排列组合:小球入盒
解决排列组合中分组与分配问题的一类重要模型——“小球入盒”模型

解决排列组合中分组与分配问题的一类重要模型——“小球入盒”模型凤斌;叶菊【摘要】<正>数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化,建立能近似刻画并"解决"实际问题的数学模型的一种强有力的数学手段。
排列组合问题的情景设置千变万化,"小球入盒"是一类典型的数学模型,将其用来解读排列、组合问题,可以搭起挖掘知识的内涵和外延的平台,直击目标。
【期刊名称】《青苹果:高中版》【年(卷),期】2016(000)009【总页数】3页(P42-44)【关键词】排列组合;数学模型;数学手段;分配问题;组合问题;情景设置;问题解决;思考方法;非负整数;正整数解【作者】凤斌;叶菊【作者单位】安徽省宿州二中【正文语种】中文【中图分类】G634.6数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化,建立能近似刻画并“解决”实际问题的数学模型的一种强有力的数学手段。
排列组合问题的情景设置千变万化,“小球入盒”是一类典型的数学模型,将其用来解读排列、组合问题,可以搭起挖掘知识的内涵和外延的平台,直击目标。
模型1(球少盒多)5个不同的球,放入8个不同的盒子中,每盒至多放1个球,共有多少种放法?解析(方法一)由于球与盒子均不同,每盒至多放1个球,所以这是一个排列问题,可直接从8个不同盒子中取出5个盒子进行排列(即放球),所以完成这件事有4=6720种放法。
(方法二)由于每盒至多放1个球,所以第1个球有8种放法,第2个球有7种放法,…,第5个球有4种放法。
因此,完成这件事有8×7×6×5×4=6720种方法。
模型2(球多盒少)(1)4个不同的球,放入3个不同的盒子,每个盒子至少放1个球,共有多少种放法?(2)6个不同的球放入4个不同的盒子,每个盒子至少放1个球,共有多少种放法?解析(1)这是一个分组和分配的问题,先将4个不同的球分成3组,再进行全排列(即入盒),所以完成这件事有种放法。
请“球”入“盒”问题八例

例 1 8个相同的球放入 3个相同的盒子中,每个
盒子 中至少有一个球.问有多少种不 同的放法? 解析 由于这 里球 和盒 子都 相 同 ,每 三堆放 人 3个
盒子 中只有一种情况 ,所 以只要 将 8个球分 成三堆.即 1 — 1—6、1—2—5、1—3—4、2—2—4、2—3—3五种 ,故将 8 个相 同的球放 入 3个 相 同的盒 子 中,每 个盒 子至 少有 一 个球 ,有 5种不 同的放法.
在此题型 中,主要 考查 学生 对 于三 角 函数数 学 规律 的掌握程度 ,其奇偶 性和单调性 ,及 不等式 与二次 函数在 三角 函数题型 中 的连 带知 识点均 有 涉及.在 解题 过程 中 需要依据 函数 奇偶性 和单 调性 的关 系来进 行运 算.并 推 导 出不等式 :(COS。 一2ksinot)<(5—3k)的关 系.从 而在 COS Ot+sin Ot=1的条件下转化不等式为 :sin Ot+2ksina+ 4—3k>0.然后设定 sin =t的假设性条件 推导 出方程 (t +k)+4一k 一3k>0.便可以设定 t的取值空间为Eo,1].依据 函数与方程思想的解题路径 ,可以假设 .厂( )=(t+ ) +4一 k 一3k的二次函数区间为单调性 ,进而得到相关的不等式类 型,诸如 :一k<0且 4—3k>0;或者 一k>1且 1+2k+4—3k> 0的取值范围.那么此类题 型不仅对学生数形结合 的思想进 行了培养 ,同时也激发了学生对于还元化归解题思路,盒 可 空
霎 种分法.故一共有 +c 1乙2,C 5+c 1乙 3c:+
例 2 8个相同的球放入 3个相同的盒子中.问有
多少种不 同的放法 ? 解析 与上题不 同的是 本题 中的三堆 可 以有 球数 为
数学教学:浅谈排列组合中的“球入盒”问题

数学教学:浅谈排列组合中的“球入盒”问题作者:蔡丽菊来源:《数学大世界·中旬刊》2019年第08期在高中数学中有《排列组合》这一章,对学生逻辑推理能力、分类讨论以及建构模型的能力都有极高的要求,包括现在的数学竞赛中都涉及排列组合问题。
其中,“小球与盒子”的模型问题一直是一个热门话题。
由于球与盒子都有着“相同”与“不同”的分类,并且具有知识上的综合性、解题技巧上的灵活性以及思维方式上的抽象性,使同学对此类问题感到很是困惑,感觉千变万化,无从下手。
下面我就对此模型问题的解法及运用作一个总结和分析,望同学有所感悟。
类型一:不同小球入不同盒子的模型1.球少盒多型例1:若将4个不同的小球,放入5个不同的盒子里,有几种不同的放法?解:分四步完成,每一个小球都有5种放法,所以共有种不同的放法。
变式1:若将4个不同的小球,放入5个不同的盒子里,每盒至多放一个,有几种不同的放法?解:与例1相比,这次把盒子看成元素,即从5个不同的盒子里任意取出4个盒子,来放4个不同的小球,所以这是个排列问题。
有种不同的方法。
变式2:若将5个不同的小球,放入5个不同的盒子里,每盒至少放一个,有几种不同的放法?解:此题是5个不同小球的全排列问题,所以有种不同的方法。
注:此类问题一般用排列组合思想,利用分步计数原理2.球多盒少且每盒至少放一球型例2:若将5个不同的小球,放入4个不同的盒子里,每盒至少放一个,有几种不同的放法?解:分两步完成,先将5个小球先分成4组,根据题意,每组分别是2个、1个、1个、1个,有种方法;然后再将分成4组的小球放到4个不同的盒子里,相当于全排列,即有种方法,所以共有种不同的方法。
变式:若将5个不同的小球放入4个不同的盒子里,恰有1个空盒,有几种不同的放法?解:分三步完成。
第一步,选1个空盒,有种不同的方法;类型二:相同小球放入不同盒子的模型例3:若将10个相同的小球,放入3个不同的盒子里,每个盒子不空,有多少种不同的放法?解:此类问题可以用隔板法解决,即在10个小球中间的9个空中放两个相同隔板的问题,自然分成3组,代表放入三个不同盒子中,故有种方法。
球入盒问题分类例析

“球入盒”问题分类例析排列组合问题中经常遇到“球入盒子”类型题目,这类问题的类型和解法如下:一、球相同,盒子相同,且盒子不能空例1. 8个相同的球放入3个相同的盒子中,每个盒子中至少有一个•问有多少种不同的放法解析球入盒问题,可以看成分两步完成,首先是将8个球分成三堆,每堆至少一个•由于这里球和盒子都相同,每三堆放入3个盒子中只有一种情况,所以只要将8个球分成三堆•即1-1-6、1-2-5、1-3-4、2-2-4、2-3-3五种,故将8个相同的球放入3个相同的盒子中,每个盒子至少有一个,有五种不同的放法•结论n个相同的球放入m个相同的盒子(n>m),不能有空盒时的放法种数等于n分解为m个数的和的种数•二、球相同,盒子相同,且盒子可以空例2. 8个相同的球放入3个相同的盒子中•问有多少种不同的放法解析与上题不同的是分成的三堆中,上题中的每一堆至少有一个球,而这个题中的三堆可以有球数为零的堆,即除了分成上面的五堆外,还可分为1-7、2-6、3-5、4-4和只一堆共五种情况,故8个相同的球放入3个相同的盒子中•,有十种不同的放法•结论n个相同的球放入m个相同的盒子(n A m),可以有空盒时的放法种数等于将n分解为m个、(m- 1)个、(m—2)个、…、2个、1个数的和的所有种数之和•三、球相同,盒子不同,且盒子不能空例3. 8个相同的球放入标号为1、2、3的三个盒子中,每个盒子中至少有一个•问有多少种不同的放法解析这是个相同的球放入不同的盒子中,与前面不同的是,这里盒子不同,所以不能再用前面的解法•将8个球排成一排,形成7个空隙,在7个空隙中任取两个插入两块隔板,有C" =7-621种,这样将8个球分成三2堆,第一堆放到1号盒子内,第二堆放到2号盒子内,第三堆放到3号盒子内•故将8个相同的球放入标号为1、2、3的三个盒子中,每个盒子中至少有一个,有21种不同的放法•结论n个相同的球放入m个不同的盒子中(n A m),不能有空盒的放法种数等于•四、球相同,盒子不同,且盒子可以空例4. 8个相同的球放入标号为1、2、3的三个盒子中•问有多少种不同的放法解析与上一题不同的是,这里可以有盒子没放一个•还是利用隔板原理将8个球分为三堆,只不过有的堆的球数为零,即在8个球之间插入两块隔板•首先将8个球排成一排,就有9个空,任取一个空插入一块隔板,有C11种;然后再将第二块隔板插入前面8个球和第一块隔板形成的10个空中,有C w种,但这两种放法中有重复的,要除以2;最后将第一块隔板左边的球放入1号盒子中,两块隔板之间的球放入2号盒子中,第二块隔板右边的球1 1 1 210 9放入3号盒子中•故一共有一C9 C10 C10------------ 45种•2 2或者,将8个球分成三堆(包括没有0数堆和有0数堆),也就是在8个球的9个空隙中取两个插入隔板或取一个插入两块隔板,即C9 Cg 9 36 45种•例3也可利用上面的分法来解,8个相同的球放入标号为1、2、3的三个盒子中,每个盒子中至少有一个•先放一个到每个盒子中,只有一种放法•然后将剩下的5个球排成一排,插入两块隔板,2 2 种.结论n个相同的球放入m个不同的盒子中(n A m),可以有空盒的放法种数等于Cr?;.五、球不同,盒子相同,且盒子不能空例5. 8个不同的球放入三个相同的盒子中,每个盒子中至少有一个•问有多少种不同的放法解析 由于盒子相同,所以只要对8个不同的球分成三堆就行了, 因为放入盒子只有一种情况•而8个球分成(注意,分组有几组个数相同即几组均分就要除以几的阶乘)•故一共有 C 1C 1C 6C 2C 2C 4C 2C 3C 3C 8C7C6.12 5.13 4 c8 c6 c4 , c8 C6C3+ C 8C 7C 5 +C 8C 7C 4 ++ —2 2结论 n 个不同的球放入m 个相同的盒子中( n 》m ),不能有空盒的放法种数等于n 个不同的球分成m 堆的种数•六、球不同,盒子相同,且盒子可以空例6. 8个不同的球放入三个相同的盒子中,问有多少种不同的放法 解析 只比上一题多了两种情况,一是有一堆为0的,即分成两堆,1-7、2-6、3-5、4-4四种情况,有1c 8c ;c f c f -Cs127 ;二是有两堆为0的,即只分成一堆,一种情况•所以一共有966+127+仁10942种.结论 n 个不同的球放入m 个相同的盒子中(n > m ),可以有空盒的放法种数等于将n 个不同的球分成m 堆、 (m—1)堆、(m — 2)堆、…、2堆、1堆的所有种数之和•七、球不同,盒子不同,且盒子不能空例7. 8个不同的球放入标号为 1、2、3的三个盒子中,每个盒子中至少有一个•问有多少种不同的放法解析 这个问题就等价于“ 8本不同的书分给3个同学,每人至少有一本,有多少种分法” 就是在例5先分堆的基础上,再加一步,分到三个不同的盒子中•即966 A 33=5796种•结论 n 个不同的球放入m 个不同的盒子中,不能有空盒的放法种数等于n 个不同的球分成m 堆的种数乘以m! •例8将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒子内放一个球,恰好 3个球的标号与其在盒子的标号不一致的放入方法种数为()•A 120B 240C 360D 720解析 先在10个不同的球中任取 7个分别放到对应标号的盒子中,有 Cw 种选法;再将剩下的三个球分别放入剩下的三个盒子中,每个盒子放一个且标号不能相同,有2种放法•故满足题意的放法有 2C 170 =240种,选B.八、球不同,盒子不同,且盒子可以空例9. 8个不同的球放入标号为 1、2、3的三个盒子中,问有多少种不同的放法 解析 包括分三堆的5796种,还有分两堆的 127 A 33762,还有只分一堆的3种情况,所以一共有5796+762+3=6561 种.三堆,各堆球数依次为 1-1-6、1-2-5、1-3-4、2-2-4、2-3-3 五种.对情况 1-1-6 有c 8c ;c种分法, 对情况1-2-5有C ;C ;C ;种分法,对情况1-3-4有C 8C ;C :种分法,对情况2-2-4有CsCsC种分法,对情况2-3-3=966 种.它也等价于“ 8封信投到3个邮箱里”,应该有38=6561种•结论n个不同的球放入m个不同的盒子中(n》m),可以有空盒的放法种数等于m n种.。
排列组合n个球放入m个盒子m问题总结

排列组合n个球放⼊m个盒⼦m问题总结求,盒⼦都可以分成是否不能区分,和能区分,还能分成是否能有空箱⼦,所以⼀共是8种情况,我们现在来⼀⼀讨论。
1.球同,盒不同,⽆空箱C(n-1,m-1), n>=m0, n<m使⽤插板法:n个球中间有n-1个间隙,现在要分成m个盒⼦,⽽且不能有空箱⼦,所以只要在n-1个间隙选出m-1个间隙即可2.球同,盒不同,允许空箱C(n+m-1,m-1)我们在第1类情况下继续讨论,我们可以先假设m个盒⼦⾥都放好了1个球,所以说⽩了就是,现在有m+n个相同的球,要放⼊m个不同的箱⼦,没有空箱。
也就是第1种情况3.球不同,盒相同,⽆空箱第⼆类斯特林数dp[n][m]dp[n][m]=m*dp[n-1][m]+dp[n-1][m-1],1<=m<ndp[k][k]=1,k>=0dp[k][0]=0,k>=10,n<m这种情况就是第⼆类斯特林数,我们来理解⼀下这个转移⽅程。
对于第n个球,如果前⾯的n-1个球已经放在了m个箱⼦⾥,那么现在第n个球放在哪个箱⼦都是可以的,所以m*dp[n-1][m];如果前n-1个球已经放在了m-1个箱⼦⾥,那么现在第n个球必须要新开⼀个箱⼦来存放,所以dp[n-1][m-1]其他的都没法转移过来4.球不同,盒相同,允许空箱sigma dp[n][i],0<=i<=m,dp[n][m]为情况3的第⼆类斯特林数这种情况就是在第3种情况的前提下,去枚举使⽤的箱⼦的个数5.球不同,盒不同,⽆空箱dp[n][m]*fact[m],dp[n][m]为情况3的第⼆类斯特林数,fact[m]为m的阶乘因为球是不同的,所以dp[n][m]得到的盒⼦相同的情况,只要再给盒⼦定义顺序,就等于现在的答案了6.球不同,盒不同,允许空箱power(m,n) 表⽰m的n次⽅每个球都有m种选择,所以就等于m^n7.球同,盒同,允许空箱dp[n][m]=dp[n][m-1]+dp[n-m][m], n>=mdp[n][m]=dp[n][m-1], n<m边界dp[k][1]=1,dp[1][k]=1,dp[0][k]=1现在有n个球,和m个箱⼦,我可以选择在所有箱⼦⾥⾯都放上1个球,也可以不选择这个操作。
排列组合:小球入盒

小球入盒模型的推广应用摘要:小球入盒是排列组合的典型问题,本文从小球同与不同及盒子同与不同几方面对小球入盒模型的加以推广应用。
小球入盒是排列组合的典型问题,与之相关的有名额分配、人员分配等问题,形式多样.“小球入盒问题”问题可以分为四类:不同的小球放入不同的盒子里;不同的小球放入相同的盒子里;相同的小球放入不同的盒子里;相同的小球放入相同的盒子里(此类不做重点讨论)。
解答小球入盒问题的最有效、最易于操作的方法是“先分组后分配”,即先将元素分组、再分配到位置.分组时应注意平均分组与非平均分组的区别;放入相同盒子可看作分组无分配问题;解答相同小球入不同盒子问题的最有效、最易于操作的方法是隔板法。
【引例】①把4个相同的小球放入3个相同的盒子,共有多少种不同的放法②把4个不同的小球放入3个不同的盒子,共有多少种不同的放法③把4个不同的小球放入3个相同的盒子,共有多少种不同的放法④把4个相同的小球放入3个不同的盒子,共有多少种不同的放法【解析】①由于小球相同,盒子也相同,故小球数目的不同分组就对应不同的放法,小球数目分组有4+0+0型、3+1+0型、2+2+0型、2+1+1型,故只有4种放法.②(乘法原理)分4步,把小球一个一个地放入盒子,每一个小球都有3种放法,由乘法原理,共有种放法.③(先分组后分配)先将不同小球分为三组,有4+0+0型(种方法)、3+1+0型(种方法)、2+2+0型(种方法)、2+1+1型(种方法),共14 种分组方法,再将三组小球分配到三个盒子,由于盒子相同,故都只有1种方案,故共有14 种放法.④法1:(先分组后分配)先将小球分为三组,有4+0+0型、3+1+0型、2+2+0型、2+1+1型,由于小球相同,故各只有1种分组方法;再将三组小球分配到三个盒子,由于盒子不同,故有种放法.法2:(隔板法)每种放法对应于将4个相同小球与2个相同“隔板”进行的一次排列,即从6个位置中选2个位置安排隔板,故共有 =15种放入的方式。
“球放盒子里”的排列组合解题策略

分析
题 目要求 每个 盒子不空 , 且盒 子和球都 相 同, 因
此, 只有一种放法 , 事实上也 可以看成是将 4拆 分成正 整数
的和 : 4 = 1 + 1 + 2 , 而且 只有 这一 唯一 的拆 法 , 像这 类 问题
都可 以用拆数 的方法来解 决. 变题 把 7个相 同 的球 放 入 4个 相 同的盒 子里 , 要 求 每个盒子至少一个球 , 共有 多少 种放法. ( 解: 7=l+1 +l +
以用球 放盒子中这类 问题来解 决 , 为此 , 下 面我们 简单地 介
绍 球放 盒子 中有 限制条件 的排 列组 合问题的处理办法. 问题 : 把 4个相 同或 不相 同 的球放 入相 同 或不 相 同的
分析
先找 出空盒 子 , 然 后转 化 为例 3的情 形 , 共有
C X 3=1 2种不 同放法. 例 5 把 4个不 同的球放入 3个相 同的金子里 , 要求每 个盒子至少一个球 , 共有 多少种放法.
的和.
分析
本题应先 取后 排 , 根据 题 意有 一个 盒子 放 2个
球, 其余盒 子各 放 1 个球 , 因此 , 有c 2 乙 : I 乙 1 。 = 7 2 种.
把 7个相 同 的球 放人 4个 相 同的 盒子里 , 要求 例 8 把 4个 不同的球 放入 4个 不同的盒子里 。 要求有 1个盒子 空, 共有 多少种放法? 分析 先将空 盒子取出来 , 然 后转 化为例 7问题 , 共有
7 3 + 3 有 : 7 o : 2 + 2 + 3 有 擎 : l 0 5
2 ^2
种, 共有 3 0 1 种. ) 例 6 把 4个不 同的球 放入 4个 相同的盒子里 , 要求有 1个盒子 空, 共有多少种放法? 分析 先拆数 : 4= 0+l +1 +2 , 只要取 2个球 即可 , 因
隔板法解决排列组合问题

隔板法解决排列组合问题WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】“隔板法”解决排列组合问题(高二、高三)排列组合计数问题,背景各异,方法灵活,能力要求高,对于相同元素有序分组问题,采用“隔板法”可起到简化解题的功效。
对于不同元素只涉及名额分配问题也可以借助隔板法来求解,下面通过典型例子加以解决。
例1、(1)12个相同的小球放入编号为1,2,3,4的盒子中,问每个盒子中至少有一个小球的不同放法有多少种?(2)12个相同的小球放入编号为1,2,3,4的盒子中,问不同放法有多少种?(3)12个相同的小球放入编号为1,2,3,4的盒子中要求每个盒子中,要求每个盒子中的小球个数不小于其编号数,问不同的方法有多少种?解:(1)将12个小球排成一排,中间有11个间隔,在这11个间隔中选出3个,放上“隔板”,若把“1”,这样每一种隔板的插法,就对应了球的一种放法,即每一种从11个间隔中选出3个间隔的组合对应于一种放法,所以不同的放法有311C=165种。
(2)法1:(分类)①装入一个盒子有144C=种;②装入两个盒子,即12个相同的小球装入两个不同的盒子,每盒至少装一个有2141166C C=种;③装入三个盒子,即12个相同的小球装入三个不同的盒子,每盒至少装一个有32411C C=220种;④装入四个盒子,即12个相同的小球装入四个不同的盒子,每盒至少装一个有311165C=种;由加法原理得共有4+66+220+165=455种。
法2:先给每个小盒装入一个球,题目中给定的12个小球任意装,即16个小球装入4个不同的盒子,每盒至少装一个的装法有315455C=种。
(3)法1:先给每个盒子装上与其编号数相同的小球,还剩2个小球,则这两个小球可以装在1个盒子或两个盒子,共有124410C C +=种。
法2:先给每个盒子装上比编号小1的小球,还剩6个小球,则转化为将6个相同的小球装入4个不同的盒子,每盒至少装一个,由隔板法有3510C =由上面的例题可以看出法2要比法1简单,即此类问题都可以转化为至少分一个的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小球入盒模型的推广应用
摘要:小球入盒是排列组合的典型问题,本文从小球同与不同及盒子同与不同几方面对小球入盒模型的加以推广应用。
小球入盒是排列组合的典型问题,与之相关的有名额分配、人员分配等问题,形式多样.“小球入盒问题”问题可以分为四类:不同的小球放入不同的盒子里;不同的小球放入相同的盒子里;相同的小球放入不同的盒子里;相同的小球放入相同的盒子里(此类不做重点讨论)。
解答小球入盒问题的最有效、最易于操作的方法是“先分组后分配”,即先将元素分组、再分配到位置.分组时应注意平均分组与非平均分组的区别;放入相同盒子可看作分组无分配问题;解答相同小球入不同盒子问题的最有效、最易于操作的方法是隔板法。
【引例】
①把4个相同的小球放入3个相同的盒子,共有多少种不同的放法
②把4个不同的小球放入3个不同的盒子,共有多少种不同的放法
③把4个不同的小球放入3个相同的盒子,共有多少种不同的放法
④把4个相同的小球放入3个不同的盒子,共有多少种不同的放法
【解析】①由于小球相同,盒子也相同,故小球数目的不同分组就对应不同的放法,小球数目分组有4+0+0型、3+1+0型、2+2+0型、2+1+1型,故只有4种放法.
②(乘法原理)分4步,把小球一个一个地放入盒子,每一个小球都有3种放法,由乘法原理,共有种放法.
③(先分组后分配)先将不同小球分为三组,有4+0+0型(种方法)、3+1+0型(种方法)、2+2+0型(种方法)、2+1+1型(种方法),共14 种分组方法,再将三组小球分配到三个盒子,由于盒子相同,故都只有1种方案,故共有14 种放法.
④法1:(先分组后分配)先将小球分为三组,有4+0+0型、3+1+0型、2+2+0型、2+1+1型,
由于小球相同,故各只有1种分组方法;再将三组小球分配到三个盒子,由于盒子不同,故有种放法.
法2:(隔板法)每种放法对应于将4个相同小球与2个相同“隔板”进行的一次排列,即从6个位置中选2个位置安排隔板,故共有 =15种放入的方式。
一. n个相同的小球放入m个不同的盒子模型
在排列组合中,对于将不可分辨的球装入到可以分辨的盒子中而求装入方法数的问题,常用隔板法。
模型1 将n个相同的小球放入编号分别为1,2,3,4,…,m的m个盒子中(m≤n),每个盒子中至少有一个小球的不同放法总数为。
【解析】n个相同小球串成一串从n-1个间隙里选m-1个结点剪成m段(或者看作插入m-1块隔板),有种方法.
模型2 将n个相同的小球放入编号分别为1,2,3,4,…,m的m个盒子中(m≤n),每个盒子可空的放法总数为。
【解析】任意分组,可出现某些组含元素为0个时,其不同分组方式为:m个盒子排成一行,中间有m-1块隔板,把n个球放入m个盒子,不同的放法对应着n个球和m-1块隔板的不同排列,于是在n+m-1个位置中选m-1个位置安排隔板,所以放法总数为。
模型3 将n个相同的小球放入编号分别为1,2,3,4,…,m的m个盒子中(m≤n),要求每个盒子中的球数不少于它的编号数的放法总数为。
【解析】法1:先在编号1,2,3,4,…,m的m个盒子内分别放0,1,2,3,4,…,m-1个球,剩下个球分成m组,每组至少1个,由模型1方法知有(种)方法。
法2:第一步先在编号1,2,3,4,…,m的m个盒子内分别放1,2,3,4,…,m个球,剩下个球放入m个盒子,不同的放法对应着个球和m-1块隔板的不同排列,于是在个位置中选m-1个位置安排隔板,有(种)方法。
隔板法:将放有小球的盒子紧挨着成一行放置,便可看作成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放人盒子的一种方法,此法称为隔板法.隔板法专门解决相同元素的分配问题.
应用1(求不定方程整数解)
1.不定方程的正整数解的个数为。
【解析】可看作n个相同的小球放入m个不同盒子中,要求每个盒子不空时球的放法数,于是将n个小球排成一行,它们形成n-1个空挡,只插m-1个隔板,故有种方法。
2.不定方程的非负正整数解的个数为。
【解析】可看作n个相同的小球放入m个不同盒子中,要求每个盒子可空时球的放法数,由模型2知非负正整数解的个数为。
应用2(多项式定理中展开式项数问题)
3.三项式展开式共有多少不同的项
【解析】的展开式中每一项的指数和均是 n,相当于 n个无区别的球放入、、三个不同的盒子里,每个盒放入的球数不限,由模型2知为展开式中共有不同的项数为。
应用3(名额分配问题)
4.将10个优秀的指标分配给3个班级,
(1)每班至少一个,则共有多少种分配方法
(2)任意分配共有多少种分配方法
(3)若班级为一、二、三班,若名额数不小于班级数,则共多少种分配方法
【解析】:由于10个优秀指标是相同的,该题等价于10个相同的小球放入3个不同盒子模型。
可采用“隔板法”。
(1)插隔板,即9个空格中插入2个隔板,共有种分配方法。
(2)排隔板,即10个指标和2个隔板,共12个位置选2个放隔板,共有种分配方法。
(3)先给一班0个优秀名额,二班1个优秀名额,三班2个优秀名额,再对剩下的7个优秀名额用插隔板法,共有种分配方法。
总之,凡是处理与“相同元素有序分组”模型时,我们都可采用“隔板法”。
若每组元素数目至少一个时,可用插“隔板”,若出现每组元素数目为0个时,可用排“隔板”。
二.n个不同的小球放入m个不同的盒子模型
模型4. 把n个不同的小球放入m个不同的盒子,有多少种不同放法
【解析】每个小球有m种放法,共有种放法。
模型5. 把n个不同的小球放入m个不同的盒子,每盒放球不超过1个,直至球放完或盒子放满为止,有多少种不同放法
【解析】(1)若n>m,将n个小球当做n个元素,这样问题实质即在n个元素中取m个元素的排列问题,有种。
(2)若n<m,将m个小盒当做m个不同元素,这样问题实质即在m个元素中取n个元素的排列问题,有种。
(3)若n=m, 有 ==n!
模型6. 在n个不同的小球中取m个放入m个不同的盒子中,每盒只放一个,其中某一个小球必须放在某一个指定的盒子中,有多少种不同的放法
【解析】先将某一个小球放在指定的盒子中,然后从剩下的n-1个不同的小球中任取m-1个,放入m-1个不同的小盒中,共有种放法。
模型7 在n个不同的小球中取m个放入m个不同的盒子中(m<n),每盒只放一个,其中某一个小球不能放在某一个指定的盒子中,有多少种不同的放法
【解析】第一类:某一小球没有取到,则从n-1个小球中取出m个小球放入m个盒子中,共有种;第二类:某一小球被取到,它只能被放到指定小盒以外的m-1个盒子中。
第一步放指定小球有m-1种,第二步从n-1个小球中取m-1个放入剩下的m-1个盒子中,有种,所以有种。
综上共 +种放法。
应用4. (1) 5本不同的书全部送给6人,每人至多1本,有多少种不同的送书方法
(2)6本不同的书送给5人,每人至多1本,有多少种不同的送书方法
(3)6本不同的书送给5人,每人至少1本,有多少种不同的送书方法
(4)6本不同的书送给5人,每人1本,且其中一本《麻将技巧》不能送给小学生章子怡,则有多少种不同的送书方法
【解析】(1)相当于5个不同小球放入6个不同的盒子中,每盒至多一球,所以有种不同送书方法。
(2)相当于6个不同小球放入5个不同的盒子中,每盒至多一球,所以有种不同送书方法。
(3)第一步先将6本书分成5堆,其中一堆2本书,有种方法,第二步把5堆书分给5个人,有种方法,所以共有1800种不同送书方法.(4)第一类:《麻将技巧》没送出,有种方法;第二类:《麻将技巧》送给章子怡以外的4人中某一人,有4种方法;然后从剩下的5本书中取4本送另外4个人,有种方法,所以有480种方法;综上,知有120+480=600种方法.
应用5. 四位选手争夺三个运动项目的金牌,则有多少不同的金牌结果种数
【解析】可看作3个不同小球放在4个不同盒子中的放法,共种结果。
三.n个不同的小球放入m个相同的盒子模型
模型8. n个不同的小球放入m个相同的盒子可看作将n个元素分成m组无分配的分法种数,我们有下面的结论:
(1)若k1+ k2+ k3+ ……+km=n且k1,k2,k3,……km互不相等,
则将n个元素分成m个组(其中第一个组k1个元素,第二个组k2个元素,第m个组km个元素)的不同分法种数为
(2)若将n个元素平均分成m个组,每组k个元素(n=mk),则所有不同的分法种数为
(3)一般地,n个不同的元素分成m组,各组内元素数目分别为k,k,…,,其中h组内元素数目相等,那么分组方案是。
应用6. 6本不同的书(6个不同的小球)分成4组(放入4个相同盒子,每盒不空),有多少种不同的分法
【解析】先将不同小球分为4组,有3+1+1+1型(种方法)、2+2+1+1型(种方法),共 +=65种分组方法,再将4组小球分配到4个盒子,由于盒子相同,故都只有1种方案,故共有65 种放法.。