3 方差分析 PPT课件
合集下载
方差分析SPSS操作流程PPT课件

ANOVA
WEIGHT
Sum of Squares Betwee2n05G3r8o.u7p0s Within G6r5o2u.p1s59 Total 21190.86
dfMean Square F 36846.231357.467
15 43.477 18
Sig. .000
• 第一栏:方差来源
• 第二栏:离均差平方和
.;
22
• Homogeneity of variance复选项,要求进行方差齐次性检验 ,并输出检验结果。
• Brown-Forsythe:检验各组均数相等,当不能确定方差齐性 检验时,该统计量优于F统计量。
• Welch:检验各组均数相等,当不能确定方差齐性检验时,该 统计量优于F统计量。
• Mean plot复选项,即均数分布图,横轴为分类变量,纵轴为 反应变量的均数线图;
重比较对每个水平的均值逐对进行比较,以判断具体是哪些水
平间存在显著差异。
• 常用方法备选:
– LSD法:t检验的变形,在变异和自由度的计算上利用了整个样本信息
。
– Duncan 新复极差测验法
– Tukey 固定极差测验法
– Dunnett最小显著差数测验法 等
• 实现手段:
– 方差分析菜单中的“Post ho. c test…”按钮
• One-Way ANOVA过程要求:
因(分析)变量属于正态分布总体,若因(分析 )变量的分布明显的是非正态,应该用非参数分 析过程。
对被观测对象的实验不是随机分组的,而是进行 的重复测量形成几个彼此不独立的变量,应该用 Repeated Measure菜. 单项,进行重复测量方差8
• analyze→compare means→one-way ANVOA
第九章 方差分析ppt课件

SSW/dW f MW S 14.71/5 1 9410 .4111
(3)计算F值。
精选PPT课件
18
(4) 确定显著性水平和F临界值 取α=0.05,查F分布表得 F0.05(3,14) 3.34。由于计
算的F=3.52> F0.05(3,14) 3.34,P<0.05,所以拒绝原假
设,接受备择假设,认为各组平均数中至少有一对不
精选PPT课件
25
计算自由度: dBfk 14 13;
dW fk n k4 5 4 1;6
df T df B df W =16+3=19
求均方:
MS B
SS B df B
370122.3 3
,
MSW
SSW dfW
35622.25 16
(3)计算F值:
FMBS12.325.50 MW S 22.25
1、提出假设 2、计算平方和与自由度 3、计算F值 4、确定显著性水平并查F临界值表 5、列方差分析总表
精选PPT课件
3
一、方差分析的逻辑思想
1、方差分析是一种综合的检验方法
方差分析是对引起方差变化的各种因 素进行统计分析,检验引起各样本差异 的主要原因(或因素),并与理论值比 较,以判断其显著性。
首先将总体变异分解成样本组间变异 和由抽样误差等其它原因产生的组内变 异,然后分析变异各组成部分的关系。
如果样本组间变异比抽样误差等其它 原因产生的变异显著地大,则认为样本 组间有本质性的差异,否则,认为样本 组间无本质差异。
精选PPT课件
6
在方差分析中,观测值之间的差异情 况用离差平方和表示,符号为SS。方差分析首先 是把总体平方和分解为组间平方和和组内平方和, 即:
(3)计算F值。
精选PPT课件
18
(4) 确定显著性水平和F临界值 取α=0.05,查F分布表得 F0.05(3,14) 3.34。由于计
算的F=3.52> F0.05(3,14) 3.34,P<0.05,所以拒绝原假
设,接受备择假设,认为各组平均数中至少有一对不
精选PPT课件
25
计算自由度: dBfk 14 13;
dW fk n k4 5 4 1;6
df T df B df W =16+3=19
求均方:
MS B
SS B df B
370122.3 3
,
MSW
SSW dfW
35622.25 16
(3)计算F值:
FMBS12.325.50 MW S 22.25
1、提出假设 2、计算平方和与自由度 3、计算F值 4、确定显著性水平并查F临界值表 5、列方差分析总表
精选PPT课件
3
一、方差分析的逻辑思想
1、方差分析是一种综合的检验方法
方差分析是对引起方差变化的各种因 素进行统计分析,检验引起各样本差异 的主要原因(或因素),并与理论值比 较,以判断其显著性。
首先将总体变异分解成样本组间变异 和由抽样误差等其它原因产生的组内变 异,然后分析变异各组成部分的关系。
如果样本组间变异比抽样误差等其它 原因产生的变异显著地大,则认为样本 组间有本质性的差异,否则,认为样本 组间无本质差异。
精选PPT课件
6
在方差分析中,观测值之间的差异情 况用离差平方和表示,符号为SS。方差分析首先 是把总体平方和分解为组间平方和和组内平方和, 即:
第七章 方差分析法 PPT课件

i= 1 j= 1
邋 邋 ? k
k
n
kn
= n (xi.- x..)2 + 2 [(xi.- x..) (xij - xi.)] +
(xij - xi.)2
i= 1
i= 1
j= 1
i= 1 j= 1
2020/7/1
版权所有 BY 统计学课程组
35
离差平方和的自由度与均方
三个平方和的自由度分别是 SST 的自由度为nk-1,nk为全部观察值的个数 SSA的自由度为k-1,其中k为因素水平的个数 SSE 的自由度为nk-k
第七章
方差分析
Analysis of Variance (ANOVA )
2020/7/1
版权所有 BY 统计学课程组
1
学习目标
掌握方差分析中的基本概念; 掌握方差分析的基本思想和原理; 掌握单因素方差分析的方法及应用; 初步了解多重比较方法的应用; 了解双因素方差分析的方法及应用。
2020/7/1
为因素的水平。
2020/7/1
版权所有 BY 统计学课程组
13
7.1.1 方差分析中的几个基本概念
方差分析主要用来研究一个定量因变量与一个 或多个定性自变量的关系
只有一个自变量的方差分析称为单因素方差分 析。
研究多个因素对因变量的影响的方差分析称为 多因素方差分析,其中最简单的情况是双因素 方差分析。
由于方差分析法是通过比较有关方差的大小而 得到结论的,所以在统计中,常常把运用方差 分析法的活动称为方差分析。
方差分析的内容很广泛,既涉及到实验设计的 模式,又关乎数据分析模型中因素效应的性质。 本章在完全随机试验设计下,讨论固定效应模 型方差分析的基本原理与方法,重点介绍单因 素方差分析及两因素方差分析的内容。
最新人大版_贾俊平_第五版_统计学_第10章_方差分析PPT课件

• 当这个比值大到某种程度时,就可以说不同水 平之间存在着显著差异
பைடு நூலகம்
10.1.3 方差分析中的基本假定 1.每个总体都应服从正态分布
• 对于因素的每一个水平,其观察值是来自服从正态 分布总体的简单随机样本。
• 比如,每种颜色饮料的销售量必需服从正态分布 2.各个总体的方差必须相同
• 对于各组观察数据,是从具有相同方差的总体中抽 取的
10.2 单因素方差分析
10.2.1 数据结构
观察值 ( j )
1 2 : : n
水平A1
x11 x21 : : xn1
因素(A) i
水平A2
…
x12
…
x22
…
:
:
:
:
xn2
…
水平Ak
x1k x2k : : xnk
10.2.2 分析步骤
1.提出假设
• 一般提法 H0: m1 = m2 =…= mk (因素有k个水平) H1: m1 ,m2 ,… ,mk不全相等
身所造成的,后者所形成的误差是由系统性因素造成的, 称为系统误差
2.两类方差 (1)组内方差(误差平方和 、残差平方和、 SSE)
– 因素的同一水平(同一个总体)下样本数据的方差 – 比如,无色饮料A1在5家超市销售数量的方差 – 组内方差只包含随机误差
(2)组间方差(因素平方和、SSA)
– 因素的不同水平(不同总体)下各样本之间的方差 – 比如,四种颜色饮料销售量之间的方差 – 组间方差既包括随机误差,也包括系统误差
水平A ( i ) 粉色(A2) 橘黄色(A3)
绿色(A4)
1
26.5
31.2
27.9
30.8
பைடு நூலகம்
10.1.3 方差分析中的基本假定 1.每个总体都应服从正态分布
• 对于因素的每一个水平,其观察值是来自服从正态 分布总体的简单随机样本。
• 比如,每种颜色饮料的销售量必需服从正态分布 2.各个总体的方差必须相同
• 对于各组观察数据,是从具有相同方差的总体中抽 取的
10.2 单因素方差分析
10.2.1 数据结构
观察值 ( j )
1 2 : : n
水平A1
x11 x21 : : xn1
因素(A) i
水平A2
…
x12
…
x22
…
:
:
:
:
xn2
…
水平Ak
x1k x2k : : xnk
10.2.2 分析步骤
1.提出假设
• 一般提法 H0: m1 = m2 =…= mk (因素有k个水平) H1: m1 ,m2 ,… ,mk不全相等
身所造成的,后者所形成的误差是由系统性因素造成的, 称为系统误差
2.两类方差 (1)组内方差(误差平方和 、残差平方和、 SSE)
– 因素的同一水平(同一个总体)下样本数据的方差 – 比如,无色饮料A1在5家超市销售数量的方差 – 组内方差只包含随机误差
(2)组间方差(因素平方和、SSA)
– 因素的不同水平(不同总体)下各样本之间的方差 – 比如,四种颜色饮料销售量之间的方差 – 组间方差既包括随机误差,也包括系统误差
水平A ( i ) 粉色(A2) 橘黄色(A3)
绿色(A4)
1
26.5
31.2
27.9
30.8
第七章方差分析ppt课件

精选课件ppt
13
4、各种方差、F值的计算:
各种方差的计算: (1)组间方差:
s
2 A
SS A df A
(2)组内方差:
s
2 e
SS e df e
F检验及其实质: F
s
2 A
s
2 e
本质差异
= —————
试验误差
精选课件ppt
14
第二节 单方面分类的方差分析
例:整地深度(A,cm)对比试验,试分析不同的 整地深度对苗木的高生长有否显著的影响?
5*5拉丁方设计
D BC A E E DACB A CBED B AEDC C EDBA
精选课件ppt
20
第二节 三方面分类的方差分析
分析造成差异的原因? 1、横行间 2、直行间 3、处理间(类间) 4、机误
精选课件ppt
21
第二节 三方面分类的方差分析
三方面分类的方差分析:
SS总=SS横行间+SS直行间+ SS类间+SS误差 即
小:0.05
结论的可靠性
低:统计量的自由 高:统计量的自由度大 度小(df =18) (df =45)
精选课件ppt
3
第一节 方差分析的基本原理
二、方差分析的种类:
1、单因子试验的方差分析 (1)单方面分类的方差分析----完全随机排列、成组法等 (2)双方面分类的方差分析----随机区组设计、配对法等 (3)三方面分类的方差分析----拉丁方设计 2、复因子试验的方差分析 (1)无交互作用的方差分析 (2)有交互作用的方差分析
d
m
LS 0.0D 5t0.05 sd
LS 0.0D 1 t0.01 sd
【大学课件】方差分析 (Analysis of Variance,ANOVA)

组间变异 组内变“变异”之间的关系
离均差平方和分解:
SS总 = SS组间 + SS组内 ,
且
ν总 =ν组间 +ν组内
=n-1 =k-1
=n-k
组内变异 SS 组内:
随机误差
组间变异 SS 组间:处理因素 + 随机误差
ppt课件
9
One-Factor ANOVA Partitions of Total Variation
Among Groups Variation
Variation Due to Random Sampling SSE
• Commonly referred to as: Sum of Squares Within, or Sum of Squares Error, or Within Groups Variation
将36只大鼠随机分为甲、乙、丙三组,其中甲(正常对照组)12只,其余24只用乙醇灌胃10 周造成大鼠慢性酒精性脂肪肝模型后,再随机分为2组,乙(LBP治疗组)12只,丙(戒酒组) 12只,8周后测量三组GSH值。试问三种处理方式大鼠的GSH值是否相同?
例 6.1 三组大鼠 GSH 值(mg/gprot)
Total Variation SST
= Variation Due to Treatment SSTR
+
• Commonly referred to as:
Sum of Squares Among, or
Sum of Squares Between, or
Sum of Squares Model, or
§2. Two-way analysis of variance 双因素方差分析
离均差平方和分解:
SS总 = SS组间 + SS组内 ,
且
ν总 =ν组间 +ν组内
=n-1 =k-1
=n-k
组内变异 SS 组内:
随机误差
组间变异 SS 组间:处理因素 + 随机误差
ppt课件
9
One-Factor ANOVA Partitions of Total Variation
Among Groups Variation
Variation Due to Random Sampling SSE
• Commonly referred to as: Sum of Squares Within, or Sum of Squares Error, or Within Groups Variation
将36只大鼠随机分为甲、乙、丙三组,其中甲(正常对照组)12只,其余24只用乙醇灌胃10 周造成大鼠慢性酒精性脂肪肝模型后,再随机分为2组,乙(LBP治疗组)12只,丙(戒酒组) 12只,8周后测量三组GSH值。试问三种处理方式大鼠的GSH值是否相同?
例 6.1 三组大鼠 GSH 值(mg/gprot)
Total Variation SST
= Variation Due to Treatment SSTR
+
• Commonly referred to as:
Sum of Squares Among, or
Sum of Squares Between, or
Sum of Squares Model, or
§2. Two-way analysis of variance 双因素方差分析
方差分析及回归分析ppt60页课件

单因素试验的方差分析
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2
…
As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于
设因素有S个水平,在水平Aj (j=1,2,…,s)下,进行nj (nj≥2)次独立试验,结果如下:
水平 观察结果
A1
A2
…
As
X11 X21 …
X11 X21 …
… … …
X11 X21 …
样本总和 样本均值 总体均值
T.1 X.1 μ 1
T.2 X.2 μ 2
… … …
160
180
60
80
100
40
设Y关于x的回归函数为μ(x)。利用样本来估计μ(x)的问题称为求Y关于x的回归问题。 若μ(x)是线性函数μ(x)=a+bx,此时的估计问题称为求一元线性回归问题。 一元线性回归模型: 设Y~N(a+bx, σ2 )其中a,b, σ2是未知参数,记 ε = Y-(a+bx),则 Y= a+bx + ε, ε ~N(0, σ2 ) (1) 称上式为一元线性回归模型。 称a+bx为x的线性函数,而ε ~N(0, σ2 )是随机误差。
SE称为误差平方和, SA表示Aj水平下的样本均值与数据总平均的差异,叫做效应平方和,他是由水平Aj的效应的差异以及随机误差引起的。
(1,8)
则得 ST=SE+SA ,
(1,9)
(1,10)
(三) SE,SA的统计特性 1、SE的统计特性
由于 是总体 的nj-1倍, 所以 由于独立,(1,11)中各式独立,根据 分布的可加性,得
(1,14)
(1,15)
可以证明SE,SA的是相互独立的,且H0当为真时 (四)假设检验问题的拒绝域 由(1,15)式,当H0为真时 所以SA /(s-1)是σ2的无偏估计,而当当H1为真时, 这时 而由于