重庆市中考反比例函数年中考数学反比例函数专题
重庆中考反比例函数11题名校模拟分类汇编.doc

中考名校模拟分类汇编——函数综合题目方法解析南开九上期末南开阶段1 如图,直线l与反比例函数xky=在第一象限内的图象交于A、B两点,且与x轴的正半轴交于C点,若AB=2BC,OAB∆的面积为8,则k的值为(▲)A.6 B.9 C.12 D.18南开九下半期如图,一次函数bxy+=的图象与x轴交于点A,与y轴交于点B,与反比例函数xy2=交于点(2,)C m,则点B到OC的距离是( ▲ )A.2 B.5C.52D.552南开阶段2 如图,在ABCRt∆中,︒=∠90ABC,点B在x轴上,且()01,-B,A点的横坐标是2,AB=3BC,双曲线()04>mxmy=经过A点,双曲线xmy-=经过C点,则m的值为(▲)A.12 B.9 C.6 D.3南开阶段3 如图,Rt OAB∆的直角边OA在x轴正半轴上,︒=∠60AOB,反比例函数()03>xxy=的图象与Rt OAB∆两边OB,AB分别交于点C,D.若点C是OB边的中点,则点D的坐标是(▲)A.()3,1 B.()1,3 C.⎪⎪⎭⎫⎝⎛23,2 D.⎪⎪⎭⎫⎝⎛43,4巴蜀九上半期如图,115y x=--与x轴、y轴分别相交于A、B两点,点M为双曲线()0ky xx=<上一点,若ABM∆是以AB为底的等腰直角三角形,则k的值为()A、52-B、5-C、4-D、6-巴蜀4月如图,在矩形OABC中,AB=2BC,点A、点C分别在y轴和x轴的正半轴上,连接OB,反比例函数y=xk错误!未找到引用源。
k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则K的值是()A.1 B.2 C.3D.4EDOBAC巴蜀一模巴蜀二模如图,已知双曲线xky=(0<k)经过直角三角形OAB斜边OB 的中点D,且与直角边AB相交于点C.若点A的坐标为(-6,4),则△BOC的面积为()A.4 B.3 C.2 D.1一中九上期末如图,∆ABC是等腰直角三角形,∠ACB=90°,点A在反比例函数xy4-=的图像上,点B、C都在反比例函数xy2-=的图像上,AB//x轴,则点A的坐标为()A.(32,332-) B.(3,334-)C.(334,3-) D.(332,32-)一中九下开学如图,菱形OABC在直角坐标系中,点A的坐标为(5,0),对角线OB=45,反比例函数xky=(k≠0,x>0)经过点C.则k的值等于()A.12 B.8 C.15 D.9yxAOBC一中3月月考如图,正方形ABCD的边BC在x轴的负半轴上,其中E是CD的中点,函数xky=的图象经过点A、E,若B点的坐标是()3,0-,则k的值为()A. 5-B. 4-C. 6-D. 9-一中九下半期如图ABCRt∆在平面坐标系中,顶点A在x轴上,∠ACB=90°,CB∥x轴,双曲线)0(≠=kxky经过C点及AB的三等点D (BD=2AD),6=∆BCDS,则k的值为()A.3 B.6 C.3-D.6-一中一模八中九下开学如图,直线123y x=-与x轴,y轴分别交于A、B两点,ABC∆是以AB为底边的等腰直角三角形,点C在双曲线kyx=上,则k的值为()A.16 B.216C.16-D.162-八中九下月考一八中九下月考二EDC OyxAB八中九下一模育才一诊育才二诊如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止,记PA=x,点D 到直线PA的距离为y,则y关于x的函数解析式是()A、12y x=B、12yx=C、34y x=D、43y x=110中九下开学如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k <0)的图象上,则k=()A. -8B. -10C. -11D. -12巴南九下期中如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数kyx=,在第一象限内的图象经过点D,且与AB、BC分别交于E、F两点,若四边形BEDF的面积为6,则k的值为()A.3 B.4 C.5 D. 6江津月考1 如图,第一角限内的点A在反比例函数2=yx的图象上,第四象限内的点B 在反比例函数=kyx图象上,且OA⊥OB,∠OAB =60度,则K值为渝中二诊二外一模如图所示,已知:xy6=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0)动点M在y轴上,且在B点上方,动点N在射线AP上,过点B作AB的垂线,交射线AP 于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.若四边形BQNC是菱形,面积为23,此时P点的坐标(). A.(3,2) B.()33,332C.(23,4)D.()235,534全善3月月考如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A. B. C.D.全善4月月考开县3月如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AO C的面积为()A.8 B.10 C.12 D.24万二中入学万二中3月万二中周练1万二中周练2万二中周练3西附月考8 如图,正方形OABC的边OA、OC均在坐标轴上,双曲线(0)ky xx=>经过OB的中点D,与AB边交于点E,与CB边交于点F,直线EF与x轴交于G.若 4.5OAES=,则点G的坐标是()A.(7,0) B.(7.5,0) C.(8,0) D.(8.5,0)DEFCO xyABG八中二模八中二模如图,在平面直角坐标系xoy中,Rt△OAB的直角边在x轴的负半轴上,点C为斜边OB的中点,反比例函数()0≠=kxky的图象经过点C,且与边AB交于点D,则ABAD的值为()A.31B.32C.51D.41。
重庆中考反比例函数

反比例函数1.已知:如图,在平面直角坐标系中,一次函数y=ax+b (a ≠0)的图象与反比例函数(0)ky k x =≠的图象交于一、三象限内的A 、B 两点,与x 轴交于C 点,点A 的坐标为(2,m ),点B 的坐标为(n ,﹣2),tan ∠BOC=25.(1)求该反比例函数和一次函数的解析式; (2)在x 轴上有一点E (O 点除外),使得△BCE 与△BCO 的面积相等,求出点E 的坐标.2.如图,在平面直角坐标系xOy 中,直线y=mx+1与双曲y=kx(k >0)相交于点A 、B ,点C 在x 轴正半轴上,点D (1,﹣2),连结OA 、OD 、DC 、AC ,四边形AODC 为菱形. (1)求k 和m 的值;(2)根据图象写出反比例函数的值小于2时x 的取值范围; (3)设点P 是y 轴上一动点,且OAPOACD SS =菱形,求点P 的坐标.3.如图,已知直线y 1=x+m 与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x =(x <0)分别交于点C 、D ,且C 点的坐标为(﹣1,2). (1)分别求出直线AB 及双曲线的解析式; (2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,y 1>y 2?4.如图,在平面直角坐标系xOy 中,一次函数y=3x+2的图象与y 轴交于点A ,与反比例函数y=x k(k ≠0)在第一象限内的图象交于点B ,且点B 的横坐标为1.过点A 作AC ⊥y 轴交反比例函数y=x k(k ≠0)的图象于点C ,连接BC .(1)求反比例函数的表达式. (2)求△ABC 的面积.5.如图,已知一次函数b kx y +=1的图象与反比例函数xy m2=的图象的两个交点是A (-2,-4),C (4,n ),与y 轴交于点B ,与x 轴交于点D .(1)求反比例函数xy m2=和一次函数b kx y +=1的解析式;(2)连结OA ,OC ,求△AOC 的面积.6.如图,直线y=2x+2与y 轴交于A 点,与反比例函数y=kx(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且tan ∠AHO=2. (1)求k 的值;(2)点N (a ,1)是反比例函数y=kx(x >0)图象上的点,在x 轴上是否存在点P ,使得PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明理由.7.如图,一次函数y=kx+b 与反比例函数y=(x >0)的图象交于A (m ,6),B (3,n )两点(1)求一次函数的解析式;(2)根据图象直接写出使kx+b <成立的x 的取值范围; (3)求△AOB 的面积.8.如图,已知直线x y 21=与双曲线x k y =交于A 、B 两点,点B 的坐标为(-4,-2),C为第一象限内双曲线x k y =上一点,且点C 在直线x y 21=的上方.(1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.9.如图一次函数的图象与反比例函数xm=y 的图象交于A (-4,a )、B 两点,点B 的横坐标比点A 的横坐标大2,且6S AOB =△.(1)求m 的值;(2)求直线AB 的解析式;(3)指出一次函数值大于反比例函数值时x 的取值范围.10.如图,已知一次函数y=ax+b 的图象与反比例函数y=的图象相交于点A (﹣2,m )和点B (4,﹣2),与x 轴交于点C(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.11.如图,一次函数y=kx+b 与反比例函数的图象交于A (m ,6),B (3,n )两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.12.已知函数y=6x-1与函数y=kx交于点A(2,b)、B(-3,m)两点(点A在第一象限),(1)求b,m,k的值;(2)函数y=6x-1与x轴交于点C,求△ABC的面积.13.如图,已知直线y=12x与双曲线y=kx交于A、B两点,点B的坐标为(﹣4,﹣2),C为第一象限内双曲线y=kx上一点,且点C在直线y=12x的上方.(1)求双曲线的函数解析式;(2)若△AOC 的面积为6,求点C 的坐标.14.如图,在平面直角坐标系中,O 为原点,直线 AB 分别与 x 轴、y 轴交于 B 和 A ,与反比例函 数的图象交于 C 、D ,CE ⊥x 轴于点 E ,tan ∠ABO=21,OB=4,OE=2.(1)求直线 AB 和反比例函数的解析式; (2)求△OCD 的面积.15.(2015秋•昆明校级期末)如图,在平面直角坐标系中,O 为原点,直线AB 分别与x 轴、y 轴交于B 和A ,与反比例函数的图象交于C 、D ,CE ⊥x 轴于点E ,tan ∠ABO=,OB=4,OE=2.(1)求直线AB 和反比例函数的解析式; (2)求△OCD 的面积;(3)直接写出使一次函数值小于反比例函数值的x的取值范围.。
反比例函数中考专题

反比例函数中考专题1、如图,在平面直角坐标系中,第二象限内的点E (−3,m )、F (−2,n),若OE=OF ,点E 、F 都在反比例函数y =kx 的图像上,则k=( )A. -4B. -6C. -8D. -102、若函数y =m+2x的图像在其所在的第一象限内,函数值y 随自变量x 的增大而减小,则m的取值范围是( )A.m<-2B.m<0C.m>-2D.m>03、若点A(1,1x )、B(2,2-x )、C(3,3-x )在反比例函数xk y 12+-=的图象上,则321x x x 、、的大小关系是( )A. 321x x x <<B. 231x x x <<C. 213x x x <<D. 312x x x << 4、已知点A(m ,y 1)、B(m +1,y 2)均在函数1y x=-的图像上,若y 1>y 2,则( ) A. m <-1 B. -1<m <0 C. m >0 D. m >-15、已知点(a +2,3)在第一象限,A(a +2,y 1)、B(3+2a ,y 2)是反比例函数y =|t|+1x (为常数)图象上两点,若y 1>y 2,则a 的取值范围为( )A. a >-1B.-1.5<a <-1C.-2<a <-1.5或a >-1D.-2<a <-1 6、若直线y 1=mx +n 与双曲线y 2=kx 交于A(a -4,a +3)、B(a ,a -5)两点,则y 1>y 2时,x 的取值范围是( )A. x <-1或0<x <3B. x >3或x <-1C. x >3或-1<x <0D. x <-2或0<x <6.7、若点A (-1+a ,y 1),B (1+a ,y 2),C (3+a ,y 3)在反比例函数y =x3-的图象上,若-1<a <0,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 2<y 1D .y 2<y 1<y 38、在平面直角坐标系中,若一个正比例函数y =kx 的图象经过A(a ,1),B(1,b)两点,反比例函数y =2m x m +的图象经过点(a ,b),则m -1m的值为( )A .-1B .1C .±1D .-29、在平面直角坐标系中,点),(P b a 是函数x3y =与1y -=x 的图象的一个交点,则abb a 22+的值为( ) A. 334+B. 232+C. 332+D. 234+10、已知反比例函数xy 23-=,直线42+-=x y 交于P (a ,b )、Q (m ,n )两点,则代数式nb a m 33+++的值是( ) A.2B.-2C.4D. - 411、若点A (x 1,-2),B (x 2,-3),C (x 3,2)在反比例函数xm y 12--=(m 是常数)的图像上,则x 1,x 2,x 3的大小关系是 A .x 1>x 2>x 3 B .x 1>x 3>x 2C .x 3>x 1>x 2D .x 2>x 1>x 312、平面直角坐标系中,函数xy 3-=(x <0)与4+=x y 的图象交于点P (a ,b ),则代数式ba 11-的值是( ) A. 334- B.334 C. 33-D.3313、方程x 2+ 2x - 1 = 0的根可视为直线y = x + 2与双曲线xy 1=交点的横坐标,根据此法可推断方程x 3+ 3x - 2 = 0的实根x 0所在的范围是( ) A.0 < x 0 < 1 B.1 < x 0 < 2 C.2 < x 0 < 3 D.3 < x 0 < 414、已知a 是方程x 2+ x - 2021 = 0的一个根,则aa a ---22112的值为( ) A.2020 B.2021C. 12020D. 1202115、关于反比例函数y =−4x的下列说法不正确的是( )①该函数的图象在第二、四象限;②A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,若x 1<x 2,则y 1<y 2;③当y >﹣2时,x >2; ④若反比例函数y =−4x 与一次函数y =x +b 的图象无交点,则b 的范围是﹣4<b <4. A .①③ B .①③④C .②③D .②④16、若点A (2,1-x ),B (1,2x ),c (3,3x )在反比例函数xa y 22+=(a 为常数)的图象上,则321,,x x x 的大小关系是( )A.321x x x <<B.231x x x <<C.312x x x <<D.132x x x <<17、已知MA(11,y x ),N(22,y x ),R(33,y x )是反比例函数x k y 12+=图象上三点,若321x x x <<,3120y y y <<<,则下列关系式不正确的是( )A.021<x xB.031<x xC.032<x xD.021<+x x18、若a 是一元二次方程x 2-3x +1=0的一个根,则代数式2421a a a ++的值是( )A .17B .18C .19B .11019、已知关于x 的一元三次方程ax 3+bx 2+cx -k 2=0的解为x 1=-3,x 2=1,x 3=2.请运用函数的图象,数形结合的思想方法,判断关于x 的不等式ax 3+bx 2+cx >k 2的解集是 A. x <-3或 1<x <2 B. -3<x <0或 1<x <2 C. x <-3或 0<x <1或 x >2 D. -3<x <1或 x >220、 在平面直角坐标系中,函数y =x ﹣6与y =−1x的图象交于一点(m ,n ),则代数式m 2﹣4m 2121mnm -+的值为( ) A. 13B. 11C. 7D. 521、在平面直角坐标系中,函数2022y x=与y =2x +6的图象交于点(x 1,y 1)、(x 2,y 2),则代数式(x 1+y 2)(x 2+y 1)=( ) A .-1011B .1011C .2022D .-2022。
重庆中考反比例函数专题训练

学习必备欢迎下载
重庆中考反比例函数专题训练
1、如图,在平面直角坐标系中,一次函数
b kx y 的图象分别交x 轴、y 轴于点A 、点B ,与反比例函数x m
y 的图象交于点C 、点D ,DE ⊥x 轴于点
E ,已知点C 的坐标是(6,-1),AE=6,21
tan DAE ;
(1)求反比例函数和一次函数的解析式;
(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?
2、如图,在平面直角坐标系中,经过点A (-1,0)的一次函数
)0(a b ax y 的图象与反比例函数)0(k x k
y 的图象相交于P 、Q 两点,
过点P 作PB ⊥x 轴于点B ,已知点B 的坐标是(2,0),23
t a n P A B ;
(1)求反比例函数和一次函数的解析式;
(2)设一次函数与y 轴相交于点C ,求四边形OBPC 的面积;
(1题图)
x
y
O E D
B
A
C
Q P
x
y
A
B O
(2题图)。
重庆中考反比例函数专题训练

重庆中考反比例函数专题训练1、 如图,在平面直角坐标系中,一次函数bkx y +=的图象分别交x 轴、y 轴于点A 、点B ,与反比例函数xm y=的图象交于点C 、点D ,DE ⊥x 轴于点E ,已知点C 的坐标是(6,-1),AE=6 ,21tan =∠DAE ;(1)求反比例函数和一次函数的解析式;(2)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值?2、如图,在平面直角坐标系中,经过点A (-1,0)的一次函数)0(≠+=a b ax y 的图象与反比例函数)0(≠=k x k y 的图象相交于P 、Q 两点,过点P 作PB ⊥x 轴于点B ,已知点B 的坐标是(2,0),23t a n =∠PAB ;(1)求反比例函数和一次函数的解析式;(2)设一次函数与y 轴相交于点C ,求四边形OBPC 的面积;3、已知:如图,在平面直角坐标系中,一次函数)0(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于二、四象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,连接OA 、OB 、BC ,已知OC =4,点B 的纵坐标是-6 ,2tan =∠OAC ;(1)求反比例函数和直线AB 的解析式;(2)求四边形OACB 的面积;4、已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第一象限只有一个交点,一次函数的图象与x 轴、y 轴分别相交于B 、C 两点,AD 垂直平分OB ,垂足为D 点,13=OA,13132cos=∠ABO(1)求点A 的坐标和反比例函数解析式;(2)求一次函数的解析式;;5、已知:如图,在平面直角坐标系xOy 中,一次函数0(≠+=k b kx y 的图象与反比例函数xm y=(x <0)的图象相交于第二象限内的A 、B 两点,过点A 作AC ⊥x 轴于点C ,已知OA=5,OC =4,点B 的纵坐标是6 ,2tan =∠OAC ;(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;6、已知:如图,在平面直角坐标系中,一次函数(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于A 、B 两点,与x 轴相交于点C ,已知BC=BO =5,点D 的坐标是(-6,0) ,32tan =∠OCB ;(1)求反比例函数和直线AB 的解析式;(2)求点A 的坐标;并根据图像直接写出当1y >2y 时x 的取值范围;y7、如图,在平面直角坐标系中,一次函数ax y +=的图象与反比例函数xk y =的图象交于A 、B 两点,与x 轴相交于点D ,与y 轴相交于点C ,已知点D 的坐标是(-2,0),点A 的横坐标是2 ,21tan=∠CDO ;(1)求点A 的坐标;(2)求反比例函数和一次函数的解析式; (3)求△AOB 的面积;8、已知:如图,一次函数)0(1≠+=k b kx y 的图象与反比例函数)0(2≠=m xm y 的图象相交于A 、B 两点,已知OA =10,点B 的坐标是(23-,m ),31ta n =∠A O C;(1)求反比例函数和一次函数的解析式; (2)根据你观察的图像,直接写出使函数值1y <2y 时自变量x 的取值范围;y9、已知:如图,反比例函数xm y=(m >0)的图象与一次函数)0(1≠+=k b kx y 的图象相交于A 、B 两点,AC ⊥x 轴于点C ,若OC=1,且 31tan =∠AOC ,点D 与点C 关于原点O 对称;(1)求反比例函数和一次函数的解析式;(2)根据你观察的图像,写出不等式xm <bkx+成立的解集;10、如图,在平面直角坐标系中,一次函数bax y +=(0≠a)的图象与反比例函数xk y =(0≠k)的图象相交于A 、D 两点,其中D 点的纵坐标为-4,直线bax y+=与y 轴相交于点B ,作AC ⊥y 轴相交于点C ,已知OB=OC=2,21tan=∠ABO ;(1)求点A 的坐标;(2)求反比例函数和直线AB 的解析式; (3)连接OA 、OD ,求△AOD 的面积;11、如图,在平面直角坐标系中,直线AB :bax y +=(0≠a)与反比例函数xm y=(0≠m)的图象交于B 点,与x 轴相交于点A ,已知 CB=BO=5,54tan =∠OAB ,点C 的坐标是(-6,0);(1)求反比例函数和直线AB 的解析式;(2)求线段AB 的长;12、如图,若直线 bax y +=(0≠a)与x 轴相交于点A (25,0),与双曲线xm y=(0≠m)的图象在第二象限交于B 点,且 OA=OB ,△OAB 的面积为25;(1)求双曲线的解析式和直线AB的解析式;(2)求ABO ∠tan 的值;13、如图,在平面直角坐标系xOy 中,一次函数bkx y +=(0≠k)与反比例函数xm y=(0≠m)的图象相交于A 点,与x 轴相交于点B ,AC ⊥x 轴于点C ,AB=10, OB=OC ,43tan =∠ABC ;(1)求反比例函数和一次函数的解析式;(2)若一次函数与反比例函数的图象的另一交点为D 点,连接OA 、OD ,求△AOD 的面积;14、如图,在平面直角坐标系xOy 中,一次函数b kx y +=1(0≠k )与反比例函数xm y =2(m <0)的图象交于点A (-2,n )及另一点,与两坐标轴分别相交于点C 、D 两点,过点A 作AH ⊥x 轴于点H ,若OC=2OH ,△ACH 的面积为9;(1)求反比例函数和一次函数AB 的解析式及另一交点B 的坐标; (2)根据图像,直接写出当1y >2y 时自变量x 的取值范围;15、已知点A 与点B (-3,2)关于y 轴对称,一次函数b mx y +=(0≠m )与反比例函数xk y=的图象都经过点A ,且点C (2,0)在一次函数bmx y+=的图象上,(1)求反比例函数和一次函数AB 的解析式;(2)若两个函数的另一个交点为点D ,求△AOD 的面积;16、如图,在平面直角坐标系xOy 中,已知一次函数bkx y +=(0≠k)的图象经过点A 与点C (0,-4),反比例函数xm y=(0≠m)的图象经过点A (1,-3),且与一次函数的图象相交于另一点B (3,n ); (1)试确定反比例函数和一次函数解析式;(2)根据图像,直接写出反比例函数值大于一次函数值时自变量x 的取值范围;。
第三节 反比例函数(玩转重庆9年中考真题)

第三章函数第三节反比例函数玩转重庆9年中考真题(~) 命题点1 反比例函数与几何图形综合题类型一与三角形结合(9年1考)1.(重庆A卷12题4分)如图,反比例函数y=-6x在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为() A. 8 B. 10 C. 12 D. 24第1题图【拓展猜押1】如图,若双曲线y=kx与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为()拓展猜押1题图A. 23B. 53 2C. 934 D.536类型二与四边形结合(9年4考)2. (重庆A卷12题4分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=3x的图象经过A、B两点,则菱形ABCD的面积为()A. 2B. 4C. 2 2D. 4 2第2题图第3题图3. (重庆B卷12题4分)如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,33),反比例函数y=kx的图象与菱形对角线AO交于D点,连接BD,当DB⊥x轴时,k的值是()A. 6 3B. -6 3C. 12 3D. -12 34. (重庆B卷12题4分)如图,在直角坐标系中,正方形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴上,反比例函数y=kx(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,ND⊥x轴,垂足为D,连接OM、ON、MN.下列结论:①△OCN≌△OAM;②ON=MN;③四边形DAMN与△MON 面积相等;④若∠MON=45°,MN=2,则点C的坐标为(0,2+1).其中正确结论的个数是()A. 1B. 2C. 3D. 4第4题图第5题图5. (重庆A卷18题4分)如图,菱形OABC的顶点O是坐标原点,顶点A在x 轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°.点D在边AB 上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为______________.【变式改编1】如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,∠AOC=60°,点D在边AB上,将四边形ODBC 沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°. 若反比例函数y=-33x的图象经过点B′,则菱形OABC的边长为________.变式改编1题图命题点2反比例函数与一次函数、几何图形综合题(9年8考)6. (重庆B卷12题4分)如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数y=kx(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,23).过点E的直线l交x轴于点F,交y轴于点G(0,-2).则点F的坐标是()A. (54,0) B. (74,0) C.(94,0) D. (114,0)第6题图象与反比例函数y=kx(k≠0)的图象交于第二、第四象限内的A,B两点,与y轴交于C点.过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=43,点B的坐标为(m,-2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.第7题图8. (重庆B卷22题10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,-4),连接AO,AO=5,sin∠AOC=3 5.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.第8题图的图象与反比例函数y=kx(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=2 5.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E 的坐标.第9题图【变式改编2】如图,在平面直角坐标系xOy中,反比例函数y=mx的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(a,b).(1)求反比例函数与一次函数的解析式及B点坐标;(2)若C是y轴上的点,且满足△ABC的面积为10.求C点坐标.变式改编2题图【拓展猜押2】如图,△OAB为等腰直角三角形,斜边OB边在x轴负半轴上,一次函数y =-17x +47与△OAB 交于E 、D 两点,与x 轴交于C 点,反比例函数y =k x (k ≠0)的图象的一支过E 点,若S △AED =S △DOC ,则k 的值为 ( )A. 1B. 2C. -1D. -3拓展猜押2题图答案命题点1 反比例函数与几何综合题1. C 【解析】本题考查反比例函数性质、待定系数法求直线解析式及三角形面积的计算.∵点A 、B 都在反比例函数y =-6x 的图象上,且点A 、B 的横坐标分别是-1、-3,代入到函数解析式中,可得A 、B 两点的纵坐标分别为6、2,∴A (-1,6),B (-3,2),设直线AB 的解析式为:y =kx +b ,代入A 、B 两点,得:623k b k b =-+⎧⎨=-+⎩,解得:28k b =⎧⎨=⎩,则直线AB 的解析式为:y =2x +8,令y =0,解得:x =-4,则点C 的坐标为(-4,0),∴OC =4,S △AOC =12OC ·|y A |=12×4×6=12.【拓展猜押1】 C 【解析】因为△AOB 是等边三角形,所以∠AOB =∠ABO =60°,如解图,过点C 作CM ⊥OB 于M ,过点D 作DN ⊥OB 于N ,所以△OCM ∽△BDN ,所以OC DB =OM BN =CM DN ,又因为OC =3BD ,我们不妨设OM =3a ,则BN =a ,所以C (3a ,33a ),D(5-a ,3a ),又因为点C 和点D 均在双曲线上,所以3a ·33a =(5-a )3a ,解之得a 1=12,a 2=0(不合题意,应舍去),所以k =3a ×33a =93a 2=93×14=934.拓展猜押1题解图 第2题解图2. D 【解析】∵当y =3时,即3=3x ,解得x =1,∴A (1,3);当y =1时,即1=3x ,解得x =3,∴B (3,1).如解图,过点A 作AE ∥y 轴交CB 的延长线于E 点,则AE =3-1=2,BE =3-1=2,∴AB =22+22=22,∴在菱形ABCD 中,BC =AB =22,∴S 菱形ABCD =BC ×AE =22×2=4 2.第3题解图3. D 【解析】连接BC ,过点C 作CE ⊥x 轴于E 点,如解图.∵在菱形ABOC 中,OC =OB ,∠BOC =60°,∴△BOC 是等边三角形.∵CE ⊥BO ,∴∠OCE=30°,BE =EO .∵C (m ,33),∴CE =33,∵sin60°=CE OC ,∴OC =CE sin 60°=3332=6,∴OB =6.∵在菱形ABOC 中,∠AOB =12∠BOC =30°,∴tan30°=BD BO ,∴BD =BO ·tan30°=6×33=23,∴D (-6,23),∴k =(-6)·23=-12 3.4. C 【解析】本题是反比例函数和几何图形结合的结论判断题,逐项分析如下:序号 逐项分析 正误①S△CON=S△MOA=12k,∴OC·CN=OA·AM,又∵OC=OA, ∴CN=AM.又∵∠OCB=∠OAB=90°,∴△OCN≌△OAM√②由①知△OCN≌△OAM,∴ON=OM,若ON=MN,则△ONM是等边三角形,∠NOM=60°,题目中没有给出可以得到此结论的条件×③根据①的结论,设正方形边长为a,CN=AM=b.S四边形DAMN=12(a+b)(a-b)=12a2-12b2,S△MON=a2-12ab-12ab-12(a-b)2=12a2-12b2, ∴S四边形DAMN=S△MON√④如解图,延长BA到E,使AE=CN,连接OE,则△OCN≌△OAE,∴∠EOA=∠NOC,ON=OE,∴∠MOE=∠MOA+∠CON=90°-∠MON=45°,∴∠MOE=∠MON,又∵OM=OM,∴△NOM≌△EOM,∴ME=MN=2,即CN+AM=2,∴CN=AM=1,Rt△NMB中,BN=BM=MN2=2,∴AB=2+1, ∴C(0, 2+1)√第4题解图5. y=33x-【解析】∵四边形OABC是菱形,∴∠ABC=∠AOC=60°.由折叠的性质知∠CDB=∠C′DB′=60°,∴△CDB为等边三角形,如解图,∴DB=BC=2,∴点D与点A重合.∴点B′与点B关于OA即x轴对称.易求得点B 的坐标为(3,3),故点B′的坐标为(3,-3),所以经过点B′的反比例函数的解析式为y=33x-.第5题解图变式改编1题解图【变式改编1】2【解析】如解图,∵四边形OABC是菱形,∠AOC=60°,∴△AOC和△ABC都是等边三角形,由轴对称的性质可知∠CDB=∠C′DB′=60°,CD=C′D,DB=B′D,∴点D与点A重合.过点B′作B′E⊥x轴于点E,则∠B′ED=90°,在Rt△DB′E中,∠EDB′=60°,设AB′=x,∴OE=x+x 2=3x2,EB′=32x,∵点B′在第四象限,∴点B′(32x,-32x).∵点B′在反比例函数y=-33x的图象上,则32x·(-32x)=-33,解得x=2,则菱形OABC的边长是2.命题点2反比例函数与一次函数、几何图形综合题6.C【解析】∵四边形ABCD是正方形,点A的坐标为(m,2),∴正方形ABCD的边长为2,即BC=2.∵点E的坐标为(n,23),点E在边CD上,∴点E的坐标为(m +2,23).把A (m ,2)和E (m +2,23)代入y =k x,得2232k mkm ⎧=⎪⎪⎨⎪=⎪+⎩,解得21k m =⎧⎨=⎩,∴点E 的坐标为(3,23).∵点G 的坐标为(0,-2),设直线GE 的解析式为:y=ax +b (a ≠0),可得,2233b a b -=⎧⎪⎨=+⎪⎩,解得892a b ⎧=⎪⎨⎪=-⎩,∴直线GE 的解析式为:y=89x -2.∵点F 在直线GE 上,且点F 在x 轴上,可设点F 的坐标为(c ,0),代入GE 的解析式,令y =0,求得c =94,∴点F 的坐标为(94,0). 7. 解:(1)在Rt △AOH 中,tan ∠AOH =43,OH =3, ∴AH =OH·tan ∠AOH =4,∴AO 22OH AH +=32+42=5,∴C △AOH =AO +OH +AH =5+3+4=12. .......................................................(5分) (2)由(1)得,A (-4,3),把A (-4,3)代入反比例函数y =kx 中,得k =-12,∴反比例函数解析式为y =12x-,...................................................................(7分) 把B (m ,-2)代入反比例函数y =12x-中,得m =6, ∴B (6,-2),..................................................................................................(8分) 把A (-4,3),B (6,-2)代入一次函数y =ax +b 中,得6243a b a b +=-⎧⎨-+=⎩, ∴121a b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为y =-12x +1. ...............................................................(10分)8.第8题解图解:(1)如解图,过点A 作AE ⊥x 轴于点E , ∵OA =5,sin ∠AOC =35, ∴AE =OA ·sin ∠AOC =5×35=3, OE =22OA AE -=4,∴A (-4,3),........................................................................................................(3分)设反比例函数的解析式为y =kx (k ≠0), 把A (-4,3)代入解析式,得k =-12, ∴反比例函数的解析式为y =12x-. .................................................................(5分) (2)把B (m ,-4)代入y =12x-中,得m =3,∴B (3,-4).设直线AB 的解析式为:y =k x +b ,把A (-4,3)和B (3,-4)代入得,4334k b k b -+=⎧⎨+=-⎩,解得11k b =-⎧⎨=-⎩, ∴直线AB 的解析式为:y =-x -1,.................................................................(8分) 则直线AB 与y 轴的交点D (0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5. ......................................(10分)第9题解图9. 解:(1)如解图,过点B 作BD ⊥x 轴于点D .∵点B 的坐标为(n ,-2), ∴BD =2.在Rt △BDO 中,tan ∠BOC =BDOD ,∵tan ∠BOC =2OD=25, ∴OD =5. ..........................................................................................................(1分)又∵点B 在第三象限,∴点B 的坐标为(-5,-2).(2分) 将B (-5,-2)代入y =k x ,得-2=5k-,∴k =10,..............................................................................................................(3分) ∴该反比例函数的解析式为y =10x. .................................................................(4分) 将点A (2,m )代入y =10x,得m =102=5, ∴A (2,5).........................................................................................................(5分) 将A (2,5)和B (-5,-2)分别代入y =ax +b ,得2552a b a b +=⎧⎨-+=-⎩,解得13a b =⎧⎨=⎩,...............................................................................(6分) ∴该一次函数的解析式为y =x +3. ..................................................................(7分) (2)在y =x +3中,令y =0,即x +3=0, ∴x =-3,∴点C 的坐标为(-3,0),∴OC =3. .........................................................................................................(8分) 又∵在x 轴上有一点E (O 除外),使S △BCE =S △BCO ,∴CE =OC =3,..............................................................................................(9分) ∴OE =6,∴E (-6,0)...................................................................................................(10分) 【变式改编2】 解:(1)把点A (3,2)分别代入反比例函数解析式和一次函数解析式得,3m=2,k (3-2)=2, 解得m =6,k =2,∴反比例函数解析式为y =6x,一次函数解析式为y =2x -4; 由624y xy x ⎧=⎪⎨⎪=-⎩,解得121231,26x x y y ==-⎧⎧⎨⎨==-⎩⎩,∴B 点坐标(-1,-6).变式改编2题解图(2)设一次函数与y 轴交于D 点,如解图, 在y =2x -4中,令x =0得y =-4, ∴D 点坐标为(0,-4), ∵S △ABC =S △ACD +S △BCD =10,∴12×CD ×3+12×CD ×1=10,解得CD =5, ∴C 点坐标为(0,1)或(0,-9).拓展猜押2题解图【拓展猜押2】 D 【解析】如解图,作EF ⊥OB 于F ,AG ⊥OB 于G ,设E (m ,n ),∴OF =-m ,EF =n ,∵△OAB 为等腰直角三角形,∴∠ABO =45°,∵EF⊥OB,∴EF=BF=n,∴OB=-m+n,∴AG=12OB=12(-m+n),∵一次函数y=-17x+47与x轴交于C点,∴C(4,0),∴BC=-m+n+4,∵S△AED=S△DOC ,∴S△ABO=S△EBC,∴12OB·AG=12BC·EF,即12(-m+n)·12(-m+n)=12(-m+n+4)·n,整理得,m2=n2+8n,∵点E是直线y=-17x+47上的点,∴n=-17m+47,得出m=4-7n,代入m2=n2+8n化简得,3n2-4n+1=0,解得n=1或n=13,∴m=-3或m=53>0(舍去),∴E(-3,1),∵反比例函数y=kx(k≠0)的图象过E点,∴k=mn=-3.。
重庆市中考数学题型复习 题型四 反比例函数综合题 类型一 与一次函数结合课件.ppt

∵点A在一次函数y=ax+2的函数图象上,
∴0=-a+2.
∴a=2.
∴一次函数的表达式为y=2x+2;
(2)【思维教练】由(1)可知一次函数表达式,根据点C、D是一 次函数与反比例函数的交点可求得点C,D坐标,再将点C或点 D代入y= k (k≠0)中求出k的值,即可得到反比例函数表达
x 式;要求S△COD,可用面积和差求解:S△COD=S△AOD+S△AOC.
【自主作答】
题型四 反比例函数综合 题
类型一 与一次函数结合
典例精讲
例 1 如图,在平面直角坐标系中,一次函数y=ax+数y= k (k≠0)
x 的图象相交于C(1,m),D(n,-2)两点,连接OD,OC.其中 tan∠BAO=2.
(1)求一次函数的表达式;
(2)求反比例函数的表达式和△COD的面积.
(1)【思维教练】已知一次函数y=ax+2(a≠0),要求解析式, 只需求出点A的坐标即可,由一次函数解析式可得B(0,2),结 合tan∠BAO=2,可得点A的坐标,代入y=ax+2中求出a的值, 即可得到一次函数表达式.
【自主作答】
解:∵y=ax+2(a≠0)交 y 轴于点B,∴B(0,2). ∵tan∠BAO= BO =2,∴AO=1.
重庆2020中考专题训练之反比例函数(pdf版,无答案)

反比例函数
(八中 2019 级九上周考 1)如图,点 P m, m 是反比例函数 y 9 在第一象限内的图像上一点,点
x
A、B 均在 x 轴上,若△PAB 为等边三角形,则△POB 的面积为( )
9
A、
2
B、 3 3
9 12 3
C、
4
93 3
D、
2
(八中 2019 级九上周考 2)如图所示,四边形 OABC 是矩形,△ADE 是等腰直角三角形,∠ADE=90°,
2
3 3
,3
3
C、
4,3 2
D、
4
3 5
,5
3 2
6
(巴蜀 2019 级九上月考模拟 2)如图,已知点 A 是双曲线 y 2 在第一象限的分支上的一个动点, x
连接 AO 并延长,交另一分支于点 B,以 AB 为斜边作等腰 Rt△ABC,随着点 A 的运动,点 C 的位
点 A、D 在 x 轴的正半轴上,点 C 在 y 轴的正半轴上,点 B、E 在反比例函数 y k x 0 的图像
x
上,△ADE 的面积为 9 ,且 AB 5 DE ,则 k 的值为(
)
2
3
A、18
B、 45 2
C、 52 6
D、16
2
(南开 2019 级九上入学测试)如图,在平面直角坐标系中,△ABO 的顶点 A 在 x 轴上,反比例函
x
坐标为(0,b)(b>0),动点 M 在 y 轴上,且在 B 点上方,动点 N 在射线 AP 上,过点 B 作 AB 的
垂线,交射线 AP 于点 D,交直线 MN 于点 Q,取 AQ 中点为 C,若四边形 BQNC 是菱形,面积为 2 3 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市20XX 年中考-反比例函数
【例1】、如图,菱形OABC 在直角坐标系中,点A 的坐
标为(5,0),对角线OB =45
x
k
y =
(k ≠0,x >0)经过点C .则k 的值等于 A .12 B .8 C .15 D .9
【例2】、已知:如图,矩形OABC 的边OA 在x 轴的负半轴 上,边OC 在y 轴的正半轴上,且OA =2OC ,直线 y =x +b 过点C ,并且交对角线OB 于点E ,交x 轴于 点D ,反比例函数x
a
y =
过点E 且交AB 于点M , 交BC 于点N ,连接MN 、OM 、ON ,若△OMN 的面积
是9
80,则a 、b 的值分别为( )
A. =a 2,=b 3
B.=a 3,,=b 2
C. =a -2,=b 3
D.=a -3,=b 2
【例3】、如图,在ABC Rt ∆中,︒=∠90ABC ,点B 在x
轴上,且()01,
-B ,A 点的 横坐标是2,AB=3BC ,双曲线()04>m x
m
y =经过A 点,双曲线x
m y -
=经 过C 点,则m 的值为(▲)
A .12
B .9
C .6
D .3
【例4】、如图,若双曲线k
y x
=与边长为5的等边△AOB 的边OA 、AB 分别相交于C ,D 两点,且OC =3BD ,则实数k 的值为________.
y
x
A O
12题图
B
C
12题图
O
y
x
N
M E
D
C
B A
A
C
D
第18题图
x
O
y B
【例5】、如图,Rt ABO ∆中,90,3,ABO AC BC D OA ∠==为中点,
反比例函数经过C 、D 两点,若ACD ∆的面积为3,则反比例函数
的解析式为( )
A 、2y x =
B 、2y x =-
C 、4y x =
D 、4
y x
=-
【例9】、如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数k y x
=
(k≠0)在第一象限的图象经过顶点A (a ,4)和CD 边上的点E (b ,2),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-1),则△OFG 的面积是( )
A. 43
B. 53
C. 23
D. 7
3
A B C
O x
y
D 第12题图
【例11】、如图,正方形OABC 的边OA 、OC 均在坐标轴上,双曲线(0)k
y x x
=
>经过OB 的中点D ,与AB 边交于点E ,与CB 边交于点F ,直线EF 与x 轴交于G . 若4.5OAE S =,则点G 的坐标是( )
A .(7,0)
B .(7.5,0)
C .(8,0)
D .(8.5,0)
【例12】、如图,在平面直角坐标系xoy 中,Rt △OAB 的直角边在x 轴的负半轴
上,点C 为斜边OB 的中点,反比例函数()0≠=k x
k
y 的图象经过点C ,且与
边AB 交于点D ,则AB
AD
的值为( )
A.31
B. 32
C. 51
D. 4
1 【例13】、如图,Rt △ABC 的直角边BC 在x 轴正半轴上,斜边AC 边上的中线BD 的
反向延长线交y 轴负半轴于点E ,双曲线x
k
y = (k >0)的图象经过点A ,若S △BEC =8,
则k 等于( )
A .8
B .16
C .24
D .28
D E F C O x y
A B
G
【例15】、如图,Rt OAB ∆的直角边OA 在x 轴正半轴上,
︒=∠60AOB ,反比例函数()03
>x x
y =
的图象与Rt OAB ∆两 边OB ,AB 分别交于点C ,D .若点C 是OB 边的中点,则点 D 的坐标是(▲)
A .()3,1
B .
()1,3
C .⎪⎪⎭⎫ ⎝⎛23,2
D .⎪⎪⎭
⎫ ⎝⎛43,4。