相似三角形的应用举例
相似三角形的应用例析

相似三角形的应用例析相似三角形是平面几何中的重要的内容之一,其应用十分广泛.举例说明如下.1、测量底部不能到达的建筑物的高例1 如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度(精确到0.1米).2、测量池塘宽例2如图,有一池塘要测量两端AB的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长至D,使AC并延长至D,使15CD CA=,连接BC并延长至E,使15CE CB=,连接ED,如果量出25mDE=,那池塘宽多少A BCE D3、利用影长测量建筑物的高度例3高4m的旗杆在水平地面上的影子长6m,此时测得附近一个建筑物的影子长24m,求该建筑物的高度.4、测量电线杆的高例4如图,一人拿着一支刻有厘米刻度的小尺,站在距电线杆约30m的地方,把手臂向前伸直,小尺竖直,看到尺上约12个刻度恰好遮住电线杆,已知手臂长约60cm,求电线杆的高.5、测量台阶例5 汪老师要装修自己带阁楼的新居(右图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F碰头,设计墙角F到楼梯的竖直距离FG为1. 75m.他量得客厅高 AB= 2. 8m,楼梯洞口宽AF=2m.阁楼阳台宽EF = 3m.请你帮助汪老师解决下列问题:(1)要使墙角F到楼梯的竖直距离FG为,楼梯底端C到墙角D的距离CD是多少米(2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶小于 20c m,每个台阶宽要大于20c m,问汪老师应该将楼梯建儿个台阶为什么参考答案例1:【分析】根据题意得:AB⊥BH,CD⊥BH,FG⊥BH,在Rt△ABE和Rt△CDE中,∵AB⊥BH,CD⊥BH,∴CD//AB,可证得:△ABE∽△CDE,∴BD DE DE AB CD += ①同理:BDGD HG HG AB FG ++= ② 又CD =FG =1.7m ,由①、②可得:BD GD HG HG BD DE DE ++=+ 即BDBD +=+10533,解之得:BD =7.5m , 将BD =7.5代入①得:AB=5.95m≈6m.答:路灯杆AB 的高度约为6m .【点评】 本题通过多次平行线,利用相似三角形解决.把实际问题转化为相似问题,建立数学模型,做到学以致用.例2:【分析】这个问题的实质是△ECD∽△BCA,利用两个三角形相似求池塘宽DE AB CD AC AB DE ===155,.解: CD CA CE CB ==1515,∴==CD CA CE CB 15 又∵∠ECD=∠BCA ∴△ECD∽△BCA∴==DE AB CD AC 15∴==⨯=AB DE m 5525125().【点评】 通过测量池塘宽,能够综合运用三角形相似的判定条件和性质解决问题,发展数学应用意识,加深对相似三角形的理解和认识.例3:【分析】 画出上述示意图,即可发现:△ABC ∽△A ′B ′C ′ 所以B A AB //=C B BC //, 于是得,BC =B A AB//×B /C /=16(m ). 即该建筑物的高度是16m .例4:【分析】 本题所叙述的内容可以画出如图那样的几何图形,即DF=60cm=,GF=12cm=,CE=30m ,求BC .由于△ADF∽△AEC,AC AF EC DF =,又△AGF∽△ABC,∴ BC GF AC AF =,∴ BC GF EC DF =,从而可以求出BC 的长.解: ∵AE⊥EC,DF∥EC,∴∠ADF=∠AEC,∠DAF=∠EAC,∴△ADF∽△AEC.∴AC AF EC DF =.又GF⊥EC,BC⊥EC,∴GF∥BC,∠AFG=∠ACB,∠AGF=∠ABC,∴△AGF∽△ABC,∴BC GF AC AF =,∴BC GF EC DF =.又∵ DF=60cm=,GF=12cm=,EC=30m ,∴ BC=6m.即电线杆的高为6m .【点评】 “测量电线杆的高”问题本身就是利用数学问题去处理实际问题,还有许多实际问题都可以用数学问题来解决,运用相似三角形相似的相关知识解决在生活中的一些实际问题;必须要正确地理解知识的内涵,比如手臂向前伸直与地面平行,刻度平行于电线杆,由此构造“相似三角形对应成比例的线段”.在应用过程中,要时时围绕三角形相似这一宗旨.例5:【分析】 (1)根据题意有AF∥BC,∴∠ACB=∠GAF,又∠ABC=∠AFG=90º, ∴△ABC∽△GFA.∴FGAB AF BC =得BC=(m),CD=2+=(m). (2)设楼梯应建n 个台阶,则>,<,解得14<n <16,∴楼梯应建15个台阶.。
相似三角形的应用举例

相似三角形的应用举例相似三角形是指在形状相似的两个三角形中,对应的角度相等,而对应的边长成比例关系。
这一性质使得相似三角形在实际生活中有着广泛的应用。
本文将举例介绍相似三角形在地理测量、影视制作和建筑设计等领域的具体应用。
一、地理测量中的相似三角形应用地理测量中常常使用相似三角形原理来测量高处物体的高度以及难以直接测量的距离。
以测量一座建筑物的高度为例,通过在平面上选择两个不同位置,测量出与地平线夹角相同的两个点,再利用三角形相似原理计算出建筑物的高度。
这样的测量方法可以避免测量过程中的误差和测量的困难,提高测量的准确性和效率。
二、影视制作中的相似三角形应用在影视制作中,相似三角形的应用尤为重要。
例如,在电影中要制作一个逼真的远景特写,如果直接拍摄远处的景象,可能会因为远离拍摄现场而导致细节无法清晰展现。
为了解决这个问题,可以利用相似三角形的原理,在近距离拍摄一个类似的模型或者画面,然后通过电脑生成与实景相似的远景效果。
这种利用相似三角形的方法可以在节约成本的同时,制作出逼真的远景特写效果。
三、建筑设计中的相似三角形应用相似三角形在建筑设计中有着广泛的应用,特别是在设计高层建筑时更是如此。
以设计一座摩天大楼为例,建筑师需要保证高楼的结构坚固稳定,同时也要满足美学上的要求。
在设计过程中,利用相似三角形的原理可以根据大楼的比例尺度,在小模型上进行实际尺寸的计算和预测。
这种预测方法不仅可以方便地展示设计方案,还可以在施工前发现和修正设计中的不足之处,提高整体设计质量。
通过上述几个具体例子,我们可以看到相似三角形在地理测量、影视制作和建筑设计中的重要应用。
相似三角形原理的运用,使得我们能够更加准确地进行测量、制作出逼真的特效和设计出稳固美观的建筑物。
这一应用不仅提高了工作效率,还为我们提供了更多实际问题的解决方案。
因此,相似三角形的学习与应用在我们的生活中具有重要的意义。
相似三角形的应用举例

太阳的平行光
三点一线
光的反射
一下子掌握了三种利用相似三角形测量物体高 度的办法,所有的人都觉得好有成就感,觉得数学 原来这么有趣,并且这么有用!看来以后真的要学 好数学啊!
他们刚准备一起回教室,这时太阳也出 来了,象是要给这群聪明的同学一张鼓励 的笑脸!可是……
爱动脑筋的苏菲想了一会 儿,马上掏出随身携带的镜 子说:“我有办法了!”
B 反射角等于 入射角 F D C
E
A
你知道可以怎样来测量吗?
探究2 苏菲用下面的方法来测 量学校旗杆AB的高度:如图,在 水平地面点E处放一面平面镜,镜 子与旗杆底部的距离AE=20米.当 D 她与镜子的距离CE=2.5米时,她刚 好能从镜子中看到旗杆的顶端B. 已知她的眼睛距地面高度DC=1.6米 C E ,则旗杆AB的高度为多少米 。
九年级
下册
27.2.3 相似三角形应用举例
复旧引新
胡夫金字塔是埃及现存规模 最大的金字塔,被喻为“世界古 代七大奇观之一”.塔的 4 个斜 面正对东南西北四个方向,塔基呈正方形,每边长约 230 米.据考证,为建成胡夫金字塔,一共花了 20 年时 间,每年用工10 万人. 在古希腊,有一位伟大的科学家叫泰勒斯.一天, 希腊国王阿马西斯对他说:“听说你什么都知道,那就 请你测量一下埃及金字塔的高度吧!”这在当时条件下 是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是 怎样测量金字塔高度的吗?
E
聪明的你还能利 用太阳光形成的 影子测出旗杆的 高度吗?
归纳小结
本堂课学到了什么?我还有什么疑惑?
当堂检测
《我的笔记本》17页
解: ACD=FED=90,ADC=ADC, ADC FDE, AC DC AC 20 = ,即 = FE DE 0.25 0.5 解得AC=10 CB=DG=1.5, AB=AC+CB=10+1.5=11.5 (米) 所以旗杆AB的高度为11.5米。
相似三角形的运用

相似三角形的运用
相似三角形是指两个三角形对应角相等,对应边成比例的三角形。
相似三角形的运用在几何学中有广泛的应用,以下是其中的几个例子:
1. 三角形相似的性质:如果两个三角形相似,则它们的对应边成比例。
即如果三角形ABC和DEF相似,则有AB/DE=BC/EF=AC/DF。
2. 相似三角形的性质:相似三角形对应角相等,对应边成比例。
这个性质可以用来证明三角形的相似性,也可以用来求解三角形中的各种量,如角度、边长、面积等。
3. 相似三角形的应用:相似三角形的应用非常广泛。
例如,在建筑设计中,相似三角形的性质可以用来确定建筑物的比例关系;在地图制图中,相似三角形的性质可以用来确定地图上不同地区的比例关系;在物理学中,相似三角形的性质可以用来解决力学问题,如斜面滑动、抛体运动等。
总之,相似三角形是几何学中非常重要的概念,它不仅可以用来证明三角形的相似性,还可以用来解决各种实际问题,是几何学中的重要工具之一。
相似三角形在现实生活中的应用场景

相似三角形在现实生活中的应用场景
相似三角形的判定在现实生活中有广泛的应用,以下是一些常见的应用场景:
1.建筑和工程领域:在建筑设计和工程计算中,相似三角形的判定被用于解
决各种实际问题。
例如,工程师会利用相似三角形原理来计算建筑物的缩放比例,以确定建筑物的外观和尺寸是否符合设计要求。
此外,在桥梁、道路和水利工程的设计和建设中,工程师也需要用到相似三角形的概念来测量斜坡的斜率和角度等参数。
2.地图和导航领域:在地图和导航中,利用相似三角形的原理可以精确地测
量距离和角度。
例如,在地图上测量两点之间的距离时,可以利用相似三角形来计算实际距离。
此外,在导航中,飞行员和船员也需要用到相似三角形的概念来测量飞行或航行的角度和距离,以确保安全飞行或航行。
3.科学实验和观测:在科学实验和观测中,相似三角形的判定也被广泛用于
各种测量和计算。
例如,物理实验中常常需要测量物体的速度、加速度等物理量,这时可以利用相似三角形来测量或计算所需参数。
此外,在天文观测中,天文学家也会用到相似三角形的原理来测量天体的位置和距离。
4.日常生活中的应用:在日常生活中,我们也会遇到一些与相似三角形相关
的应用场景。
例如,摄影时需要调整相机的角度和高度,这时可以利用相似三角形的原理来计算所需的参数。
另外,在测量物体的尺寸或角度时,我们也可以利用相似三角形的概念来进行粗略的估算。
总之,相似三角形的判定在现实生活中有广泛的应用,涉及到建筑、工程、科学实验、导航、摄影等领域。
通过掌握相似三角形的原理和应用技巧,我们可以更好地解决各种实际问题,提高生活和工作的效率和质量。
相似三角形应用举例

相似三角形应用举例在我们的日常生活和学习中,相似三角形的应用无处不在。
相似三角形是指对应角相等,对应边成比例的两个三角形。
通过利用相似三角形的性质,我们可以解决许多实际问题,下面就让我们一起来看看一些具体的例子。
一、测量物体的高度假设我们想要测量一棵大树的高度,但又无法直接测量。
这时候,相似三角形就派上用场了。
我们可以在同一时刻,在大树旁边立一根已知长度的杆子,然后分别测量杆子的影子长度和大树的影子长度。
因为在同一时刻,太阳光线的角度是相同的,所以杆子和它的影子以及大树和它的影子分别构成了两个相似三角形。
假设杆子的高度为h1,杆子影子的长度为 s1,大树影子的长度为 s2,大树的高度为 h2。
根据相似三角形的性质,我们可以得到:h1 / s1 = h2 / s2通过已知的 h1、s1 和 s2,就可以计算出大树的高度 h2。
例如,杆子高度为2 米,影子长度为15 米,大树影子长度为9 米。
那么:2 / 15 = h2 / 915h2 = 2 × 915h2 = 18h2 = 12 米所以,这棵大树的高度约为 12 米。
二、计算河的宽度当我们面对一条河流,想要知道它的宽度,但又无法直接跨越测量时,相似三角形同样能帮助我们解决问题。
我们可以在河的一侧选择一个点A,然后在河的对岸选择一个点B,使得 A、B 两点与河岸基本在同一直线上。
接着,在河的这一侧,沿着河岸选定一个点 C,使得 AC 垂直于河岸,并测量出 AC 的长度。
然后,我们再沿着 AC 的方向向前走一段距离,到达点 D,使得点 D、A、B 三点在同一直线上,并且测量出 CD 的长度。
由于三角形 ABC 和三角形 ADC 有一个共同的角∠A,并且∠ACB=∠ACD = 90°,所以这两个三角形相似。
假设河宽为AB =x,AC =a,CD =b。
根据相似三角形的性质,我们有:AC / AB = CD / AC即 a / x = b / a通过已知的 a 和 b,就可以计算出河的宽度 x。
相似三角形的应用举例

相似三角形应用举例
5.某同学想测量旗杆的高度,他在某一时刻测得1m长的竹杆竖直 放置时的影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近 一幢楼房,影子不全落在地面上,有一部分落在墙上.他测得落在 地面上的影长为21m,留在墙上的影高为2m.你能帮助他求出旗杆的 高度吗? 6.一条河的两岸是平行的,在河的这一岸每隔5m有一棵树,在河 的对岸每隔50m有一根电线杆,在这岸离开岸边25m处看对岸,看到
分析:AB l , CD l
AB∥CD,△AFH∽△CFK.
,解得FH=8.
FH 8 1.6 6.4 FH AH ,即 FH 5 12 1.6 10.4 FK CK
相似三角形应用举例
【例1】雨后初晴,一学生在运动场上玩耍,从他前面2m远一块小积水处,
他看到旗杆顶端的倒影,如果旗杆底端到积水处的距离为40m,该生的眼部
相似三角形应用举例
【例3】阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图 2所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗 口底边离地面的高BC.
图2 【解析】由同一时刻的光线互相平行可得,AE∥BD,所以 △AEC∽△BDC,可得 DC BC ,结合图形及已知条件可求出BC 的长. 【答案】BC=4m.
相似三角形应用举例
问题1 据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似 三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线 构成两个相似三角形,来测量金字塔的高度. 如下图,如果木杆EF长2m,它的影长FD为3 m,测得OA为201 m, 求金字塔的高度BO.
分析:(1)利用太阳光线是平行的,得到AB∥ED,又有OB、EF都垂 直于地面; (2)证明△ABO∽△DEA; (3)利用相似比,求BO.
相似三角形在物理学上的应用

相似三角形在物理学上的应用相似三角形在实际中的应用非常广泛,尤其与物理学的联系非常紧密.下面举例说明相似三角形在物理学上的实际应用.【例1】如图所示,慢慢将电线杆竖起,如果所用力F的方向始终竖直向上,则电线杆竖起过程中所用力的大小将.A.变大B.变小C.不变D.无法判断解析:由物理知识可知,电线杆竖起的过程,实质上相当于以O为支点,以F 为动力,以电线杆重力G为阻力的杠杆运动.在电线杆竖起的过程中,动力臂OA,阻力臂OB是逐渐变化的.∵AA′∥BB′,∴△OBB′∽△OAA′∴=而是定值,即也是定值.由杠杆平衡条件F·OA=G·OB,得F=G·因此,动力F 大小不变.故选C答案:C【例2】小华做小孔成像实验.如图,问蜡烛与成像板间的小孔纸板放在何处时,蜡烛焰AB是像A′B′的一半长,已知蜡烛与成像板间的距离为l解:由相似三角形可知△ABO∽△A′B′O,△AEO∽△A′FO∴=,=∴==∴=,=∴OE=EF=l故小孔纸板应放在距蜡烛l处.1.如图,△ABC被DE、FG分成面积相等的三部分即S1=S2=S3,且DE∥FG ∥BC,BC=,FG-DE等于.A.-1 B.-C.-D.2-解析:由相似三角形的性质,得DE∶FG∶BC=1∶∶设DE=,FG=,BC=,则=∴=∴DE=,FG=2∴FG-DE=2-答案:D2.如图,在Rt△ABC中,∠C=90°,且AC=CD=1,又E,D为CB的三等分点.1问图中是否存在相似三角形,若存在,找出并证明相似的三角形;若不存在,试说明理由;2比较∠ADC与∠AEC+∠B的大小,试说明理由.解:1存在△ADE∽△BDA证明:∵AC=CD=DE=EB=1,又∠C=90°,∴AD=则==,=∴=而∠ADE=∠BDA,∴△ADE∽△BDA2由1知△ADE∽△BDA,∴∠DAE=∠B又∵∠ADC=∠AEC+∠DAE,∴∠ADC=∠AEC+∠B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.2.2相似三角形应用举例
教学目标:
1.进一步巩固相似三角形的知识.
2.能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题)等的一些实际问题.
3.通过把实际问题转化成有关相似三角形的数学模型,进一步了解数学建模的思想,培养分析问题、解决问题的能力.
重点、难点
1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.
2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).
一、知识链接
1、判断两三角形相似有哪些方法?
2、相似三角形有什么性质?
二、.探索新知
1、问题1:学校操场上的国旗旗杆的高度是多少?你有什么办法测量?
2、在平行光线的照射下,不同物体的物高与影长成比例
练习:(1.)一根1.5米长的标杆直立在水平地面上,它在阳光下的影长为2.1米;此时一棵水杉树的影长为10.5米,这棵水杉树高为( )
A.7.5米
B.8米
C.14.7米
D.15.75米
(2.)在某一刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的高为60 米,那么高楼的影长是多少米?
3.
世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?
3、例题讲解
例3:
据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.
如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO.(思考如何测出OA的长?)
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:
4、课堂练习
在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例.)
问题:估算河的宽度,你有什么好办法吗?
5、例4
如图,为了估算河的宽度,我们可以在河对岸选定一个目标P ,在近岸取点Q 和S ,使点P 、Q 、S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R .如果测得QS = 45 m ,ST = 90 m ,QR = 60 m ,求河的宽度PQ .
分析:设河宽PQ 长为x m ,由于此种
测量方法构造了三角形中的平行截线,故可 得到相似三角形,因此有ST QR PS PQ =, 即90
6045x x =+.再解x 的方程可求出河宽.
解:
6、课堂练习
如图,测得BD=120 m ,DC=60 m ,EC=50 m ,求河宽AB 。
7、结合此题写出测量河宽的方案。
三、回顾与反思.
(1) 谈谈本节课你有哪些收获.
四、当堂检测
• 1 如图,这是圆桌正上方的灯泡(当成一个点)发出的光线照射桌面形成阴影的示意图,已知桌面的直径为1.2米,桌面距离地面为1米,若灯泡距离地面3米,则地面上阴影部分的面积为多少?
2.为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那
E
3、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.
4、如图,已知零件的外径a为25cm ,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。
F
E D
C
B
A
L'L
F'F
B
H
A B
C
D
5 、如图,△ABC 是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在 AB 、AC 上,这个正方形零件的边长是多少?
N M Q P
E D C B A。