workbench_aqwa
★aqwa中文帮助

★aqwa中⽂帮助ANSYS TO AQWA MODEL TRANSLATORANSYS模型⽂件转换AQWA-LINE标准输⼊⽂件1. INTRODUCTION 引⾔It is possible to use classic ANSYS to create an AQWA radiation/diffraction model. Any of the tools available in Workbench or ANSYS can be used to create the model. Once the model is created an AQWA input file can be written out using a macro supplied with ANSYS.使⽤传统的ANSYS产⽣AQWA辐射/绕射模型是可⾏的。
在Workbench或ANSYS中有⼯具能够建模。
⼀旦模型建⽴了,使⽤ANSYS的宏命令'ANSTOAQWA'可以⾃动产⽣AQWA-LINE的输⼊⽂件(将.aqwa修改为.dat格式即可)。
2. MODEL DESCRIPTION 模型描述The model must be meshed with the mesh that you wish to use for the AQWA analysis. If you are working from a model created for a structural analysis, it will probably be necessary to re-mesh the model as the structural mesh is likely to be finer than is need for a diffraction analysis.必须使⽤与AQWA中分析单元类型相同的单元来划分模型的⽹格。
新版本ANSYS中更新的 AQWA 与 ASAS 产品 (英文)

AQWA & ASASProduct AQWA & ASAS Productfor ANSYS 13.0 UpdatesUpdates for ANSYS 13.0Contents•AQWA & ASAS Overview–Products and Applications Areas –Product Roadmap•Release 13.0 Update•OutlookAQWA & ASAS Overview -Main Application Areas•Offshore Structures –Fixed•Steel Jackets•Concrete–Compliant•Jack-upsImages courtesy of Arup, Moss Maritime AS, Technip Offshore Finland and REpower Systems AG–Floating•FPSOs•SPARS•Semi-Submersibles•Tension Leg Platforms –Risers–Offshore Wind Turbines •Harbours•Ships–Design–Offloading-How they fit with ANSYS portfolioGeneral Products:•Design Modeler•ANSYS Mechanical-AQWA•Comprehensive Hydrodynamic capabilities–Diffraction/Radiation including Morison elements –Frequency Domain analysis–Stability including mooring lines–Time domain with irregular waves–Time domain with non-linear survival waves–Coupled Cable Dynamics–Multiple hydrodynamic interaction andarticulations (up to 50 structures)–Transfer of motions and Pressures to ASAS &ANSYS FE modelsAQWA-Typical Applications•Some example applicationsShieldingVessel Loading Transfer from AQWA to Mechanical Courtesy of Vuyk Engineering Rotterdam FPSO & TLP Concept Offloading OperationCourtesy of SBM Jacket LaunchCourtesy of Gusto MSC Development and Validationof Octabuoy ConceptCourtesy of Moss Maritime ASOffshore Products-ASAS•FE based offshore structural analysis suite –Mainly used in “global” design analysis–Unique post-analysis assessment tools specific tooffshore requirements•Some key features–Coupled wave-structure interaction with regular/irregular waves–Coupled hydro-elastic analysis for tubular framedstructures–Wave loading and added mass for jackets and similarstructures–Spectral and deterministic fatigue of jackets–Toolkit to facilitate user software integrationASAS-Typical Applications •Some example applications-AQWA•Migration of AQWA to Workbench–AQWA unique in ANSYS–Provides parameterization and interfacing/couplingwith other tools/products (geometry, meshing, solvers)-ASAS•Transfer of ASAS unique solver technology to ANSYS Structural Mechanics products–Never any long term scope for developing/supportingmultiple FE products–Recognition of ASAS key features•Creation of a Design Assessment system to handle post-processing of analysis results–For offshore, this covers load case combinations andcode checking•Additional Products–Separate Code Checking and Fatigue ProductsOffshore Products at R13-Feature Summary•AQWA–AQWA in Workbench–AQWA Core Developments •ASAS to Mechanical–Beam Modeling–Wave theories–Soil-Pile-Structure Interaction •Design Assessment–New Design Assessment system in Mechanical–Additional code checking products-Hydrodynamic Diffraction System-Hydrodynamic Diffraction System •Initial implementation at 12.1Extended to cover most of AQWA Diffraction product–AQWA LINE now fully reproducedin the HD system (including recentcore enhancement enablingmooring line representation)–New QTF and SF/BM Graphs–AQWA WAVE capabilities totransfer pressures etc toMechanical not implemented inWB –but the capability does existand is documented-Hydrodynamic Time Response System •New Hydrodynamic Time Response Analysis System–Time history analysis of bodies, subject toenvironmental forces including mooring lines-Hydrodynamic Time Response System •Input for the followingcompleted:–Cable connections for rigid bodymotion, wave and mooring lineanalysis under various oceanenvironments–Ocean Environment Definitionfor Wind, Wave and Current–Additional Structure Force TimeHistory–Cable Winching and Failures–Input of catenary mooring lines–Realistic viewing of mooringlines–Graphing of various results•Displacement, velocity,acceleration-Hydrodynamic Time Response SystemAQWA Core Developments•Cable Dynamics–Bending stiffness allows modeling of rigid and flexiblerisers (previously only rigid risers could be modeled using tethers)–Non-linear axial stiffness to enable more rigorousmodeling of synthetic moorings. Uses polynomialdefinition of tension v extension.AQWA Core Developments•User-defined stiffness matrix connecting separate ships–This enables mooring system to be included indiffraction/radiation analysis•Response spectra available for any specified position on ship (previously limited to CoG)•Response spectra available for intermediate positions (connection points) along mooring lines •ISO wind spectrum definition added for dynamic motions analysisAQWA Core Developments •AQWA GraphicalSupervisor (AGS) now ableto present/animate cable dynamics results from intermediate positionsalong mooring lines–Based on analysis resultsor separately definedboundary conditionsASAS to Mechanical-Beams and Wave Theories•Beam Post-Processing enhancements–Shear Force and BendingMoment diagrams•Beam End-Releases•Wave Theories•Irregular waves•Shell New Wave•Constrained WaveASAS to Mechanical-Soil-Pile-Structure Interaction•Soil/Pile Interaction Solver (SPLINTER) enhanced to work with Mechanical (via command snippets & Matrix27 elements)–PILEGEN and PILECALC macros included with theASAS installation (capability only available via ASAS Offshore license)-New System in Workbench•Design Assessment System–Available with Professional NLS and above –Post-analysis assessments of FEA results –Load Case Combinations•Static Structural•Flexible Dynamics (at a specific time)-Customization•Design Assessment System–Advanced post-processing of FEA results •Targeted at user wanting to do design codeassessment based on FEA models and results–Predefined scripts supplied for ANSYSsupplied code checking tools–Enables the customer to define additional data that is associated with their model and thenperform custom post processing•Custom definition of input data•Custom result definitions•Custom Solve & Post scripts (Python based)-Assessment Types•ANSYS or User Defined–ANSYS Supplied Tools•FATJACK–Beam joint fatigue offramed structures•BEAMCHECK–Member checks onframe structures•Solution Combination only –User Defined•User can build/integrate ownload case combination andcode checking tool-Model Setup•Design Assessment, Setup–Option A:•Define load case combination–Option B:•Define and Assign additional“Attributes”–Required for advance post-processing / code checking•Specify additional input requiredto perform the code checkassociated with each attribute•User defined custom results-Solution Definition•Design Assessment, Solution–Option A:•Perform load case combination–Option B:•External script to perform loadcase combinations•Carry out additional “post-process” of results–i.e. Do a code check•Model, FEA results and attributeinformation read from DesignAssessment-Post-Processing•Design Assessment, Results–Option A:•Display standard results from aload case combination–Option B:•Pass results from external post-processing scripts back todisplay in Design Assessment-Additional Code Checking Products•ANSYS FATJACK–Beam joint fatigue assessment–New separate productFATJACK (also remains part of ASASOffshore)–Python scripts provided•ANSYS BEAMCHECK–Was available initially at 12.0–Python scripts providedJoint UnitaryCheck forBEAMCHECK Fatigue ResultOutlook•Hydrodynamics–Complete integration of AQWA in Workbench–Extended core capabilities as well as coupling withother ANSYS and 3rd party tools•Structures–Modeling and analysis with ANSYS StructuralMechanics products suited to both global structure and detailed (equipment/component) analyses–Coupling with other ANSYS and 3rd party tools–Design Assessment enabling further application ofANSYS developed code checking tools and usercustom capabilities (not limited to Offshore)ANSYS Mechanical Solutions-Modeling•CAD interfacing and modeling tools–ANSYS DesignModeler–ANSYS SpaceClaim Direct Modeler•Extensive meshing capabilitiesCAD Import toDesignModelerMeshingExamplesSpaceClaimANSYS Mechanical Solutions- Structural Mechanics• Extensive Library of Material Models • Comprehensive Element Technology – Solids, Shells, Beams, Special (e.g. Pipe, Elbow, Gasket, User Elements) Jacket Joint Stress Analysis • Library of joints • Advanced Numerical Methods for Linear and Nonlinear Problems • Powerful Solver Capabilities – Direct, Iterative and Distributed Memory – “What If?” studies • Advanced Post-Processing including Reporting • Solver Customizing and Scripting (APDL) Rigid/Flexible • HPC (parallel) Body AnalysisCourtesy DEIRotor DynamicsRiser Analysis© 2010 ANSYS, Inc. All rights reserved.31ANSYS, Inc. ProprietaryWider ANSYS Capabilities- Offshore Wind Turbine• Complex system• Full of InnovationMachine Power Tower Design Electronics Supporting Structure Electromechanical and FSI Design ComponentsImages are courtesy of REpower Systems AG© 2010 ANSYS, Inc. All rights reserved.Rotor Sizing and Blade Design Acoustics Transformer Generator and Site Selection Speed Shaft Design Wind Farm Electric Sensor Configuration• Dynamic Operating Conditions • High Cost of Failure32ANSYS, Inc. Proprietary。
ANSYS Mechanical新功能概览

0
0
32
64
96
128
核心数
谐响应分析——260万自由度
20
分布式计算功能增强
非线性自适应网格(NLAD) 现在 支持ANSYS 分布式计算求解 在32核心计算平台上可以达到
3倍左右加速。
21
装配式结构/离岸工程
22
梁模型建模
SpaceClaim改进了梁抽取功能 来更好地处理连接关系
在Mechanical中原生支持 从梁到壳或者实体的子模型分析
对离岸工程结构、建筑框架结构、起重机结构等都非常有用
梁模型自动抽取和连接 不连续的梁模型自动连接
23
梁模型建模
Flexible Rigid
自动探测梁/管之间的交叉区域,实现更精确分析
对梁模型支持轴线偏移探测和 更多的端部放松选项来实现
更精确的连接关系建模
Mechanical中增加了多种的梁端部放松选项
24
AQWA集成在Workbench中
绝大多数AQWA的核心求解器功能可 以在Workbench中使用, 比之前版本建模更快更方便
增加了绳索支撑,同时增加了更多的输出结果,改善了易用性和稳 定性。
更多的网格和载荷传递(beta)交互功能。
改善了AQWA中水动力学衍射分析中的网格划分功能
25
Mechanical 网格划分亮点
应用包括
•需要高精度求解的垫圈模型 •断裂分析中的网格连接 •声学流体固体相互作用模态分析
Detection method Elapsed time
Notes
V18 default settings (key4=2)
nodal detection
V17 MPC
AQWA 14.0 中文教程2_基础理论

Workbench HTR
Joints设置也需要先建立连接点,Joint类型有四种
- Ball& Socket 球形连接 - Universal 万向节 - Hinged 铰链 - Rigid 刚性绑定
Joint可以连接两个浮体,也可以连接一个浮体与一个固定点
局部轴线用来控制连接的方向 连接处可输入刚度、阻尼与摩擦
作业2.2 — ANSYS AQWA HTR
Workshop 2.2 — ANSYS AQWA Hydrodynamic Time Response
目标:
- 创建一个系泊系统,做一个时间历程分析
33
© 2012 Pera Corporation Ltd. All rights reserved.
19
© 2012 Pera Corporation Ltd. All rights reserved.
AQWA理论
运动方程
- 单位波幅下结构X方向的运动方程
- 这里Ms是结构的质量 - Ma是附加质量(与波浪频率有关) - B是阻尼(频率相关) - C是静水刚度 - F是波力(入射与衍射力)
20
22
Workbench HD
标准的Workbench工具栏
视图控制 选择过滤器 文件保存
AQWA特有工具栏
显示/隐藏单元边界
打开/关闭目标高亮 显示/隐藏海床和水面 求解
© 2012 Pera Corporation Ltd. All rights reserved.
23
Workbench HD
AQWA理论
衍射结构波浪力(采用壳单元建模)
- 入射力(Froude-Krylov 力):来源于不均布的表面压力
Ansys aqwa in workbench

ANSYS Mechanical
LINE
WAVE
LIBRIUM
FER
NAUT
DRIFT
ANSYS ASAS (FE model)
EXCEL
4 © 2012 ANSYS, Inc. November 26, 2012 Release 14.0
AQWA Hydrodynamic Simulation Procedure
• File is zip format (.wbpz) and can be opened
using the “Restore Archive . . . ” utility in WB2.
• Several options are available when archiving
systems as shown here.
6
© 2012 ANSYS, Inc.
November 26, 2012
Release 14.0
Multiphysics Simulation
Geometry modelling
AQWA
CFX/Fluent
Mechanical
Hydro-Structural Design in Workbench
The Toolbox
The Project Schematic
10
© 2012 ANSYS, Inc.
November 26, 2012
Release 14.0
The Project Schematic
The Workbench project schematic is a graphical representation of the workflow defining a system or group of systems. From the toolbox a selection can be dragged and dropped onto the schematic (or double clicked).
ansys_aqwa简介

AQWA基本理论• 基本假设:–三维势流理论–理想流体,无旋,无粘性,不可压缩• 速度势能控制方程,拉普拉斯方程• 体边界条件:不渗透的条件,即结构速度和流体速度在法向上速度一样。
AQWA是一套集成模块,主要用于满足各种结构流体动力学特性评估相关分析需求,包括从桅、桁到EPSOs,从停泊系统到救生系统,从TLPs到半潜水系统,从渔船到大型船舶以及结构交互作用。
模块覆盖流体分析的全部范围,包含衍射/辐射(包括浅水效应)-AQWA-LINE;具有随机波的频域-AQWA-FER;具有随机波包括慢漂流的时域AQWA-DRIFT;具有宽大波的非线性时域-AQ WA-NAUT;包括停泊线的静动稳定性-AQWA-LIBRIUM。
时域和频域模块还包括耦合缆索动力学。
最后所有的模块集成于强大的前后处理器AQWA-图形超级用户界面。
AQWA能够处理多达50个互联的结构,且能够考虑和流体的交互作用。
AQWA还可以作为浮动结构的完整流体和结构分析系统-AQWA-OFFSHORE,它结合了AQWA 和ASAS并有网格划分和结果显示功能。
重要特征·完全的集成系统·丰富的流体交互作用·多达50个互联的结构·AQWA 超级图形用户界面·灵活的建模功能·耦合缆索动力学·能够集成软件以施加外部载荷·超过20年的用户适用证明和验证·直接将结果传输到ASAS集成系统AQWA是一个由衍射/辐射(AQWA-LINE)),包含停泊线的初始静动稳定性(AQWA-LIBRIUM) ,具有不规则波的频域(AQWA-FER) ,具有随机波包含慢漂流的时域(AQWA-DRIFT),具有不规则波的非线性时域(AQWA-NAUT)等模块构成的完整集成系统。
这些模块被封装在强大的AQWA图形用户界面。
另外一个可选择的集成模块-耦合缆索动力学是实用的频域和时域模块,也具有强大的AQWA图形用户界面。
aqwa介绍_哈工程大学讲义

AQWA
3. 浮体间的水动力学交互作用 AQWA可以考虑邻近结构间的水动力学相互作用。因为某一结 构的运动可能影响到另一结构的运动。结构可以铰结、由缆索 连接在一起,也可以相互独立无关。AQWA能够处理多达50个 互联的结构,一种典型的应用为屏蔽效应分析。
4. 传递结果用于应力分析 AQWA-WAVE是AQWA-LINE和ASAS(ANSYS 另外一款大型 结构有限元软件)的联接程序。对于给定的波方向、周期和频 率,该接口程序读取压力和运动形式的结果,并且自动施加到 ASAS有限元模型中。两种模型间节点坐标的差别由系统自动处 理。
AQWA可模拟长峰波,短峰波( AQWA LIBRIUM 和 FER )。
AQWA
AQWA对风的模拟: a. 均匀风。 b. Ochi和Shin风谱:风随海平面力、能量是变化的。 c. API风谱 d. NPD风谱 e. 自定义风谱
AQWA 对流的模拟: a. 均匀流 b. 剖面流:从海底到水平面是变化的非均匀流。
AQWA
AQWA-LINE
AQWA-LINE 是用于计算浮体结构在规则波中响应问题的计算程 序,可以计算由波浪辐射/衍射引起的任意形状的浮体结构周围的 波浪力。 AQWA-LINE使用典型的格林函数方法求解浮体结构的波浪力,同 时,求得浮体的附加质量和辐射阻尼,浮体六个自由度方向上的 运动,相应的稳态波浪漂移力等 。 AQWA-LINE计算时考虑了浮体结构及临近的固体结构的水动力相 互影响。AQWA-LINE能够处理浅水效应,这时需考虑波浪力高阶 项。
AQWA
5. 功能强大的建模和结果查询 数据编辑,自动网格产生,在线帮助,在线参考手册,在线指 南/算例,分析的控制和监测,包括前进速度的弯曲动量/剪切力 计算,分离力计算,模型缩放,结果演示,强大的图形工具, 输出到电子表格,函数处理如节点 RAOs,转换分析如时域向频 域的转换,波幅升降的显示。 AQWA可以进行耦合缆索动力学分析。既在频域可用(AQWAFER),也在时域模块可用(AQWA-DRIFT和 AQWA-NAUT)。 同时可以计算:中间有浮筒,中间有配重,易浮悬链线,船舰 间的缆索。
Workbench使用说明V1_3资料

•33
在工程目录下建立文件夹,加入文件
1.手动建立文件 夹并加入文 件
•34
刷新工程,刚加入到文件夹的文件都被加入到工程
3.刷新后文件夹 被加入到工 程
2.右击工程,选 择刷新
•35
选择Build Properties下tools,删除-ansi。如果不 删的话,后面编译时”//”的注释和屏蔽内容会报 错
7.选择Select All 8.选择当前使 用的CPU
•26
创建完成
新创建的工程
•27
新建的工程目录
•28
5.1导入文件 5.2加入文件 5.3设置编译环境 5.4编译工程
•29
选择工程,右击选择Import
1.右击工程, 选择Import
•30
选择General下的Next,点击Next导入文件
7.选择 Permanent activation
8.输入install.txt 文件路径
9.点击Next
•12
安装完成再安装update下的两个补丁: 1. \VxWorks_6.9\update\DVD-R147826.1-
5-00\setup.exe 2. \Vxworks6.9\update\DVD-R158451.1-1-
设置断点,再次 双击可取消
4.点击 Resum e(F8 )可 跳过 断点
•60
VxWorks6以下的用Tornado编译,VxWorks6以 上的用WorkBench编译。用 WorkBnech编译 8247的程序下载后会报WDB连接错误。
原驱动下未直接引用的.c和.cpp不要加入 WorkBnech的工程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317 ansysinfo@ (T) 724-746-3304 (F) 724-514-9494
U.S. Government Rights
For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).
Table of Contents
1. Introduction: What is AQWA? .................................................................................................................. 1 2. Approach ................................................................................................................................................. 3 2.1. Import or Create Hydrodynamic Analysis Systems ............................................................................. 3 2.1.1. Import a Hydrodynamic System Database ................................................................................ 3 2.1.2. Create a Hydrodynamic Analysis System ................................................................................... 3 2.2. Attach Geometry .............................................................................................................................. 4 2.2.1. General Modelling Requirements ............................................................................................. 5 2.2.2. Configuring the Geometry ....................................................................................................... 6 2.2.3. Add Connection Points ............................................................................................................. 7 2.3. Define Parts Behavior ........................................................................................................................ 7 2.3.1. Surface Body ............................................................................................................................ 9 2.3.2. Line Body ............................................................................................................................... 10 2.3.3. Point Mass ............................................................................................................................. 11 2.3.4. Point Buoyancy ...................................................................................................................... 11 2.3.5. Disc ....................................................................................................................................... 11 2.3.6. Additional Hydrodynamic Stiffness ......................................................................................... 11 2.3.7. Additional Damping (Frequency Independent) ....................................................................... 12 2.3.8. Additional Added Mass (Frequency Independent) ................................................................... 12 2.3.9. Current Force Coefficients ...................................................................................................... 13 2.3.10. Wind Force Coefficients ........................................................................................................ 14 2.4. Define Connections ........................................................................................................................ 15 2.4.1. Cables .................................................................................................................................... 15 2.4.1.1. Linear Elastic ................................................................................................................. 16 2.4.1.2. Non-Linear Polynomial .................................................................................................. 17 2.4.1.3. Non-Linear Steel Wire .................................................................................................... 17 2.4.1.4. Non-Linear Catenary ...................................................................................................... 17 2.4.2. Catenary Data ........................................................................................................................ 19 2.4.2.1. Catenary Section ......................................................................................