4
3 7
5 ,3 17
-5 1
-2 4
1 3 0 12 0 2 -5 -2 ,2 3 -2 都是A的全部4个3阶子式. 4 1 4 47 4
Br13 r4
22r1 332r1
01 03 06
21 51 39
12 15 73
2 2 23 9 4
r3 r4
36032rr11

矩阵的秩及初等变换

矩阵的秩及初等变换

1 2
3
4 1 2
( B1 )
2 3 4
3 21 31
3
4
( B2 )
1 2 2 3 52 4 32
x1 x2 2 x3 x4 4, x x x 0, 2 3 4 2 x 4 6, x 4 3, x1 x2 2 x3 x4 4, x x x 0, 2 3 4 x4 3, 0 0,
二、矩阵的初等变换
定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调 i , j 两行, 记作ri rj); 2 以数 k 0 乘以某一行的所有元素;
3 把某一行所有元素的 k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第 i 行上 记作ri krj) .
显然,非零行的行数为2,
R A 2.
此方法简单!
四、矩阵秩的求法
因为对于任何矩阵Amn , 总可经过有限次初 等行变换把他变为行阶梯形.
问题:经过变换矩阵的秩变吗?
定理 1 若 A ~ B, 则 R A R B .
证 先证明:若A经一次初等行变换变为B, 则R( A) R( B ).
4 2 B 1 2 9
2 r2 r31 1 1 1 2 1 r3 22 r1 0 B1 0 3 5 1 r4 32 r1 3 0 9 6 3
1 2 4 1 1 2 2 2 1 5 2 3 7 3 9 4
2
变它们在 A 中所处的位置次序而得 的k阶行列式, 称为矩阵 A 的 k 阶子式.
k k m n 矩阵 A 的 k 阶子式共有 Cm Cn 个.

高等数学(下) 第3版课件-矩阵的初等变换与矩阵的秩

高等数学(下) 第3版课件-矩阵的初等变换与矩阵的秩
事物的现象是外在的表现形式,可能是正确的,也可能是歪 曲的。——马克思
美丽的外表,并不一定有美丽的内在;台上的光辉,台下的 汗水;地球是一个球体,并非天圆地方;苹果落地的表象蕴含着 万有引例定律的奥秘。
透过生活的表象,认识其本质的真相,这会令我们更清晰、 的人,发现真正真、善、美的东西,建立正确的世界观。
0 0
3 0
1 0
所以 rA 3
思政小课堂 矩阵的秩是矩阵的基本性质,不论对矩阵做怎样的初等变换
矩阵的秩不变。——这就是透过现象看本质。 同学们要养成透过现象看本质的习惯,不要被事物的表象所
蒙蔽,要多看、多听、多思考、多看书、多学习,做一个大格局 的人,发现真正真、善、美的东西,建立正确的世界观。
1 0 0 8
0 1 0 3
如:
C
0
0
1
5
0 0 0 0
0
0
0
0
结论:
(1)矩阵A通过初等行(列)变换为行阶梯形矩阵B,则 rA rB n ;
(2)因为线性方程组与它的增广矩阵 A 一 一对应,当 A经初等行变换 变为行最简形矩阵 C 时,有rA rC n(n为C中不为零的行的个数),
2 2 1

A
E
1 1
1 1
1 2
1 0
0 1
0 0
1 ((32))2(1)(1) 0
1 2
1 3
1 1
0 1
0 0
2 2 1 0 0 1
0 0 3 2 0 1
13(3)
1 0
0
1 2 0
1 3 1
1
1 2
3
1 0 0 5
1 ( 2 )
6

第3章矩阵的初等变换与矩阵的秩

第3章矩阵的初等变换与矩阵的秩

第3章 矩阵的初等变换与矩阵的秩3.1 矩阵的初等变换矩阵的初等行(列)变换:(1) 交换第i 行(列)和第j 行(列);(2) 用一个非零常数乘矩阵某一行(列)的每个元素;(3) 把矩阵某一行(列)的元素的k 倍加到另一行(列).对矩阵施行初等变换时,由于矩阵中的元素已经改变,变换后的矩阵和变换前的矩阵已经不相等,所以在表达上不能用等号,而要用箭号"→".例1 求矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=042111210A 的逆矩阵.3.2 初等矩阵单位矩阵作一次初等变换得到的矩阵叫初等矩阵.概括起来,初等矩阵有3类,分别是(1)交换第行和第i j 行(交换第列和第i j 列)⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1101111011).(%"""###%###"""%j i E(2)用常数λ乘第行(i λ乘第i 列)⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1111))((%%λλi E (3)第i 行的k 倍加到第j 行(第j 列的k 倍加到第列) i⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=1111))((%"%#%k k ij E显然,初等矩阵都可逆,其逆矩阵仍是初等矩阵,且有),(),(1j i E j i E =−;⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛=−λλ1))((1i E i E ; ))(())((1k ij E k ij E −=−.初等矩阵与初等变换有着密切的关系:左乘一个初等矩阵相当于对矩阵作了一次与初等矩阵相应类型一样的初等行变换.例如要将矩阵的第1行和第3行交换,则左乘一个初等矩阵A )3,1(E :⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛001010100⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛333231232221131211a a a a a a a a a =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛131211232221333231a a a a a a a a a . 右乘一个初等矩阵相当于对矩阵作了一次与初等矩阵相应类型一样的初等列变换.例2 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211a a a a a a a a a A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=231322122111333231232221a a a a a a a a a a a a B ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=1000100111E ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=0010101002E ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=1000010103E .则以下选项中正确的是B A E E E A =321)(;B E E AE B =321)(;B A E E EC =123)(;B E E AE D =123)(.例3 设是3阶可逆矩阵,将的第1行和第3行对换后得到的矩阵记作.A AB (1) 证明可逆;B (2) 求. 1−AB例4 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=011431321A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=000110101B ,是否存在可逆矩阵P ,使得B PA =?若存在,求P ;若不存在,说明理由.例5 设是3阶方阵,将的第1列与第2列交换得,再把的第2列加到第3列得C ,A AB B 则满足C AQ =的可逆矩阵Q 为(A) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛101001010 (B) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛100101010 (C) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛110001010 (D) ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛1000011103.3 矩阵的等价与等价标准形 若矩阵B 可以由矩阵经过一系列初等变换得到,则称矩阵和等价.A AB 矩阵的等价是同型矩阵之间的一种关系,它具有如下性质:(1) 反身性:任何矩阵和自己等价;(2) 对称性:若矩阵和矩阵等价,则矩阵和A B B矩阵也等价;A (3) 传递性:若矩阵和矩阵等价,矩阵和矩阵C 等价,则矩阵和矩阵C 等价.A B B A 形如⎟⎠⎞⎜⎝⎛000r E 的矩阵称为矩阵的等价标准形. 任意矩阵A 都与一个等价标准形⎟⎠⎞⎜⎝⎛000r E 等价.其中r E 是r 阶单位矩阵.这个r 是一个不变量,它就是矩阵的秩.任何矩阵总存在一系列的初等矩阵s P P P ,,,21",和初等矩阵t Q Q Q ,,,21"使得11P P P s s "−A t Q Q Q "21=⎟⎠⎞⎜⎝⎛000r E . 令P =,Q =11P P P s s "−t Q Q Q "21,于是对任意的矩阵,总存在m 阶可逆矩阵n m ×A P 和n 阶可逆矩阵Q ,使得PAQ =⎟⎠⎞⎜⎝⎛000r E .例6 设阶矩阵与等价,则必有n A B (A) 当)0(≠=a a A 时,a B =.(B) 当)0(≠=a a A 时,a B −=. (C) 当0≠A 时,0=B . (D) 当0=A 时,0=B .3.4 矩阵的秩在矩阵中,任取n m ×A k 行k 列,位于这k 行k 列交叉处的2k 个元素按其原来的次序组成一个k 阶行列式,称为矩阵的一个A k 阶子式.若矩阵中有一个A r 阶子式不为零,而所有1+r 阶子式全为零,则称矩阵的秩为A r .矩阵的秩记作.A )(A r 零矩阵的秩规定为零.显然有 ⇔≥r A r )(A 中有一个r 阶子式不为零;中所有A r A r ⇔≤)(1+r 阶子式全为零.若n 阶方阵,有A n A r =)(,则称是满秩方阵. A 对于n 阶方阵, A 0)(≠⇔=A n A r .矩阵的初等变换不改变矩阵的秩.例7 求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=45532511014132232211A 的秩. 例8 求阶矩阵n ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=a b b b a b b b a A """""""的秩, 2≥n .例9 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=71534321101111a b A ,已知3)(=A r , 求.b a , 常用的矩阵的秩的性质: (1);)()(T A r A r =(2))()()(B r A r B A r +≤+;(3)))(),(min()(B r A r AB r ≤,(4))()(00B r A r B A r +=⎟⎠⎞⎜⎝⎛; (5))()(0B r A r B C A r +≥⎟⎠⎞⎜⎝⎛;(6)若0=AB ,则n B r A r ≤+)()(,其中n 为矩阵的列数.A (7)若可逆,则A )()(B r AB r =(8)若列满秩,则A )()(B r AB r =(9)若行满秩,则B )()(A r AB r =例10 设B A ,都是阶方阵,满足n E AB A =−22,求=+−)(A BA AB r ?例11 设是矩阵,A 34× ,301020201,2)(⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==B A r 求.)(AB r 例12 已知⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=62321321t A ,是3阶非零B 矩阵,且满足0=AB ,则4)(=t A 时,的秩必为1;B 4)(=t B 时,的秩必为2;B 4)(≠tC 时,的秩必为1;B 4)(≠t D 时,的秩必为2.B 例13 设B A ,都是阶非零矩阵,且满足n 0=AB , 则A 和的秩B)(A必有一个等于零; )(B都小于n ; )(C一个小于n ,一个等于; n )(D 都等于n .例14 设是矩阵,B 是A n m ×m n ×矩阵,若 m n < 证明:0=AB .例15 设是2阶方阵,已知A 05=A ,证明. 02=A3. 5 伴随矩阵设 ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=nn n n n n a a a a a a a a a A """""""212222111211, 记的代数余子式为,令ij a ij A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=nn n nn n A A A A A A A A A A """""""212221212111* 为矩阵的伴随矩阵.因此,若A ()ij a A =,则 ()T ij A A =*.伴随矩阵的基本关系式:E A A A AA ==**. *11A A A =−,或 1*−=A A A . 1*−=n A A .⎪⎩⎪⎨⎧−<−===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r例16 设⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=122212221A ,求的伴随矩阵. A *A 例17 设⎟⎠⎞⎜⎝⎛−=⎟⎠⎞⎜⎝⎛−−=1111,23212121A A , ⎟⎟⎠⎞⎜⎜⎝⎛=−12100A A B 则 *B =? 例18 设是3阶矩阵,A 21=A ,求*12)3(A A −−. 例19 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A ,且E XA AXA 311+=−−,求X .。

山东大学《线性代数》课件01-5矩阵的初等变换与矩阵的秩

山东大学《线性代数》课件01-5矩阵的初等变换与矩阵的秩

2
3
1 3 0 6
0 0
8 2
2 12 1 4
1 4 1 3 1 4
2 12 0 6 4 4
8
2
0 9 6 6
1 4 4 4 0 0
r( A) 2
1 2 3 4 1 2 3 4
2.B
1 13
0 1 2
1 1 0
2 05
0 0 0
2 7 0
2 10 3
2 192
1
0 0 0
2 1 7 0
3 1 10 3
4 1 192
1
0
0 0
2 1 0 0
3 1 3 3
4
1
95
1 2 3 4
0 00
1 0 0
1 3 0
1
45
r(B) 4
1 A 4
2 t
2 3
3 12
t为何值时, r( A) 3?
3
1
1
9
1 A 0
2 t 8
a1n
ai1
ka j1
ai2 kaj2
ain
kajn
B
a j1
a j2
a jn
am1
am2
amn
由此可以推出:
r( A) r(B) r( A) r(B) r( A) r(B)
例:求矩阵的秩:
2 3 1.A 2 12 1 3
1 3
A 2 12
r1r3
1 2 2 3
1
2
2 3
B 4 3 3 12 0 11 11 0
3 1 1 9 0 7 7 0
1 0
2 1
2 1

矩阵的秩和初等变换.

矩阵的秩和初等变换.
2.4矩 阵 的 秩
本节先建立矩阵的秩的概念,讨论矩阵的初等变换,
并提出求秩的有效方法.
再利用矩阵的秩来研究齐次线性方程组有非零解
的充分必要条件,并介绍用初等变换解线性方程
组的方法.
内容丰富,难度较大.
1矩阵的秩
2矩阵的初等变换
3用初等变换求矩阵的秩
4线性方程组与矩阵的初等变换
一.矩阵的秩
定义1 在 m n 矩阵 A中任取k行与 k 列(k m, k n) , 位于这些行列交叉处k2 个元素不改变它们在A中 所处的位置次序而得的k 阶行列式称为矩阵 A 的 k 阶子式.
下面的定理对此作出肯定回答.
定理 1:初等变换不改变矩阵的

(即若 A B , 则 R( A) R(B) .)
初等变换求矩阵秩的方法:
把矩阵用初等变换变成为行阶梯形矩阵,
行阶梯形矩阵中非零行的行数就是矩阵的秩.
3 2 0 5 0
例2

A
3 2 1
2 0 6
3 1 4
6 5 1
413求矩阵 A的秩 .
1 0 0
1 0 0
1 1 0
0 03
B1
可见用初等行变换可把矩阵B化为行阶梯形矩阵 B1
由前例可知,对于一般的矩阵当行数与列数较高 时,按定义求秩是很麻烦的. 对于行阶梯形矩阵, 它的秩就等于非零行的行数。
因此可用初等变换把矩阵B化为行阶梯形矩阵.
可用初等变换把矩阵B化为行阶梯形矩阵 B1
但两个等价矩阵的秩是否相等?
定义 3 下面三种变换称为矩阵的初等行变换:
()对调两行(对调 i , j两行记作 ri rj ) ; ( )以数 k o 乘某一行中所有元素(第 i 行乘 k ,记
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于 |AT| = |A|, 即行列式与其转置行列式相等,从而有 R(AT) = R(A)。
对于 n 阶矩阵 A,当 |A|≠0 时 R(A)=n, |A|=0 时 R(A)<n。
当 R(A)=r时,即 A 中所有的 r+1 阶子式全等于 0,则A中 所有高于 r+1 阶的子式 = ?
这些子式必0 的子式的最高阶数。
在 B 中总能找到与D相对应的 r 阶子式 D1,且有 D1=D 或 D1 = -D 或 D1 = kD,
因此 D1≠0,从而 R(B) ≥ r = R(A)。 2) 把某行的倍数加到另一行的初等变换。
由于对交换两行的初等变换已经证明结论成立,故只需证明 把第二行的某个倍数加到第一行时,秩不减即可。
即经过一系列初等行变换后,有
重复以上的作法。如果原来矩阵 A中第一列的元素全为零, 那么就依次考虑它的第二列元素,等等。
如此作下去直到变成行阶梯形为止。 上边的叙述可按归纳法给予严格的证明。
定理:初等变换不改变矩阵的秩。 证明:先证明若 A 经一次初等行变换变为 B,则 R(A) ≤ R(B); 设 R(A)=r,且 A 的某个 r 阶子式 D≠0。 1) 对交换两行与把某一行乘以非0常数k的初等变换,比如
注意行阶梯形矩阵与上三角矩阵的关系。
二 初等变换与矩阵秩的求法
定义 下面三种变换称为矩阵的初等行变换:
(i) 对调两行(对调 i, j 两行,记作
);
(ii) 以数 k≠0乘某一行中的所有元素(第i行乘k,记作ri×k);
(iii) 把某一行所有元素的 k 倍加到另一行对应的元素上去
(第 j 行的 k 倍加到第 i 行上,记作
R(A) ≤R(B).
又注意到 B 亦可经由一次初等行变换变为 A,故 R(B) ≤ R(A),
因此经一次初等行变换后 R(A)=R(B)。
经一次初等行变换矩阵的秩不变,即可知经有限次初 等行变换矩阵的秩不变。
设 A 经初等列变换变为 B,则 AT 经初等行变换变为 BT, 由行初等变换不改变秩的事实知,
)。
把定义中的“行”换成“列”,即得矩阵的初等列变换的 定义
(所用记号是把 “r” 换成 “c” )。
矩阵的初等行变换与初等列变换,统称初等变换。
定义:如果矩阵 A 经过有限次初等行变换变成矩阵 B,就称
矩阵 A与 B 行等价,记作

如果矩阵 A 经过有限次初等列变换变成矩阵 B,就称矩阵 A
与 B 列等价,记作
该形式称为 A 的标准形。其中 r = R(A).
例:化矩阵 B 为标准形,
在矩阵的初等变换中,一般很少将其化为标准形,而 是化为与之等价的行阶梯形或行最简形矩阵.
由于 R(A) 是 A 的非零子式的最高阶数。因此,若矩阵 A 中有某个 s 阶子式不为 0,则 R(A) ≥ s;若 A 中所有 t 阶子式 全为0,则 R(A)<t。
例:求矩阵 A 和 B 的秩,
解:R(A) = 2; R(B) = 3 即行阶梯形矩阵B的秩等于B的非0行的行数 本例表明,对于一般的行列式,当行数与列数较高时,
按定义求秩是很麻烦的。然而对于类似矩阵B的行阶梯形矩 阵,它的秩就等于非零行的行数,一看便知毋须计算。
行阶梯形矩阵:
行阶梯形矩阵特点:若第i行元素全为0,则i+1,…, m行的元 素全为0;否则从左数找到第一个不为0的元素,位于该元 素下及其左下的所有元素全为0。
若阶梯形矩阵每行第一个非0数字恰为1,且该数字1上 方的数字也为0的话,则称为行最简形矩阵。比如第二个矩 阵即为行最简形矩阵。
R(AT) = R(BT), 又 R(A)=R(AT), R(B)=R(BT),因此 R(A)=R(B)。
总之,若 A 经过有限次初等变换化为 B,则秩不变,即 R(B) = R(A)。
例:求矩阵 A 的秩: A=
R(A) = 4.
三 矩阵的标准形 对于m×n 矩阵 A,总可经过初等变换化成如下形式
第1节 矩阵的秩与初等变换
一 矩阵的秩
定义:若矩阵 A 中存在一个不等于 0 的 r 阶子式 D,且所有 r+1 阶子式(如果存在的话)全等于 0,那么数 r 就称为矩 阵 A 的秩,记作 R(A),并称 D 为矩阵 A 的一个最高阶非 零子式。并规定零矩阵的秩等于 0。
显然,若 A 为 m×n 矩阵,则 0 ≤ R(A) ≤ min {m, n}。
分两种情形。 (a) A 的 r 阶非零子式 D 不包含 A 的第一行,这时 D 也是 B
的 r 阶非零子式,故 R(B) ≥r; (b) D 包含 A 的第1行,这时把 B 中与 D 对应的 r 阶子式 D1
记作
从而有 R(B) ≥r = R(A)。 以上证明了矩阵A经一次初等行变换化为B后秩不减,即

如果矩阵 A 经过有限次初等变换变成矩阵 B,就称矩阵 A与
B 等价,记作

定理:任意一个矩阵可经过一系列初等行变换化为与之行等 价的行阶梯形与行最简形矩阵。 证明:由于只需对行阶梯形矩阵中的非零行乘以特定的非0常 数,即可变成行最简形。因此只需证初等行变换可化矩阵为 行阶梯形即可。

对第一列的元素a11, a21,…, as1,只要其中一个不为零,用交换 两行的初等行变换,总能使第一列的第一个元素不为零,然 后从第二行开始,每一行都加上第一行的一个适当的倍数, 于是第一列除去第一个元素外就全是零了。
相关文档
最新文档