助力2012高考高中物理知识点整合 电磁振荡及LC回路素材
高三物理高考知识点分析电磁波和相对论简介

电磁波和相对论简介一、电磁振荡1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。
2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示3.LC 回路的振荡周期和频率高考资源网高考资源网高考资源网高考资源网LC T π2=高考资源网高考资源网高考资源网高考资源网高考资源网LCf π21=注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关 (2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变电流的区别。
4、分析电磁振荡要掌握以下三个要点(突出能量守恒的观点):⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。
⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。
⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。
4、L C 回路中的电流图象和电荷图象总是互为余函数。
5、注意特殊点和过程 a.充电完毕和放电完毕时的特点 b.充电过程和放电过程的特点 c.电场能和磁场能的转化的临界状态 d.电流在什么时候方向改变【例1】右边两图中电容器的电容都是C =4×10-6F ,电感都是L =9×10-4H ,左图中电键K 先接a ,充电结束后将K扳到b ;右图中电键K先闭合,稳定后断开。
两图中LC 回路开始电磁振荡t =3.14×10-4s 时刻,C 1的上极板正在____电(充电还是放电),带_____电(正电还是负电);L 2中的电流方向向____(左还是右),磁场能正在_____(增大还是减小)。
解:先由公式求出LC T π2==1.2π×10-4s ,高考资源网t =3.14×10-4s 时刻是开始振荡后的T 65。
再看与左图对应的q-t 图象(以上极板带正电为正)和与右图对应的i-t 图象(以LC 回路中有逆时针方向电流为正),图象都为余弦函数图象。
高中物理经典复习资料:电磁场和电磁波

【基础知识归纳】大小和方向都做周期性变化的电流叫做振荡电流.能产生振荡电流的电路叫振荡电路,L C 电路是最简振荡电路中产生振荡电流的过程中,线圈中的电流、电容器极板上的电量及其与之相联系的磁场能、1.振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性2.振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零;电路中的电流和磁场能均增大,直到最大值.充电时,情况相反.电容器正反向充放电一次,便完成一次振荡的全过程.图13—2—1图13—2—13.周期和频率:电磁振荡完成一次周期性变化所用的时间叫做电磁振荡的周期.1 s 内完成电磁振荡的次数叫做电磁振荡的频率.对LCT =LCπ2 f =LCπ21三、电磁场和电磁波1(1(2)不仅电流能够产生磁场,变化的电场也能产生2变化的电场和磁场总是相互联系的,形成一个不可分割的统一体,即为电磁场,电磁场由近及远的传3在真空中,任何频率的电磁波的传播速度都等于光速c =3.00×108 m/s .其波速、波长、周期频率间关系为:c =Tλ=f λ(1)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验成功的证实了电磁波的存在. (2)在电磁波中,电场强度和磁感应强度是互相垂直的,且都和电磁波的传播方向垂直,所以电磁(3)电磁波的(41.调制:在无线电应用技术中,首先将声音、图象等信息通过声电转换、光电转换等方式转为电信号,这种电信号频率很低,不能用来直接发射电磁波.把要传递的低频率电信号“加”到高频电磁波上,1.电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最2.调谐:调谐电路的固有频率可以在一定范围内连续改变,将调谐电路的频率调节到与需要接收的某个频率的电磁波相同,即,使接收电路产生电谐振的过程叫做调谐.3.检波:从接收到的高频振荡中分离出所携带的信号的过程叫做检波.检波是调制的逆过程,也叫4.无线电的接收:天线接收到所有的电磁波,经调谐选择出所需要的电磁波,再经检波取出携带的电视系统主要由摄像机和接收机组成.把图象各个部位分成一系列小点,称为像素,每幅图象至少要有几十万个像素.摄像机将画面上各个部分的光点,根据明暗情况逐点逐行逐帧地变为强弱不同的信号电中国电视广播标准采用每1 s传送25帧画面,每帧由625雷达是利用无线电波来测定物体位置的无线电设备,一般由天线系统、发射装置、接收装置、输出装【方法解析】麦克斯韦电磁理论是理解电磁场和电磁波的关键所在,应注意领会以下内容:变化的磁场可产生电场,产生的电场的性质是由磁场的变化情况决定的,均匀变化的磁场产生稳定的电场,非均匀变化的磁场产生【典型例题精讲】[例1]L C振荡电路中,某时刻磁场方向如图13—2—2所示,则下列说法错误的是图13—2—2ABCD.若电容器【解析】先根据安培定则判断出电流的方向,若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B叙述正确,由楞次定律知D叙述亦正确.因而错误选项只有C【思考】(1)若磁场正在增强,则电场能和磁场能是如何转化的?电容器是充电还是放电?线圈两端的电压是增大还是减小?(2)若此时磁场最强(t=0),试画出振荡电流i和电容器上板带电量q随时间t变化的图象?(3)若使该振荡电路产生的电磁波的波长更短些,可采取什么措施?(包括:线圈匝数、铁芯、电介【思考提示】(1)磁场增强,磁场能增大,电场能减小,电容器放电,电容器两端电压降低,线圈(2LC,为减小λ,需减小L或C.(3)根据λ=cT和T=2π【设计意图】[例2]某电路中电场随时间变化的图象如图13—2—3所示,能发射电磁波的电场是图13—2—3【解析】变化的电场可产生磁场,产生的磁场的性质是由电场的变化情况决定的.均匀变化的电场图A中电场不随时间变化,不会产生磁场.图B和图C中电场都随时间做均匀的变化,在周围空间产生稳定的磁场,这个磁场不能再激发电场,所以不能激起电磁波.图D中电场随时间做不均匀的变化,能在周围空间产生变化的磁场,而这磁场的变化也是不均匀的,又能产生变化的电场,从而交织成一个不【设计意图】通过本例说明形成【达标训练】1.建立电磁场理论的科学家是_______.用实验证明电磁波存在的科学家是_______【答案】 麦克斯韦2 ABCD .电磁波的传播速度总是3.0×108m/s【答案】B3A .波长和频率BC .波长和波速D【答案】C4A .①③BC .①④D【答案】A5.关于电磁波,下列说法中正确的是 ABC.电磁波由真空进D【解析】 任何频率的电磁波在真空中的传播速度都是c ,故AB 都错.电磁波由真空进入介质,波速变小,而频率不变,C对.变化的电场、磁场由变化区域向外传播就形【答案】C6.无线电广播的中波段波长的范围是187 m ~560 m ,为了避免邻近电台的干扰,两个电台的频率范围至少应差104 Hz,则在此波段中最多能容纳的电台数约为多少个【解析】f max =1871038min⨯=λcHz =1.6×106Hzf min =5601038max⨯=λcHz =0.54×106Hzn =466min max 101054.0106.1⨯-⨯=-f f f ∆=106【答案】1067.某收音机接收电磁波的波长范围在577 m 到182 m【解析】 根据c =λff 1=57710381⨯=λcHz =5.20×105Hzf 2=18210382⨯=λcHz =1.65×106Hz所以,频率范围为5.20×105 Hz ~1.65×106Hz【答案】 5.20×105 Hz ~1.65×106Hz8.关于LCA BC D【答案】9.L C 振荡电路中,某时刻的电流方向如图13—2—4所示,则下列说法中正确的是A BCD .【答案】D10.在L C 振荡电路中,电容器C 的带电量随时间变化的图象如图13—2—5所示,在1×10-6 s 到2×10-6s 内,关于电容器的充(或放)电过程及因此产生的电磁波的波长,正确的结论是A .充电过程,波长为1200 m B .充电过程,波长为1500 m C .放电过程,波长为1200 m D .放电过程,波长为1500 m【解析】 在1×10-6s 到2×10-6s 内,电容器带电量增大,属充电过程.产生的电磁波周期T =4×10-6s ,波长λ=cT =3×108×4×10-6 m =1200 m【答案】 A11.L C 振荡电路中,某时刻磁场方向如图13—2—6所示,则下列说法错误的是图13—2—6A B C D【解析】 若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A 正确.若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B 正确,由楞次定律知D【答案】12.在L C 振荡电路中,电容C 两端的电压U C 随时间变化的图象如图13—2—7所示,根据图象可以确定振荡电路中电场能最大的时刻为_______,在T /2~3T /4时间内电容器处于_______状态,能量转化情况是_______【解析】 电容器两极板间电压最大时,电场能最大,由图可知电场能最大时刻为0,2T ,T .在2T ~43T 时间内,两极板间电压变小,电容器处于放电状态,电场能正转化为磁场能.T【答案】0,2,T;放电;电场能转化为磁场能。
【高中物理】第二节 电磁振荡

第二节电磁振荡教学目标:(一)知识与技能1、知道振荡电流、振荡电路、LC回路的概念。
2、LC回路中振荡电流的产生过程。
3、知道在电磁振荡过程中,LC回路中的能量转化情况。
4、知道电磁振荡的周期和频率。
(二)过程与方法通过结合生活中各种相应现象及常识,理解电磁振荡在人们生活中的地位。
(三)情感、态度与价值观1、体会物理知识在生活中的重要作用,培养勇于探索的精神。
2、培养学生实验探求知识的意识,增强求知欲望。
教学重点:电磁振荡过程中电场能与磁场能的相互转化规律。
教学难点:LC回路振荡过程中电场强度和磁感应强度的相互转化规律。
教学方法:演示分析法,类比推理法教学用具:电感线圈一个(L>500 H,R<500Ω),200μF金属化纸介电容一个,示波器、学生电源各一台,单刀双掷开关一个,LC回路振荡过程模拟课件一份,导线若干教学过程:(一)引入新课教师:上节课我们已经了解了电磁波的发现历程,初步认识了电磁波。
在信息技术高速发展的今天,电磁波对我们来说越来越重要。
从移动电话到广播电视,从互联网到航空导航,从卫星遥感到宇宙探测,它们的工作和运行都要利用电磁波。
可是,电磁波是怎样产生的?它有哪些性质?它是怎样传送信息的?要解决这些问题,我们首先来学习有关电磁振荡的知识。
(二)新课教学1、电磁振荡的产生(1)实验演示:①出示电路图投影片,照电路图连接电路。
②引导学生分析:将S扳到a点,电容器充电还是放电?上极板带何种电荷?学生得出结论:电容器充电,上极板带正电。
③提示学生注意观察示波器图象,然后将开关S扳到b点。
提问:你观察到什么信号?回答:振幅逐渐减小的正弦交流信号。
分析上述电路的主要组成部分,并指出示波器和电源分别用来显示信号波形和充电,板书LC回路定义。
(2)LC回路:由自感线圈和电容器组成的电路叫做LC回路。
[演示]多媒体课件演示,从电容器放电瞬间开始,LC回路在振荡过程中,电容器的带电量和极板间场强,自感线圈中的电流和磁感应强度的变化规律,将结果填入表格,板书小标题和表格。
XX年高考物理基础知识专题复习:电磁振荡电磁波

XX年高考物理基础知识专题复习:电磁振荡电磁波第十二章电磁振荡电磁波相对论节电磁振荡电磁波基础知识一、电磁振荡在振荡电路里产生振荡电流的过程中,由容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化的现象,叫做电磁振荡。
Lc振荡电路由自感线圈和电容器组成的电路就是最简单的振荡电路,简称Lc回路。
在Lc回路里,产生的大小和方向都做周期性变化的电流,叫做振荡电流。
如图所示,先将电键S和1接触,电键闭合后电源给电容器c充电,然后S和2接触,在Lc回路中就出现了振荡电流。
大小与方向都做同期性变化的电流叫振荡电流..电磁振荡在产生振荡电流的过程中,电容器上极板上的电荷q,电路中的电流i,电容器内电场强度E,线圈中磁感应强度B 都发生周期性的变化,这种现象叫做电磁振荡.从振荡的表象上看:Lc振荡过程实际上是通过线圈L对电容器c充、放电的过程。
从物理本质上看:Lc振荡过程实质上是磁场能和电场能之间通过充、放电的形式相互转化的过程。
.振荡的周期和频率电磁振荡完成一次周期性变化需要的时间叫做周期。
一秒钟内完成的周期性变化的次数叫做频率。
在电磁振荡发生时,如果不存在能量损失,也不受外界其它因素的影响,这时的振荡周期和频率叫做振荡电路的固有周期和固有频率,简称振荡电路的周期和频率。
理论研究表明,周期T和频率f跟自感系数L和电容c的关系:注意:当电路定了,该电路的周期与频率就是定值,与电路中电流的大小,电容器上带电量多少无关..Lc振荡过程中规律的表达。
定性表达。
在Lc振荡过程中,磁场能及与磁场能相关的物理量和电场能及与电场能相关的物理量都随时间做周期相同的周期性变化。
这两组量中,一组最大时,另一组恰最小;一组增大时,另一组正减小。
这一特征正是能的转化和守恒定律所决定的。
定量表达。
在Lc振荡过程中,尽管磁场能和电场能的变化曲线都比较复杂,但与之相关的其他物理量和变化情况却都可以用简单的正弦曲线给出定量表达。
电磁振荡和电磁1要点

电磁振荡和电磁波一、电磁振荡1、振荡电流和振荡电路大小和方向都随时间做周期性变化的电流叫振荡电流。
能够产生振荡电流的电路叫振荡电路。
最简单的振荡电路是由电感线圈和电容器组成的,简称LC回路。
LC回路中产生振荡电流是由于电容器不断充电和放电,该振荡电流是按正弦规律变化的。
2、LC回路振荡过程中的能量转化电容器放电线圈周围产生磁场并逐渐增强线圈周围磁场逐渐减弱直至消失电容器反向充电,这种电场能磁场能发生周期性转化的现象叫做电磁振荡。
3、LC电路中电磁振荡的产生过程如下:①电容器充电未开始放电时,电容器电压U最大,电场E最强,电场能最大,电路电流i=0。
②电容器开始放电后,由于自感L的作用,电流逐渐增大,磁场能增强,电容器中的电荷减少,电场能减少。
在放电完毕瞬间,U=0,E=0,i最大,电场能为零,磁场能最大。
③电容器放完电后,由于自感作用,电流i保持原方向继续流动并逐渐减小,对电容器反向充电,随电流减小,电容两端电压升高,磁场能减少而电场能增大,到电流为零瞬间,U最大,E最大,i=0,电场能最大,磁场能为零。
④电容器开始放电,产生反向放电电流,磁场能增大电场能减小,到放电完了时U=0,E=0,i最大,电场能为零,磁场能最大。
上述过程反复循环,电路产生振荡电流。
电磁振荡过程中各物理量随时间变化情况例 在LC 振荡电路中,当电容器放电完毕瞬间,以下说法正确的是( )。
A. 电容器极板间的电压为零,磁场能开始向电场能转化 B. 电流达到最大值,线圈产生的磁场达到最大值C. 如果没有能量辐射损耗,这时线圈的磁场能等于电容器开始放电时电容器的电场能D. 线圈中产生的自感电动势最大 分析与解答正确答案:A ,B ,C电容器放电完毕的瞬间,还有以下几种说法:电场能向磁场能转化完毕;磁场能开始电场能转化;电容器开始反向充电;电容器放电完毕的瞬间有如下特点:电容器电量Q=0,板间电压U=0,板间场强E=0,线圈电流I 最大,磁感应强度B 最大,电路磁场能最大,电场能为零。
电磁振荡和电磁波知识点精解

电磁振荡和电磁波·知识点精解1.电磁振荡的过程(1)电磁振荡在振荡电路中,电容器极板上的电量、通过线圈的电流及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。
(2)LC回路中振荡电流的产生过程①电容器充电而未开始放电时,电容器电压U最大,电场E最强,电场能最大,电路中电流i=0。
②电容器开始放电后,由于自感线圈L的作用,电流逐渐增大,磁场能增强,电容器中的电荷减少,电场能减少,在放电完毕的瞬间U=0,E=0,i最大,电场能为零,磁场能最大。
③电容器放电完毕后,由于自感作用,电流i保持原方向继续流动并逐渐减少,对电容器反向充电,随电流减小,电容两端电压升高,磁场能减少而电场能增强,到电流为零瞬间,U最大,E最大,i=0,电场能最大,磁场能为0。
④电容器开始放电,产生反向放电电流,磁场能增大电场能减少,到放电完毕时,U=0,E=0,i最大,电场能为0,磁场能最大。
以上过程反复循坏,磁场能电场能、电流周期性变化。
2.电磁振荡的周期和频率(1)周期T电磁振荡完成一次周期性变化需要的时间。
(2)频率f一秒钟内完成的周期性变化的次数。
(3)LC回路的周期和频率【说明】①LC回路的周期和频率只取决于电容C和线圈的自感系数L,称为电路的固有周期和固有频率,跟电容器带电量Q和电压U、电流I无关。
②T、L、C、f的单位分别是秒,亨,法,赫。
3.麦克斯韦的电磁理论变化的电场产生磁场,变化的磁场产生电场。
【说明】不变化的电场周围不产生磁场,变化的电场周围一定产生磁场。
但如果电场是均匀变化的,产生的磁场是恒定的,如果电场是周期性(振荡)变化的,产生的磁场将是同频率的周期性(振荡)变化的磁场,反之也成立。
4.电磁场和电磁波变化的电场和变化的磁场相联系的统一体叫电磁场;电磁场的传播就是电磁波。
(1)电磁场在真空中的传播速度v=C=3×108m/s,电磁波的传播不需要介质。
(2)电磁波的周期T、频率f,波长λ及它们与波速的关系T、f由波源确定,不因介质而变化,而v,λ在不同介质中的值不同;同一介质中的电磁波频率越高波长越短。
高中物理一轮复习电磁振荡 电磁基本知识

第十五章:电磁振荡电磁波一.复习要点1.了解电磁振荡的产生过程,认识电磁振荡过程的物理本质。
2.掌握LC振荡电路的振荡规律。
3.了解麦克斯韦电磁场理论的要点4.掌握电磁波传播的简单规律『夯实基础知识』1.对LC振荡过程的认识。
(1)从振荡的表象上看:LC振荡过程实际上是通过线圈L对电容器C充、放电的过程。
(2)从物理本质上看:LC振荡过程实质上是磁场能和电场能之间通过充、放电的形式相互转化的过程。
2.LC振荡过程中规律的表达。
(1)定性表达。
在LC振荡过程中,磁场能及与磁场能相关的物理量(如线圈中电流强度、线圈电流周围的磁场的磁感强度、穿过线圈的磁通量等)和电场能及与电场能相关的物理量(如电容器的极板间电压、极板间电场的电场强度、极板上电量等)都随时间做周期相同的周期性变化。
这两组量中,一组最大时,另一组恰最小;一组增大时,另一组正减小。
这一特征正是能的转化和守恒定律所决定的。
(2)定量表达。
在LC振荡过程中,尽管磁场能和电场能的变化曲线都比较复杂,但与之相关的其他物理量和变化情况却都可以用简单的正(余)弱曲线给出定量表达。
以LC振荡过程中线圈L中的振荡电流i(与磁场能相关)和电容器C的极板间交流电压u(与电场能相关)为例,其变化曲线分别如图—1中的(a)、(b)所示。
3.LC振荡过程中一个周期内四个阶段的分析。
如图22—1所示,在O、t2、t4时刻,线圈中振荡电流i为0,磁场能最小,而电容器极板间电压u恰好达到最大值,电场能最多,在t1、t3时刻则正相反,振荡电流、磁场能均达到最大值,而电压为0,电场能最少。
在O→t1和t2→t3阶段,电流增强,磁场能增多,而电压降低,电场能减小,这是电容器放电把电场能转化为磁场能的阶段;在t1→t2和t3→t4阶段,电流减弱,磁场能减小,而电压升高,电场能增多,这是电容器充电把磁场能转化为电场能的阶段。
4.LC振荡过程一个周期内的几个特别状态振荡电路的状态时刻 t=0 t=4T t=2T t=43T T 电容器极板上的电量 最大 零 最大 零 最大 振荡电流ii=0 正向最大 i=0 反向最大 I=0 电场能 最大 零 最大 零 最大 磁场能零最大零最大零6.对周期公式T=2πLC 的定性分析。
高二物理选修一电磁波及其应用知识点归纳

高二物理选修一电磁波及其应用知识点归纳物理学与其他许多自然科学息息相关,如物理、化学、生物和地理等。
为大家推荐了高二物理选修一电磁波及其应用知识点,请大家仔细阅读,希望你喜欢。
1. 振荡电流和振荡电路大小和方向都做周期性变化的电流叫振荡电流,能产生振荡电流的电路叫振荡电路,LC电路是最简单的振荡电路。
2. 电磁振荡及周期、频率(1)电磁振荡的产生(2)振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能与磁场能的相互转化。
(3)振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零,电路中电流和磁场均增大,直到最大值。
给电容器反向充电时,情况相反,电容器正反方向充放电一次,便完成一次振荡的全过程。
(4)振荡周期和频率:电磁振荡完成一次周期性变化所用时间叫电磁振荡的周期,一秒内完成电磁振荡的次数叫电磁振荡的频率。
对于LC振荡电路,(5)电磁场:变化的电场在周围空间产生磁场,变化磁场在周围空间产生电场,变化的电场和磁场成为一个完整的整体,就是电磁场。
3. 电磁波(1)电磁波:电磁场由近及远的传播形成电磁波(2)电磁波在空间传播不需要介质,电磁波是横波,电磁波传递电磁场的能量。
(3)电磁波的波速、波长和频率的关系,4. 电磁波的发射,传播和接收(1)发射将电磁波发射出去,首先要有开放电路,其次,发射出去的电磁波要携带有信号,因而必须把要传递的电信号加别高频等幅振荡电流上去。
我们把将电信号加到高频等幅振荡电流上去的过程叫调制。
(2)传播电磁波传播方式一般有三种:地波、天波、直线传播地波:沿地球表面空间向外传播,适于长波、中波和中短波,传播距离为几百公里。
天波:依靠电离层的反射来传播,适于传播短波,传播距离为几千公里。
直线传播:在短距离内(几十公里)依靠波的直进,直接在空间传播多用于传播微波,需有中继站接力才能传远。
(3)接收① 电谐振、调谐② 检波四. 规律技巧电磁波的波速问题真空中电磁波的波速与光速相同,1. 同一种电磁波在不同介质中传播时,频率不变(频率电波源决定)、波速、波长发生改变,在介质中的速度都比在真空中速度小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁振荡及LC回路
第一,学习这节前,首先让我们了解一下lc振荡电路回路的结构,因为我们高中物理研究的电磁振荡是有lc回来产生的.
第二,1.电磁振荡总结
像这样产生的大小和方向交替变化的电流,叫做振荡电流,能产生振荡电流的电路,叫振荡电路,上面的LC回路叫LC振荡电路。
再将振荡电流信号取出接在示波器上观察波形,就会发现,LC回路里产生的振荡电流跟正弦式电流一样,也是按正弦规律变化的。
指出振荡电流实质上就是前边学过的交流电,它也是按正弦规律变化的。
电磁振荡的产生过程
①给电容充电,电容器中储存一定的电场能(E电)
②电容C放电,电场能转化为磁场能
C(电容)上带电量,电场能(电压)逐渐减小(降低),电路中的电流、磁场能则逐渐增大,请同学们想一下这样转化的条件是什么?为什么是“逐渐”的?随后指出这是由于电容器的放电作用(两极板上正、负电荷的吸引作用)和电感L中电流变化时产生的自感电动势的“阻碍”作用所至,当C放电完了时,如图所示(电场能为0,0=0,U=0),磁场能达到最大(与之对应的振荡电流也达到最大Im).
③反向充电过程,如图所示,是磁场能转化为电场能的过程,C放电完了时,由于L的自感作用,电路中移动的电荷不能立即停止运动,仍保持原方向流动,C反向充电,同理则有i减小,
ε磁减小,而ε电增大(Qc,Uc也随之增大),直到ε磁(i)减为零,ε电(Qc,Uc)增为最大,如图5所示。
④电容C再次反向放电过程——如图7所示,同理可知ε电(Qc,Uc)减小,直到为零,ε磁(i)增大,直到最大(Im)如图8所示,如此下去,回路中就产生了振荡电流。
归纳总结
像上述情况,电路中的电场能和磁场能(与之对应的电荷Q和电流i)做周期性交替变化的现象叫做电磁振荡现象。
2.无阻尼振荡和阻尼振荡
(1)振荡电路中,若没有能量损耗,则振荡电流的振幅(Im)将不变,如图9所示,叫做无阻尼振荡(或等幅振荡)
(2)阻尼振荡,任何振荡电路中,总存在能量损耗,使振荡电流i的振幅逐渐减小,如图10所示,这叫做阻尼振荡(或叫减幅振荡),请同学们想一下,电路损耗的能量哪里去了?
如果用振荡器周期性地给振荡电路补充能量,就可以保持等幅振荡,这类似于受迫振动。
第三,名师提示误区及总结:
1.电容(两极板带等量异种电荷,当它放电时正、负电荷正好中和,就没有电荷在电路里往复运动了,哪里还有振荡电流!对于这类问题除强调能量的转化和C、L的作用外,还应从电磁感应的知识,采用图12略加分析
当电容C中储存电场能最大时(带电量、场强值最大、电压最高),电路中电流为零。
磁场能为零。
随着电容C逐渐放电,电场能ε电(带电量Q,电压U)逐渐减小,而磁场能ε磁(电流i)将逐渐增大
2.运用简谐振动和电磁感应知识,对电场能和磁场能交替转化类比分析更能利于我们对这些抽象东西的理解和记忆我们特意制作了一张对比表格:。