第4章-图像增强(频率域)

合集下载

第四章频率域图像增强

第四章频率域图像增强

图像傅立叶变换的物理意义
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空 间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示 空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图 像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表 示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。 为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱 图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并 不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶 频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域 点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么 理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来 讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立 叶变换后的频谱图,也叫功率图
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
➢图像的频率指什么?
✓ 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面
Mx0
u=0,1,2,…,M-1
✓ 给定F(u),通过傅里叶反变换可以得到f(x)
f(x)
1
M1
j2ux
F(u)e M
Mu0
x=0,1,2,…,M-1
傅里叶变换
一维离散傅里叶变换及反变换
✓ 从欧拉公式 e j cos j sin
F (u)
1
M 1

实验四 图像增强

实验四 图像增强

信息工程学院实验报告课程名称:数字图像处理Array实验项目名称:实验四图像增强实验时间:班级:姓名:学号:一、实验目的1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。

2. 掌握图像空域增强算法的基本原理。

3. 掌握图像空域增强的实际应用及MATLAB实现。

4. 掌握频域滤波的概念及方法。

5. 熟练掌握频域空间的各类滤波器。

6.掌握怎样利用傅立叶变换进行频域滤波。

7. 掌握图像频域增强增强的实际应用及MATLAB实现。

二、实验步骤及结果分析1. 基于幂次变换的图像增强程序代码:clear all;close all;I{1}=double(imread('fig534b.tif'));I{1}=I{1}/255;figure,subplot(2,4,1);imshow(I{1},[]);hold onI{2}=double(imread('room.tif'));I{2}=I{2}/255;subplot(2,4,5);imshow(I{2},[]);hold onfor m=1:2Index=0;for lemta=[0.5 5]Index=Index+1;F{m}{Index}=I{m}.^lemta;subplot(2,4,(m-1)*4+Index+1),imshow(F{m}{Index},[])endend执行结果:图1 幂次变换增强结果实验结果分析:由实验结果可知,当r<1时,黑色区域被扩展,变的清晰;当r>1时,黑色区域被压缩,变的几乎不可见。

2.直方图规定化处理程序代码:clear allclcclose all%0.读图像I=double(imread('lena.tiff'));subplot(2,4,1);imshow(I,[]);title('原图')N=32;Hist_image=hist(I(:),N);Hist_image=Hist_image/sum(Hist_image);Hist_image_cumulation=cumsum(Hist_image);%累计直方图subplot(245);stem(0:N-1,Hist_image);title('原直方图');%1.设计目标直方图Index=0:N-1;%正态分布直方图Hist{1}=exp(-(Index-N/2).^2/N);Hist{1}=Hist{1}/sum(Hist{1});Hist_cumulation{1}=cumsum(Hist{1});subplot(242);stem([0:N-1],Hist{1});title('规定化直方图1');%倒三角形状直方图Hist{2}=abs(2*N-1-2*Index);Hist{2}=Hist{2}/sum(Hist{2});Hist_cumulation{2}=cumsum(Hist{2});subplot(246);stem(0:N-1,Hist{2});title('规定化直方图2');%2. 规定化处理Project{1}=zeros(N);Project{2}=zeros(N);Hist_result{1}=zeros(N);Hist_result{2}=zeros(N);for m=1:2Image=I;%SML处理(SML,Single Mapping Law单映射规则for k=1:NTemp=abs(Hist_image_cumulation(k)-Hist_cumulation{m});[Temp1,Project{m}(k)]=min(Temp);end%2.2 变换后直方图for k=1:NTemp=find(Project{m}==k);if isempty(Temp)Hist_result{m}(k)=0;elseHist_result{m}(k)=sum(Hist_image(T emp));endendsubplot(2,4,(m-1)*4+3);stem(0:N-1,Hist_result{m}); title(['变换后的直方图',num2str(m)]);%2.3结果图Step=256/N;for K=1:NIndex=find(I>=Step*(k-1)&I<Step*k) ;Image(Index)=Project{m}(k);endsubplot(2,4,(m-1)*4+4),imshow(Imag e,[]);title(['变换后的结果图',num2str(m)]);end执行结果:原图规定化直方图2变换后的直方图1变换后的结果图1变换后的直方图2变换后的结果图2图2 直方图规定化实验结果分析:由实验结果可知,采用直方图规定化技术后,原图的直方图逼近规定化的直方图,从而有相应的变换后的结果图1和变换后的结果图2。

数字图像处理_胡学龙等_第04章_图像增强

数字图像处理_胡学龙等_第04章_图像增强

直方图均衡化
通过对原图像进行某种变换,使得图像的直 方图变为均匀分布的直方图 。
灰度级连续的灰度图像:当变换函数是原图 像直方图累积分布函数时,能达到直方图均 衡化的目的。 对于离散的图像,用频率来代替概率 。 【例4.2】假定有一幅总像素为n=64×64的图 像,灰度级数为8,各灰度级分布列于表4.1 中。试对其进行直方图均衡化。
• 4.3.2増晰原理 • 同态増晰采用合适的滤波特性函数,可以即使图 像灰度动态范围压缩,又能让感兴趣的物体图像 灰度扩展,从而是图像清晰。 • 图像是物体对照明光的反射,自然景物图像是由 两个分量乘积组成的,即照明函数和反射函数的 乘积。 • 图像的灰度由照明分量和反射分量合成,反射分 量反映了图像的实际内容(细节,纹理,边缘 等),随图像细节不同在空间上做快速变化,其 频谱落在空间高频区域。 • 而照明分量在空间上均具有缓慢变化的性质,其 频谱落在空间低频区域。 • 因此可通过傅里叶变换将两者分开,进行同态滤 波。
a’=0,b’=255。
实现的程序:
• • • • • A=imread('pout.tif'); %读入图像 imshow(A); %显示图像 figure,imhist(A); %显示图像的直方图 J1=imadjust(A,[0.3 0.7],[]); %函数将图像在0.3*255~0.7*255灰度之间 的值通过线性变换映射到0~255之间 • figure,imshow(J1); %输出图像效果图 • figure,imhist(J1) %输出图像的直方图
• 基本思想:按照高通滤波器设计,压缩低 频分量,提升高频分量。 • 照明函数频率变化缓慢,幅度变化大,数 字化占用位数多,所以要压缩; • 反射函数频率变化快,灰度变化很小,层 次不清,细节不明,应该扩展。

第四章图像增强

第四章图像增强
空间域增强:直接对图像各像素进行处理; 空间域增强:直接对图像各像素进行处理; 频率域增强: 频率域增强 : 将图像经傅立叶变换后的频谱成分 进行处理, 然后逆傅立叶变换获得所需的图像。 进行处理 , 然后逆傅立叶变换获得所需的图像 。
2
图像增强所包含的主要内容: 图像增强所包含的主要内容:
灰度变换 点运算 均衡化 直方图修正法 空间域 规定化 局部运算 图像平滑 图像锐化 高通滤波 图像增强 频率域 低通滤波 同态滤波增强 假彩色增强 彩色增强 伪彩色增强 彩色变换及应用 几何畸变的消除
8
原图
变换函数曲线
9
灰度反转后
10
original image
Brightness(明暗变化)
(addition/subtraction)
contrast
= histogram stretching
其它线性变换例
11
2.分段线性变换
线性拉伸是将原始输入图像中的灰度值不加区别地 扩展。 而在实际应用中,为了突出图像中感兴趣的研究对象, 常常要求局部扩展拉伸某一范围的灰度值,或对不同 范围的灰度值进行不同的拉伸处理,即分段线性拉伸。 分段线性拉伸是仅将某一范围的灰度值进行拉伸,而 其余范围的灰度值实际上被压缩了。
k k
变换函数T(r)可改写为 : sk = T (rk ) = ∑ Pr (rj ) = ∑
j =0 j =0
nj n
0 ≤ rk ≤ 1, k = 0,1,..., l − 1
均衡化后各像素的灰度值可直接由原图像的直 30 方图算出。
例 假定有一幅总像素为n=64×64的图像,灰度级数为8,各灰度级 分布列于表中。对其均衡化处理。

贾永红_数字图像处理-_chap4

贾永红_数字图像处理-_chap4

任何一幅原始图像,在其获取和传输等过程中,会受 到各种噪声的干扰,使图像恶化,质量下降,图像模糊, 特征淹没,对图像分析不利。
为了抑制噪声改善图像质量所进行的处理称图像平滑 或去噪。它可以在空间域和频率域中进行。本节介绍空间 域的几种平滑法。 4.2.1局部平滑法
局部平滑法是一种直接在空间域上进行平滑处理的技 术。假设图像是由许多灰度恒定的小块组成,相邻像素间 存在很高的空间相关性,而噪声则是统计独立的。因此, 可用邻域内各像素的灰度平均值代替该像素原来的灰度值, 实现图像的平滑。
s0=1/7
s1=3/7 s2=5/7
790
1023
0.19
0.25 0.21
850
850
r3=3/7
r4=4/7 r5=5/7 r6=6/7 r7=1
656
329 245 122 81
0.16
0.08 0.06 0.03 0.02
0.81
0.89 0.95 0.98 1.00
6/7
6/7 1 1 1 s4=1 448 0.11 s3=6/7 985 0.24
0.35
0.65 0.85 1.00
z4→s1=3/7 1023 0.25
z5→s2=5/7 z6→s3=6/7 z7→s4=1 850 985 448 0.21 0.24 0.11
448
0.11
1
r0 0 z 3 3 / 7 r1 1 / 7 z 4 4 / 7 r2 2 / 7 z 5 5 / 7 r3 3 / 7 z 6 6 / 7
第四章 图像增强
图像增强是采用一系列技术去改善图像的视觉效果, 或将图像转换成一种更适合于人或机器进行分析和处理 的形式。例如采用一系列技术有选择地突出某些感兴趣 的信息,同时抑制一些不需要的信息,提高图像的使用 价值。 图像增强方法从增强的作用域出发,可分为空间域 增强和频率域增强两种。 空间域增强是直接对图像各像素进行处理; 频率域增强是对图像经傅立叶变换后的频谱成分进 行处理,然后逆傅立叶变换获得所需的图像。

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

数字图像处理之频率域图像增强

数字图像处理之频率域图像增强
易于分析和处理。
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS

数字图像处理教案

数字图像处理教案

数字图像处理教案.(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--本册教案目录常州大学教案第 1 次课 2 学时授课时间教案完成时间第 1 页常州大学教案第 2 次课 2 学时授课时间教案完成时间第 2 页常州大学教案第 3 次课 2 学时授课时间教案完成时间第 3 页常州大学教案第 4 次课 2 学时授课时间教案完成时间第 5 次课 2 学时授课时间教案完成时间第 6 次课 2 学时授课时间教案完成时间第 7 次课 2 学时授课时间教案完成时间第 8 次课 2 学时授课时间教案完成时间第 9 次课 2 学时授课时间教案完成时间第 9 页常州大学教案第 10 次课 2 学时授课时间教案完成时间第 10 页常州大学教案第 11 次课 2 学时授课时间教案完成时间第 11 页常州大学教案第 12 次课 2 学时授课时间教案完成时间第 12 页常州大学教案第 13 次课 2 学时授课时间教案完成时间第 13 页常州大学教案第 14 次课 2 学时授课时间教案完成时间第 14 页常州大学教案第 15 次课 2 学时授课时间教案完成时间第 15 页常州大学教案第 16 次课 2 学时授课时间教案完成时间第 16 页常州大学教案第 17 次课 2 学时授课时间教案完成时间第 17 页常州大学教案第 18 次课 2 学时授课时间教案完成时间第 18 页常州大学教案第 19 次课 2 学时授课时间教案完成时间第 19 页学生反馈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中, f ( x , y )为 ( x , y ) 处的像素的值,如灰度。
M、 N分别为图像的宽、高。
人们观察到的图像一般都是空域描述的。此前讨论的都是空间域 描述的图像。
本章将讨论在频率域描述图像,并在频率域实现图像的平滑与锐化。
4.1. 2 频域描述 (1)概念
用一系列频率的二维正弦波去测量图像,分别求出图像内容沿空间位 置的变化中,是否含有这些频率成分,幅度有多大。 (2)定义
Re[ F(0) ] = (10×cos(0)+12×cos(0)+…+22×cos(0))/16 = 12.81 Im[ F(0) ] = (10×sin(0)+12×sin(0)+…+ 22×sin(0)) /16 = 0
f ( x )的平均值
当u
=1
时,u
2 1
16
0.125
Re[F(1)] [10cos(0) 12cos(0.125 1) ... 22cos(0.125 15)]/16 2.013
本节仅介绍低通滤波和高通滤波 。
➢ 滤波运算方法: 用 窗函数 H(u) 与 F(u) 相乘(内积)。流程如下:
f (x)
傅立叶 F (u) 变换
内积
F (u) 傅立叶 反变换
f (x)
H (u) 窗函数
滤波运算
窗函数: 与 F(u) 中各频率分量对应的一组系数,各系数的大小在 0 ~ 1之间。 窗函数 H(u) 与 F(u) 相乘(内积),就是把各频率分量乘以对应的系数。 当某系数 =1 时,对应的频率分量得以保留; 当某系数 <1 时,对应的频率分量被削弱。
12.81
0 12.81
8 7 -0.187 5.091 0.188
1 12
2.013 1.428 2.468
9 3 -0.488 0.138 0.508
2 14 -1.229 -2.087 2.421 10 5 -0.521 0.216 0.563
3 16 -0.139 -0.744 0.757 11 8 -0.634 0.061 0.637
例如: 一幅 512×512 的图像,不用 FFT 计算,需要计算: 2×(512×512)2 = 137438953472 复数乘法和加法, 按0.1微秒完成一次运算,耗时约3.82小时; 采用 FFT 计算,需要计算: (512×512) log2(237) = 9699328 次复数乘法和加法, 按0.1微秒完成一次运算,耗时约0.97秒;
其曲线如图,求 F(u)。
f (x)
N=16,故傅立叶变换式为:
F (u) 1 15 f ( x)e j2ux /16
16 x0
x
Re[ F (u)]
1 16
15 x0
f
( x) cos(u x),
u
2u
16
Im[ F (u)]
1 16
15 x0
f
( x) sin(u x)
当u =0 时, u 0
叶变换,得到频域函数F (u):
F (u) f ( x)e j2ux dx
4.1
其中: j 1 , e j2ux cos(2ux ) j sin(2ux )
x 为位置变量,u 为频率变量; f (x)是实函数,F( u )是复函数。 上式表明:若已知空域函数 f (x) ,则可算出以频率u为自变量的频域函数F (u)。 为方便起见,将 4.1 式简记为:
F (u) Re[F (u)]2 Im[F (u)]2
幅角: (u) arctan Im[ F (u)]
Re[ F (u)]
物理含意:
在 f ( x ) 中,含有角频率为 2u / N 的正弦波,其幅度为 F(u) ,相位为 (u)
u = 0,1,…,N-1 或: f ( x ) 由一系列不同频率、相位和幅度的正弦波叠加而成。
傅立叶反变换还原空间域函数的过程如下:
x
f ( x )曲线图
12.81
2.468
F (u)
u
频谱图
……
F(0)
F(0)+ F(1)
F(0)+ …+ F(14) F(0)+ …+ F(15)
结论:
① 空间域函数 f (x, y)可以通过傅立叶变换,转 换成频率域函数F(u)。
x
一般地,低频成分描述曲线的大致轮廓,高
H(u)
1
u u0
H (u) (u u1) /(u0 u1) u0 u u1
1
0
u u1
0 u0 u1
u
常用窗函数介绍(高通滤波):
(1)理想 高通滤波器
0 H (u) 1
u u0 u u0
(2)Butterworth高通滤波器
1 H (u) 1 (u0 / u)2n
(3)指数高通滤波器
Im{ F (u, v)} 1 M 1N 1 f ( x, y) sin( 2u x 2v y)
MN x0 y0
MN
F(u,v)的模:
F (u, v) Re{F (u, v)}2 Im{F (u, v)}2
F(u,v)的幅角:
(u,
v)
arctan
Im{F Re{F
(u, (u,
vv))}}
f ( x )曲线图
频成分描述曲线的细节。
12.81
② 频率域函数F(u)可以通过傅立叶反变换,转 换成空间域函数 f (x, y)。
2.468
F (u)
③ 除F(0)外,
Re{F(u)}关于N/2对称, Im{F(u)}关于N/2反对称, |F(u)|关于N/2对称。
u
频谱图
计算F(u)仅需计算 0 ~ N/2 范围的值即可。
f(x,y) y
空域描述 f ( x, y )
u
频域描述 F(u,v)
4.2 傅立叶(Fourier)变换
图像函数 f (x, y) 是二维函数。为建立傅立叶变换的概念,先从一维 函数开始。
4.2.1 一维傅立叶变换
(1)傅立叶变换
定义: 连续函数的傅立叶变换。设一维空域函数为 f (x) 。对 f (x) 作傅立
在频域中,图像用如下二维函数描述:
F( u , v ) , 0≤u<M, 0≤v<N
其中,u , v 分别为水平变化频率和垂直变化频率;
F ( u , v )为图像中含有( u , v ) 频率的幅度;
M、 N 分别为最高水平变化频率和最高垂直变化频率,在数
量上等于图像的宽、高。
在频率域描述图像,从数量的角度揭示了图像内容沿空间位置的变化 情况,是分析和处理图像的有力工具。
F (u) F{ f (x)}
4.2
傅立叶变换的离散计算式:
F (u)
1
N 1
f ( x)e j2ux / N
N x0
F(u)的实部:
Re[ F (u)]
1
N 1
2u
f ( x) cos( x)
N x0
N
虚部:
Im[ F (u)]
1
N 1
2u
f ( x) sin( x)
N x0
N
模:
Buterworth, x0 = 30 理想低通, x0 = 30 指数低通, x0 = 30
原函数 f (x)
各种窗函数的高通滤波效果比较
Buterworth, x0 = 30 理想高通, x0 = 30 指数高通, x0 = 30
原函数 f (x)
4.2.2 二维傅立叶变换
(1)二维傅立叶变换的定义 设二维空域函数为 f (x, y) 。对 f (x, y) 作傅立叶变换,得到频域函数F (u,v):
常用窗函数介绍(低通滤波):
(1)理想低通滤波器
1 H (u) 0
u u0 u u0
(2)Butterworth低通滤波器
1 H (u) 1 (u / u0 )2n
H(u)
1
0
u0
u
H(u)
1
0 u0
u
(3)指数低通滤波器
H(u) e(u/ u0 )n
H(u) 1
0.5
0 u0
u
(4)梯形低通滤波器
FFT的基本思想
➢ 由傅立叶变换的计算式可看出,其中存在大量的重复计算。 ➢ FFT 采用 “蝶型算法”,近可能地避免重复计算。 ➢ 采用 FFT,使计算量呈数量级的减少。 ➢ 若原计算量为 2n ,则 FFT的计算量为 n×log2(2n)=n。 ➢ 按“蝶型算法”的要求,图像的高、宽均应为2n 。
(3)空域与频域描述的关系
➢ 从物理角度看 空域描述反映的是实物;频域描述反映的是图像内容的变化特性。
➢ 从数学角度看 实际上是坐标变换。 空域描述是在( x , y )空间坐标系上描述图像;频域描述是在( u , v )频 率坐标系上描述图像。两种描述是等效的,可相互转换。
v
x
F( u , v )
例:对心电波的低通滤波
原函数 f (x),带有大量的 高频干扰。
经过傅立叶变换后的频率 域函数 F(u)。
窗函数
H(u)Biblioteka 11 (u /30
)5
F(u) 与 H(u) 相乘后的频 率域函数,削弱了高频分 量。
经过傅立叶反变换后的空 间域函数 f (x),高频干 扰基本被滤除。
各种窗函数的低通滤波效果比较
H(u) e(u0 / u)n
(4)梯形高通滤波器
0 H (u) (u u0 ) /(u1 u0 )
1
u u0 u0 u u1 u u1
H(u)
1
0
u0
相关文档
最新文档