测量误差及其分析

合集下载

如何进行测量数据的误差分析

如何进行测量数据的误差分析

如何进行测量数据的误差分析如何进行数据的误差分析导语:在科学研究和实验中,测量数据的误差是一个不可避免的问题。

准确地进行误差分析有助于我们理解数据的可靠性和可信度。

本文将介绍一些常见的误差类型,以及如何进行测量数据的误差分析。

一、误差的类型和来源1. 系统误差:系统误差是指由于实验仪器或测量方法本身的固有问题而引起的误差。

例如,仪器的不准确度、仪器的零点漂移等都属于系统误差。

这种误差是可以通过校正和调整仪器来减小的。

2. 随机误差:随机误差是指无法确定其来源的误差,它在测量中以不确定形式出现。

可能是由于实验条件的不可控因素,或者是由于实验人员的操作不精确等导致。

随机误差可以通过多次重复测量取平均值来减小。

3. 人为误差:人为误差是指由于人为疏忽或主观判断而引起的误差。

例如,读数误差、记录错误等。

这种误差可以通过加强实验人员的培训和提高实验操作的规范性来减小。

二、误差分析方法1. 确定测量的不确定度:测量不确定度是描述测量结果的可靠性的指标,是进行误差分析的基础。

可以通过多次重复测量、比较不同测量方法的结果、查阅相关文献等途径来确定测量的不确定度。

2. 统计方法:统计方法是误差分析的重要工具之一。

通过对测量数据进行统计学分析,例如平均值、标准差、标准误差等,可以得出测量结果的可信度。

同时,统计方法还可以检验数据的正态分布性、偏离程度等。

3. 校正与调整:对于存在系统误差的测量数据,可以采取校正与调整的方式,以提高测量结果的准确性。

校正的方法多种多样,例如根据仪器的校准曲线进行修正,或者通过其他准确测量仪器的校正值等方法。

4. 不确定度传递:在进行多个测量值的运算时,需要考虑不确定度的传递问题。

根据误差传递公式,可以计算出结果的不确定度。

这有助于我们对测量结果进行更准确的评估。

三、实例分析以实验测量一个材料的密度为例,探讨误差分析的具体方法:1. 确定实验方法,并进行多次重复测量。

例如通过测量样品的质量和体积来计算密度值。

测量误差的分析与消除

测量误差的分析与消除

测量误差的分析与消除引言:在现代科学与工程领域中,精确的测量是获得准确数据和可靠结论的基础,而测量误差则常常是影响数据准确性的重要因素。

因此,对测量误差进行分析与消除是一项十分重要的任务。

本文将就测量误差的来源、分类和分析方法进行探讨,并介绍一些常用的测量误差消除技术。

一、测量误差的来源与分类1. 系统误差系统误差是由于测量仪器或系统本身的固有特性引起的误差,这种误差通常具有一定的偏差和重复性。

例如,仪器的灵敏度不一致、采样频率不准确等都会导致系统误差的产生。

2. 随机误差随机误差是由于无法完全控制的外部因素引起的误差,它在进行多次重复测量时会出现波动。

例如,环境温度的变化、人为操作不精确等都会导致随机误差的产生。

3. 人为误差人为误差是由于操作人员的主观性、技术水平或疏忽等因素引起的误差。

这种误差可能体现在读数不准确、操作不规范等方面。

二、测量误差分析的方法1. 直接观察法直接观察法是通过多次测量同一量值,然后求平均值来估计测量结果的准确性。

通过计算测量值之间的离散程度,可以判断测量误差的大小。

2. 回归分析法回归分析法适用于对多个因素进行测量的情况,通过建立数学模型,分析每个因素对测量结果的影响程度,从而找出对结果产生较大影响的因素。

3. 方差分析法方差分析法是一种常用的统计分析方法,通过对多组数据进行方差分析,判断不同组别之间的误差差异,并确定是否存在显著差异。

三、测量误差消除的技术1. 校准仪器在进行测量之前,对使用的测量仪器进行校准是非常重要的。

校准可以通过与已知准确值进行比对,或者使用标准参照物进行比较来实现。

校准后的仪器能够提供更加准确可靠的测量结果。

2. 使用纠正因子一些测量误差是可以通过使用纠正因子进行修正的。

例如,根据环境条件的变化修正测量结果、校正仪器的灵敏度不一致等。

3. 重复测量与平均值重复测量同一量值并求平均值,在消除随机误差方面具有一定的效果。

通过多次测量,并排除个别异常值,可以获得更加准确的平均值。

测量误差与精度分析方法详解

测量误差与精度分析方法详解

测量误差与精度分析方法详解引言:在现代科学和工程技术领域,测量是不可或缺的一环。

无论是生产制造中的质量控制,还是科学研究中的实验数据,精确的测量都是基石。

然而,在测量过程中,由于各种各样的原因,会产生测量误差。

本文将详细解析测量误差的产生原因以及精度分析的方法。

一、测量误差的产生原因1. 装置和仪器的设计和制造问题:装置和仪器自身的设计和制造质量直接影响了测量的准确性。

例如,传感器的灵敏度不一致、仪器的线性度问题、装置的稳定性等都会引入测量误差。

2. 环境条件和外界干扰:环境条件和外界干扰对测量结果的准确性有着重要影响。

例如,温度的变化会导致测量装置的漂移,而电磁辐射也会干扰信号的传输。

3. 操作人员的技术水平和操作方式:操作人员的技术水平和操作方式会直接影响测量的准确性。

正确的操作方法、仔细的操作态度以及充足的经验都是确保测量结果准确的重要因素。

4. 测量对象的特性及其变化:测量对象本身的特性以及其可能的变化也会对测量结果产生影响。

例如,物体的形状、表面粗糙度等,都会影响测量结果的准确性。

二、测量误差的分类与表示方法测量误差可以分为系统误差和随机误差。

1. 系统误差:系统误差是由于测量装置、仪器或环境等因素的固有性质而产生的误差。

系统误差具有一定的规律性,通常是一整个数据序列偏离真实值的方向一致。

系统误差可通过校正或调整仪器来消除或降低。

2. 随机误差:随机误差是由于测量对象的变化、环境干扰、操作方式等不确定因素引起的误差。

随机误差通常是在一系列测量中,结果分散在真实值的周围。

随机误差可使用统计方法进行处理和分析。

测量误差的表示方法主要有绝对误差和相对误差。

1. 绝对误差:绝对误差是指测量结果与真实值之间的差异。

通常用∆表示,可以是正值也可以是负值,其绝对值越小,代表测量结果越接近真实值。

2. 相对误差:相对误差是绝对误差与测量结果的比值。

通常用百分比表示,可以衡量测量结果的准确程度。

相对误差越小,代表测量结果越准确。

第一章测量误差的分析与处理

第一章测量误差的分析与处理
这类误差对于单个测量值来说,误差的大小和正、负都是 不确定的,但对于一系列重复测量值来说,误差的分布服 从统计规律。因此随机误差只有在不改变测量条件的情况 下。对同一被测量进行多次测量才能计算出来。
随机误差大多是由测量过程中大量彼此独立的微小因 素对测量影响的综合结果造成的。这些因素通常是测量者 所不知道的,或者因其变化过分微小而无法加以严格控制 的。如气温和电源电压的微小波动,气流的微小改变等。
例如,仪表使用时的环境温度与校验时不同,并且是变化的,这就会 引起变值系统误差。变值系统误差可以通过实验方法找出产生误差的 原因及变化规律,改善测量条件来加以消除,也可通过计算或在仪表 上附加补偿装置加以校正。
未被充分认识只能估计它的误差范围,在测量结果上标明。
(3)随机误差
在相同条件下(同一观测者,同一台测量器具,相同的环 境条件等)多次测量同一被测量时,绝对值和符号不可预 知地变化着的误差称为随机误差。
(3)准确度:精密度与正确度的综合称准确度,它反映 了测量结果中系统误差和随机误差的综合数值,即测量结 果与真值的一致程度。准确度也称为精确度。
对于同一被 测量的多次 测量,精密 度高的准确 度不一定高, 正确度高的 准确度也不 一定高,只 有精密度和 正确度都高 时,准确度 才会高。
三、不确定度
是表示用测量值代表被测量真值的不肯定程度。
它是对被测量的真值以多大的可能性处于以测量 值为中心的某个量值范围之内的一个估计。
不确定度是测量准确度的定量表示。不确定度愈 小的测量结果,其准确度愈高。在评定测量结果 的不确定度时,应先行剔除坏值并对测量值尽可 能地进行修正。
第二节 随机误差的分布规律
测量系统和测量条件不变时,增加重复测 量次数并不能减少系统误差。

测量误差分析与处理方法

测量误差分析与处理方法

测量误差分析与处理方法一、测量的重要性和误差的产生测量作为一种科学方法,在各个领域都有着广泛的应用,是实验研究、工程设计和生产制造等过程中不可或缺的一环。

然而,每一次的测量过程都会伴随着一定程度的误差。

这些误差的存在会对测量结果的准确性产生一定的影响,因此对测量误差的分析和处理至关重要。

误差的产生是由于测量过程中的外界因素和仪器设备本身的不完美造成的。

外界因素包括温度、湿度、气压等环境条件的变化,以及观测者的主观误差等。

而仪器设备的不完美则包括仪器仪表的精度、灵敏度、刻度值的读取等。

这些因素的不确定性都会导致测量结果的出现误差。

二、误差的分类和表达方式误差可以分为系统误差和随机误差两种类型。

系统误差是由于仪器设备本身的不完美或操作者的失误造成的,其在多次测量中的结果有一定的偏差。

而随机误差是由各种随机因素引起的,其在多次测量中的结果并无规律性,但会导致结果的离散度增大。

通常情况下,测量结果可以用平均值来代表原始数据的真实值,而误差可以用标准差、相对误差等指标来描述。

三、误差的来源和影响因素误差的来源有很多,主要包括:测量对象本身的特性、仪器设备的精度和使用状态、操作人员的技术水平和主观因素,以及环境条件的变化等。

这些因素的不确定性会导致测量结果的偏差和离散度的增大,从而影响测量数据的有效性和可靠性。

对于系统误差,主要的改善方法是通过调整仪器设备或校准操作来减小误差。

通过周期性的校准和维护,可以保证仪器设备处于良好的工作状态,从而提高测量的准确性。

对于操作者的主观因素,可以通过培训和指导来提高其技术水平和操作规范性,减小人为误差的产生。

对于随机误差,由于其无规律性和不可预测性,很难通过单一的方法来减小误差。

然而,可以通过增加测量次数和改善实验条件来降低随机误差的影响。

多次重复测量可以得到更为准确的结果,而优化实验条件可以减小外界环境对测量结果的干扰。

四、测量误差处理方法在测量误差分析过程中,最常用的方法是残差分析和误差传递计算。

测量误差分析与调整方法

测量误差分析与调整方法

测量误差分析与调整方法测量是现代生活中不可或缺的一部分,从家庭用品到重要的工业过程都依赖于精确的测量结果。

然而,无论在科学实验室还是生产环境中,测量误差是不可避免的。

了解测量误差以及相应的调整方法对确保测量结果的准确性至关重要。

本文将探讨测量误差的种类、分析方法和调整技巧,以帮助读者更好地理解和应对测量误差。

一、测量误差的种类测量误差可以分为系统误差和随机误差两类。

系统误差是指在测量过程中产生的固有偏差,它们是由于测量装置、环境条件或操作者引起的。

系统误差一般是相对稳定的,因此可以通过适当的校正方法予以降低。

随机误差是指由于测量条件的不确定性而引起的偶然性误差,它们以随机的方式出现,不可避免地存在于任何测量中。

随机误差是无法完全消除的,但可以通过统计方法进行分析和控制。

二、测量误差的分析方法1. 重复测量法重复测量法是最常用的测量误差分析方法之一。

它要求在相同的测量条件下进行多次测量,并计算各测量值的平均值和标准差。

通过比较多次测量结果之间的变异程度,可以初步判断测量误差的大小及其分布规律。

2. 方差分析法方差分析法适用于多个因素同时影响测量结果的情况。

它将测量结果的总方差分解为各个因素的方差和误差的方差,通过分析各个因素对总方差的贡献程度,可以确定主要的误差来源并采取相应的调整措施。

3. 回归分析法回归分析法适用于测量结果与多个因素之间存在复杂关系的情况。

它通过建立数学模型,将测量结果与各个因素之间的关系进行描述,并使用统计方法对模型进行拟合和分析。

通过回归分析,可以确定主要影响测量结果的因素,并对其进行调整,以提高测量结果的准确性。

三、测量误差的调整方法1. 校正法校正法是最常用的测量误差调整方法之一。

它通过与已知准确值进行比较,确定测量结果的偏差,并对其进行修正。

校正可以通过调整测量装置的零位或使用校正因子进行。

2. 反演法反演法是一种逆向思维的误差调整方法,它通过测量结果的逆运算得到所需测量量。

实验中常见测量误差分析与解决方法

实验中常见测量误差分析与解决方法在科学研究和实验中,准确的数据是非常重要的。

然而,由于各种原因,测量中常常会产生误差。

这些误差可能来自仪器设备、操作技术、环境因素等多个方面。

因此,对测量误差的分析和解决方法的研究是实验科学的重要组成部分。

本文将介绍一些常见的测量误差,并探讨解决这些误差的方法。

首先,我们来说说随机误差。

随机误差是由于种种原因,使得多次重复测量的结果存在差异而无规律性变化的误差。

它可能来自于仪器本身的精度、环境的干扰以及操作人员的技术能力等方面。

为了减小随机误差,我们可以采取如下几种方法:(1)增加测量次数:通过多次重复测量,我们可以获得更多的数据点,从而减少随机误差的影响。

(2)平均测量结果:将多次测量结果求平均值,可以有效地减小随机误差的影响。

(3)选择合适的测量方法:合理地选择测量方法和仪器设备,可以减小随机误差的产生。

其次,我们来看看系统误差。

系统误差是由于测量方法的固有缺陷或者仪器设备的不准确性而导致的误差。

它具有一定的规律性,并且通常存在于所有的测量结果中。

为了解决系统误差,我们可以采取如下几种方法:(1)校正仪器:对于存在固有缺陷或者不准确性的仪器设备,我们可以通过校正来消除或降低其对测量结果的影响。

(2)改进测量方法:通过改进测量方法,我们可以减小系统误差的产生。

(3)进行比对测量:使用不同的测量方法或不同的仪器设备进行比对测量,可以帮助我们发现和减小系统误差。

最后,我们来讨论偶然误差。

偶然误差是由于实验条件的变化或者人为操作的不一致性导致的误差。

这种误差通常是临时性的,并且很难完全避免。

为了降低偶然误差的影响,我们可以采取如下几种方法:(1)严格控制实验条件:对于可能会引起偶然误差的因素,我们可以进行严格的控制,以减小其对测量结果的影响。

(2)提高操作技术:通过提高操作人员的技术能力和专业素养,可以减少偶然误差的发生。

(3)增加重复实验次数:通过增加实验的重复次数,可以获得更可靠的数据,并减小偶然误差的影响。

测量及实验误差分析

测量及实验误差分析在科学研究和工程实践中,测量和实验是非常重要的手段。

而在进行测量和实验的过程中,其结果会受到一定的误差影响。

因此,对误差的分析与评定显得尤为重要。

本文将介绍误差的种类,误差来源及其分析与评定方法。

一、误差的种类误差是测量或实验结果与所求量真实值之间的差异。

它是科学研究中无法避免的一种现象,它可能来自于测量仪器的不精确、环境的变化、测量者的技能等方面。

根据误差产生的原因,误差可以分为以下几种:1.系统误差系统误差也叫做固定误差。

它是由于测量仪器本身的不确定性或者测量装置的环境等因素引起的,具有确定的数值和方向,且在一段时间内不会改变。

系统误差会导致实验或测量结果全部或部分偏差,使数据呈现一种规则性的偏差。

2.偶然误差偶然误差也称为随机误差,由于测量仪器精度限制、读数精度、测量者技能不同等因素引起,不具有确定的数值和方向,并且在测量过程中随着不同条件的改变而改变。

偶然误差通常是由多种小误差的随机叠加产生的结果。

它的特点是偏差不规则性,可以采用统计学方法进行处理和修正。

二、误差来源及其分析误差来源众多,可以分为以下几个方面:1.测量仪器不精确测量仪器的精确度是测量误差的重要来源,因为它们在使用时都存在一定的误差,而且不同的测量仪器误差范围不同。

因此,在实验或测量中,应该充分了解所使用仪器的参数,以确定其误差范围。

2.环境影响环境可能会影响测量精度,例如温度、湿度、大气压力等因素。

对于对环境敏感的测量仪器来说,环境变化可能会导致仪器的精度发生变化,从而引起误差。

因此,在实验或测量中,应该尽可能消除和控制环境影响。

3.操作员技能操作员技能是影响实验和测量精度的重要因素。

不同的被试者在测量和操作过程中存在差异,造成测量结果的偏差。

因此,在进行实验和测量时,需要对操作员进行专业的培训和训练,以提高其操作技能。

4.数据的处理与分析数据的处理和分析也是引起误差的因素之一。

在数据处理过程中,可能会存在人为的误差或者程序设计错误等因素导致结果的不准确。

如何进行测量误差的分析与校正

如何进行测量误差的分析与校正引言:测量误差在各行各业都是一个不可忽视的问题。

无论是科研实验、工程建设还是日常生活中的测量,误差都会对结果和判断产生影响。

因此,分析和校正测量误差是非常重要的。

一、什么是测量误差测量误差是指测量结果与真实值之间的差异。

可以从两个方面进行误差的分类:系统误差和偶然误差。

系统误差是由于测量仪器的固有偏差、环境条件等因素引起的,其值可以通过校正来减小;偶然误差则是由测量操作人员的技术水平、环境因素等引起的,其值通常不能通过校正来减小。

二、测量误差的分析方法1. 重复测量法重复测量法是最常用的测量误差分析方法之一。

该方法通过多次对同一测量目标进行测量,并计算其平均值、标准差等统计指标,来评估偶然误差的大小。

在实际应用中,可以根据需要选择重复测量的次数,一般推荐至少进行三次。

2. 标准样品法标准样品法是通过与已知参考物质进行比较,来确定测量结果准确性的方法。

在科学研究中常常使用标准物质,比如化学试剂的纯度确定、医学检验中的参比物等,通过与这些标准物质的测量结果进行对比,可以分析测量误差的大小。

3. 定量比较法定量比较法是通过对比不同测量方法或测量仪器得到的结果,来评估其误差水平的方法。

在实际应用中,我们可以选择不同的测量方法或使用不同的测量仪器进行测量,然后对比结果来分析误差的来源和大小。

三、测量误差的校正方法1. 仪器校正仪器校正是针对系统误差的一种校正方法。

通过定期对仪器进行校准、调整或修理,可以减小系统误差的影响。

在校正过程中,可以使用标准样品、校准模块等工具来验证仪器的准确性,并记录下校正结果。

2. 操作规范改善操作规范是减小偶然误差的有效途径。

制定严格的操作规程、培训操作人员、提供适当的测量环境等措施,都可以降低测量误差的产生。

重视细节、保持专注和精确性,都是操作规范的重要组成部分。

3. 数据处理在测量误差的数据处理中,可以采用统计分析方法,如线性拟合、加权拟合、最小二乘法等来处理数据。

测量数据的误差分析与处理方法

测量数据的误差分析与处理方法引言测量是科学研究和工程实践中不可或缺的一环。

无论是实验研究、生产制造还是日常生活中,我们都需要进行测量来获得准确的数据。

然而,由于各种因素的干扰,测量过程中往往伴随着一定的误差。

本文将分析测量数据的误差来源和常见的处理方法,旨在提高数据的精确性和可靠性。

一、误差的来源误差可以来源于多个方面,如仪器的精度、操作者的技术水平、环境的影响等。

下面我们将重点讨论一些常见的误差来源。

1. 仪器误差仪器的精度是影响测量结果准确性的主要因素之一。

仪器误差包括系统误差和随机误差。

系统误差是由于仪器固有的缺陷或校准不准确导致的,它会引起测量结果整体偏离真实值的情况。

随机误差则是由于测量仪器的不稳定性或环境噪声等原因造成的,它在多次重复测量中会呈现出随机分布的特点。

2. 操作者误差操作者的技术水平和经验也会对测量结果产生重要影响。

不同的操作者在测量过程中可能存在不同的观察角度、力度或反应速度等差异,从而导致数据的不一致性。

而且,由于人的视觉、听觉以及手部协调能力等方面的局限性,操作者误差是很难完全避免的。

3. 环境误差环境因素对测量数据的准确性也有明显影响。

例如,温度、湿度、气压等环境因素都会导致仪器传感器的性能发生变化,从而引起误差。

此外,电磁辐射、电源干扰等外部因素也可能对测量结果产生干扰。

二、误差分析方法误差分析是对测量数据中的误差进行评估和处理的过程。

以下是一些常见的误差分析方法。

1. 极差和标准差极差是一种简单直观的误差评估方法,它可以反映测量数据的离散程度。

通过计算最大值与最小值之间的差异,我们可以初步了解数据的分布情况。

而标准差则是一种更精确的误差评估方法,它衡量了数据离散程度的平均度量。

通过计算每个数据点与平均值之间的差异,并取平方后求和再开根号,我们可以得到数据的标准差。

2. 加权平均当不同测量结果的权重不同时,加权平均可以更精确地计算出最终的测量结果。

通过乘以每个测量值的权重并求和,再除以权重之和,我们可以得到加权平均值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在测量实践中,测量结果准确度的评价常常使用相对 误差,方便直观。相对误差愈小,准确度愈高。
2.2 测量误差的分类
2.2.1按误差的性质分类 按其性质的不同还可分为系统误差、随机误差和粗大误差 1.系统误差 系统误差是指测量仪表本身或其他原因( 如零点没有调整好、测量方法不当等)引起 的有规律的误差。这种误差的绝对值和符号 保持不变,当测量条件改变时误差服从某种 函数关系。系统误差的来源主要有:由仪表引 入的系统误差、 理论误差和人为误差。
1.绝对误差
绝对误差是指测量值与被测量真值之间的差值,即
x A
x

测量值, 绝对误差
A
被测量的真值。
2.相对误差
实际相对误差、示值相对误差和满度百分误差。
1) 实际相对误差
A
2)示值相对误差
x 100% A
x x 100% x
3)引用相对误差
x
x 100% 测量范围上限-测量范 围下限
3.理论误差与方法误差
理论误差是指由于测量时所依据的理论不严密、使用 了不当的简化或用近似公式、近似计算测量结果所引 起的误差。方法误差是由于测量方法不合理引起的误 差。二者有时合称为理论误差和方法误差
4.人为误差
人为误差是由于测量人员受分辨力、视觉、反应速 度等生理因素的影响,以及固有习惯和精神上的因素 而产生的一时疏忽等心理因素的影响而引起的误差。 如操作不当、读数错误等。 在测量中,必须对误差的来源认真分析,并采取相 应的措施,尽量减少误差对测量结果的影响。
2.3系统误差
2.3.1 系统误差的判别
为了消除或削弱系统误差,首先要判断系统误差是 否存在,然后再设法消除。在测量过程中产生系统误差的原 因很复杂,发现和判断系统误差的方法也有很多种,但目前 还没有适用于发现各种系统误差的普遍方法。
1.实验对比法
实验对比法是通过改变产生系统误差的条件,在不同 的条件下测量,从而发现系统误差。如当一台仪表进行 多次重复测量某一被测量时,不能有效发现系统误差, 可以采用高一级精度的仪表进行同样的测量,通过对比 可以发现系统误差是否存在。
4.替代法
2.残差观察法
图2.1
残差曲线图
3.马利科夫判据
当n为偶数时
M vi vi ;
i 1 i k 1
k
n
k
n 2
当n为奇数时
M vi vi ;
i 1 i k 1
k
n
k
n 1 2
当M趋近于零时,则测量值中不存在系统误差;当M 与vi值相当或更大,则测量值中存在系统误差;
3.粗大误差
粗大误差(Thick error)是指由于仪表产生 故障、操作者疏忽大意或重大外界干扰而引起的 显著偏离实际值的误差。这种误差对测量结果影 响很大,应该尽量避免出现;多次测量中出现的 粗大误差,应作为异常值除掉。
2.2.2 按误差的来源分类
按照误差产生的原因可将误差分为仪表误差、环境误差、 理论误差与方法误差以及人为误差。
3.阿卑-赫梅特准则
B
v v
i 1
n 1
i i 1
n 1
2
则可以判断测量数据中存在周期性系统误差。σ为标准误差
2.3.2 系统误差的消除
1.从系统误差的来源上消除
从产生系统误差的来源上消除系统误差是最基本的方 法。这种方法要求实验人员对整个测量过程有一个全面仔 细的分析,弄清楚可能产生系统误差的各种因素,然后在 测量过程中予以消除。如选择精度等级高的仪器设备来消 除仪器的基本误差;在规定的工作条件下,使用正确调零 、预热来消除仪器设备的附加误差;选择合理的测量方法 ,设计正确的测量步骤来消除方法误差和理论误差;提高 测量人员的测量素质,改善测量条件如选择智能化、数字 化的仪器仪表来消除人为误差等。
2.引入修正值法
设系统误差为C,x为测量值,则不含该类系统 误差的测量值A1为
x
A1 x C

3.对称法
图2.2 线性系统误差
图2.2为某线性系统误差,若选定某一时刻(如图中t3) 为中心,则对应此中点的两对称时刻的系统误差算术平 均值都相等,即Biblioteka 1 52
2 4
2
3
2.随机误差
随机误差是指在测量时,即使消除了系统误差,在相同 条件下进行多次重复测量同一待测量时,发现各测量值之间也 有差异,由此而产生的误差的绝对值与符号是不确定的,这种 误差为随机误差,又叫偶然误差。 随机误差的存在,表现为每次测量值偏大或偏小是不定的,但 它服从一定的统计规律。测量结果与真值偏差大的测量值出现的 几率较小,偏差小的测量值出现的几率大,正方向误差和负方向 误差出现的几率相等。并且绝对值很大的误差出现的几率趋近于 零。这就是在实验中采用多次重复测量减小随机误差的依据。 随机误差是由一些实验中的偶然因素、人的感官灵敏度和仪表 的精密度有限性以及周围环境的干扰等引起的。用实验方法完全 消除测量中的偶然误差是不可能的,但是用概率统计方法可以减 少偶然误差对最后结果的影响,并且可以估计误差的大小。
1.仪表误差
由于仪器本身及其附件的电气、机械等特性不完善造成的 误差。如内部噪声引起的误差、刻度不准或调节机构不完善 引起的读数误差、元件老化或环境改变引起的稳定性误差等 。在测量中仪表误差往往是主要的。
2.环境误差
由于各种环境因素与条件不一致所造成的误差。环境误 差一般是由环境的温度、湿度、电磁场、电源电压、振动 等因素造成的。在测量时一般要采取相应的抗干扰措施。
2.1 测量误差的基本概念
任何测量过程都存在误差,即测量误差。所以在使用仪表测量 工艺参数时,不仅需要知道仪表的指示值,还需要了解测量值 的误差范围 由于所选用的仪表精确度的限制、实验手段的不完善、环境中 各种干扰的存在以及检测技术水平有限,在检测过程中仪表测 量值与真实值之间总会存在一定的差值,这个差值就是误差 误差存在于一切测量中,而且贯穿测量过程的始终。因此, 只有通过正确的误差分析,知道测量中哪些量对测量结果影响 大,那些量对测量结果影响小,从而努力测准那些对结果影响 大的关键量,而不必花大功夫在那些不太准而且对结果影响很 小的量上。 测量误差按其表示方式可分为绝对误差和相对误差。
相关文档
最新文档