华为路由OSPF理论和配置命令
OSPF协议原理及配置详解

OSPF协议原理及配置详解OSPF(Open Shortest Path First)是一种用于计算机网络中的内部网关协议(IGP),用于在大型网络中动态确定数据包的传输路径。
其算法基于Dijkstra最短路径算法,并支持IPv4和IPv6网络。
OSPF的工作原理如下:1. 链路状态数据库(Link State Database):每个OSPF路由器都维护着一个链路状态数据库,其中存储了它所连接的所有网络的信息,包括链路的状态、带宽、延迟等。
每个OSPF路由器通过发送链路状态更新(Link State Update)将自己的链路状态信息告知其他路由器。
2.路由器之间的邻居关系建立:OSPF路由器之间通过邻居发现过程建立邻居关系。
当一个OSPF路由器启动时,它会向网络广播HELLO消息来寻找其他路由器。
当两个路由器之间收到彼此的HELLO消息时,它们可以建立邻居关系。
3. 路由计算:每个OSPF路由器通过收集链路状态信息来计算最短路径。
路由器将链路状态信息存储在链路状态数据库中,并使用Dijkstra 最短路径算法来确定到达目标网络最短路径。
4.路由更新:当链路状态发生变化时,OSPF路由器将会发送更新消息通知其他路由器。
其他路由器接收到更新消息后,会更新自己的链路状态数据库,并重新计算最短路径。
OSPF的配置如下:1. 启用OSPF协议:在路由器配置模式下使用"router ospf"命令启用OSPF协议。
2. 配置区域(Area):将网络划分为不同的区域。
在配置模式下使用"area <区域号> range <网络地址> <网络掩码>"命令将网络地址加入到区域中。
3. 配置邻居:使用"neighbor <邻居IP地址>"命令来配置OSPF邻居关系。
邻居IP地址可以手动配置或通过HELLO消息自动发现。
OSPF基本配置命令

OSPF基本配置命令ospf是一种广泛应用的基于链路状态的动态路由协议,它具有区域化的层次结构,扩展性好,收敛速度快,适合部署在各种规模的网络上。
在OSPF中,每台路由器都必须有一个Router-ID来标识自己。
为了使网络更加稳定可靠,每台路由器通常都会启用Loopback接口,并配特定的IP地址,且将此作为自己的Router-ID。
OSPF定义了四种网络类型:广播网络(broadcast网络)、NBMA (Non-broadcast Multi-access)网络、点到点网络(point-to-point也P2P)、点到多点网络(point-to-Multipoint也称P2MP)。
在广播网络和NBMA网络中需要进行DR(Designated Router)和BDR(Backup Designated Router)选举。
关于DR和BDR选举规则如下:1、由路由器接口的DR优先级来决定,优先级高的路由器选为DR,次之为BDR;2、如果优先级相同,则具有最高Router-ID的路由器选为DR,次之为BDR。
基本的配置命令:[R1]router id 1.1.1.1 -------------在全局配置模式下设置Router-ID[R1]ospf -------------进入OSPF进程,直接回车是进程1[R1-ospf-1]area 0 -----------进入OSPF进程1中的区域0.[R1-ospf-1-area-0-0-0-0]network 10.0.12.1 0.0.0.0 --------宣布网路10.0.12.1位于区域0<R1>displsy ospf peer brief ----------------查看路由器R1上的邻居关系建立情况<R1>displsy ip routing-table ------------查看R1的ip路由表<R1>displsy ospf interface -----------查看R1上DR/BDR的选举情况[R1]interface GigabitEthernet0/0/1[R1-GigabitEthernet0/0/1]ospf dr-priority 2-------修改R1上接口GE0/0/1的优先级为2,使其成为DR。
OSPF配置命令解析

[Route display ospf
r]
peer
显示所有OSPF邻居的详绅信息
[Route display ospf peer 显示简要的OSPF邻居信息
r]
brief
路由交换技术与应用
OSPF的信息查看
2、查看OSPF路由信息 [Route display ip routing-table 显示IP路由表 r] [Route display ospf routing-table 显示OSPF路由表 r]
路由交换技术与应用
回顾
1、OSPF的基本配置
2、OSPF的路由引入 3、OSPF信息的查看
[Route interface
r]
LoopBack 0
[Router-
ip address 10.0.3.3
LoopBack0]
24
路由交换技术与应用
OSPF的基础配置
2、配置Router ID,开启OSPF进程
[Route ospf 1 router-id 10.0.3.3 r]
[Router--ospf-1]
进程标识符 1~65535
逻辑端口 Loopback口IP地
址
路由交换技术与应用
OSPF的基础配置
3、将相关网段在区域0中发布
[Router--ospf-1a]rea 0
[Router-ospf-1-area- network 10.0.3.0 0.0.0.255 0.0.0.0]
1 此路由器的直连网段
OSPF配置命令解析
ቤተ መጻሕፍቲ ባይዱ
路由交换技术与应用
OSPF的概念
Open Shortest Path First
华为认证ospf配置命令

华为认证ospf配置命令华为认证ospf配置命令随着华为在中国市场的发展,华为认证也成为了IT届的宠儿,就跟着我们一起来学习华为ospf是怎么配置的吧.使用的拓扑图如下:配置命令如下:R1:interface Serial0/0/0link-protocol pppip address 192.168.14.1 255.255.255.0#interface Serial0/0/1link-protocol pppip address 192.168.12.1 255.255.255.0#interface LoopBack0ip address 1.1.1.1 255.255.255.255#ospf 1area 0.0.0.0network 192.168.12.1 0.0.0.0network 1.1.1.1 0.0.0.0R2:interface Serial0/0/0link-protocol pppip address 192.168.12.2 255.255.255.0#interface Serial0/0/1link-protocol pppip address 192.168.23.2 255.255.255.0#interface LoopBack0ip address 2.2.2.2 255.255.255.255#ospf 1area 0.0.0.0network 192.168.12.2 0.0.0.0network 192.168.23.2 0.0.0.0network 2.2.2.2 0.0.0.0R3:interface Serial0/0/0link-protocol pppip address 192.168.23.3 255.255.255.0#interface Serial0/0/1link-protocol pppip address 192.168.35.3 255.255.255.0#interface LoopBack0ip address 3.3.3.3 255.255.255.255#ospf 1area 0.0.0.0network 192.168.23.3 0.0.0.0network 3.3.3.3 0.0.0.0配置命令对于学习cisco的'学员可能会有一点绕,但是敲的时候也是很有意思的.结果如下:R1:[Huawei]dis ip rouRoute Flags: R - relay, D - download to fib------------------------------------------------------------------------------Routing Tables: PublicDestinations : 12 Routes : 12Destination/Mask Proto Pre Cost Flags NextHop Interface1.1.1.1/32 Direct 0 0 D 127.0.0.1 LoopBack02.2.2.2/32 OSPF 10 1562 D 192.168.23.2 Serial0/0/13.3.3.3/32 OSPF 10 3124 D 192.168.23.2 Serial0/0/1127.0.0.0/8 Direct 0 0 D 127.0.0.1 InLoopBack0127.0.0.1/32 Direct 0 0 D 127.0.0.1 InLoopBack0192.168.12.0/24 Direct 0 0 D 192.168.12.1 Serial0/0/1192.168.12.1/32 Direct 0 0 D 127.0.0.1 Serial0/0/1192.168.23.0/24 OSPF 10 3124 D 192.168.23.2 Serial0/0/1192.168.23.2/32 Direct 0 0 D 192.168.23.2 Serial0/0/1R1:[Huawei]ping 3.3.3.3 ip-forwardingPING 3.3.3.3: 56 data bytes, press CTRL_C to breakReply from 3.3.3.3: bytes=56 Sequence=1 ttl=254 time=60 msReply from 3.3.3.3: bytes=56 Sequence=2 ttl=254 time=60 msReply from 3.3.3.3: bytes=56 Sequence=3 ttl=254 time=30 msReply from 3.3.3.3: bytes=56 Sequence=4 ttl=254 time=30 msReply from 3.3.3.3: bytes=56 Sequence=5 ttl=254 time=70 ms--- 3.3.3.3 ping statistics ---5 packet(s) transmitted5 packet(s) received0.00% packet lossround-trip min/avg/max = 30/50/70 ms路由学习没有任何问题,ping通测试也是OK的,这就是所有ospf 的基本配置了.【华为认证ospf配置命令】。
华为ospf配置命令_【总结】:华为、H3C、锐捷三家交换机配置命令详解【转】

华为ospf配置命令_【总结】:华为、H3C、锐捷三家交换机配置命令详解【转】⼀直以来,对于华为、H3C、锐捷交换机的命令配置,不断的有朋友留⾔,三家交换机的配置命令容易弄混,经常在实际项⽬配置中出错,因此,本期我们将来介绍这三家交换机的基础配置命令,⼤家可以分别来看下他们的命令有什么不同。
为了让⼤家更加清楚,每⾏代码都有解释。
⼀、华为交换机基础配置命令1、创建vlan://⽤户视图,也就是在Quidway模式下运⾏命令。
system-view //进⼊配置视图[Quidway] vlan 10 //创建vlan 10,并进⼊vlan10配置视图,如果vlan10存在就直接进⼊vlan10配置视图[Quidway-vlan10] quit //回到配置视图[Quidway] vlan 100 //创建vlan 100,并进⼊vlan100配置视图,如果vlan10存在就直接进⼊vlan100配置视图[Quidway-vlan100] quit //回到配置视图2、将端⼝加⼊到vlan中:[Quidway] interface GigabitEthernet2/0/1 (10G光⼝)[Quidway- GigabitEthernet2/0/1] port link-type access //定义端⼝传输模式[Quidway- GigabitEthernet2/0/1] port default vlan 100 //将端⼝加⼊vlan100[Quidway- GigabitEthernet2/0/1] quit //回到配置视图[Quidway] interface GigabitEthernet1/0/0 //进⼊1号插槽上的第⼀个千兆⽹⼝配置视图中。
0代表1号⼝[Quidway- GigabitEthernet1/0/0] port link-type access //定义端⼝传输模式[Quidway- GigabitEthernet2/0/1] port default vlan 10 //将这个端⼝加⼊到vlan10中[Quidway- GigabitEthernet2/0/1] quit 3、将多个端⼝加⼊到VLAN中system-view[Quidway]vlan 10[Quidway-vlan10]port GigabitEthernet 1/0/0 to 1/0/29 //将0到29号⼝加⼊到vlan10中[Quidway-vlan10]quit4、交换机配置IP地址[Quidway] interface Vlanif100 // 进⼊vlan100接⼝视图与vlan 100命令进⼊的地⽅不同[Quidway-Vlanif100] ip address 119.167.200.90 255.255.255.252 // 定义vlan100管理IP三层交换⽹关路由[Quidway-Vlanif100] quit //返回视图[Quidway] interface Vlanif10 // 进⼊vlan10接⼝视图与vlan 10命令进⼊的地⽅不同[Quidway-Vlanif10] ip address 119.167.206.129 255.255.255.128 // 定义vlan10管理IP三层交换⽹关路由[Quidway-Vlanif10] quit5、配置默认⽹关:[Quidway]ip route-static 0.0.0.0 0.0.0.0 119.167.200.89 //配置默认⽹关。
华为路由器OSPF协议配置命令

华为路由器OSPF协议配置命令华为路由器OSPF协议配置命令华为路由器OSPF协议配置命令4.7.13 ip ospf network-type设置接⼝的⽹络类型。
no ip ospf network-type 取消设置。
[ no ] ip ospf network-type { nonbroadcast | point_to_multipoint }【参数说明】nonbroadcast设置接⼝的⽹络类型为⾮⼴播NBMA类型。
point_to_multipoint设置接⼝的⽹络类型为点到多点。
【命令模式】接⼝配置模式【使⽤指南】在没有多址访问能⼒的⼴播⽹上,应该将接⼝配置成NBMA⽅式。
当⼀个NBMA⽹络中,不能保证任意两台路由器之间都是直接可达的话,应将⽹络设置为点到多点的⽅式。
【举例】配置接⼝Serial0为⾮⼴播NBMA类型。
Quidway(config-if-Serial0)#ip ospf network-type nonbroadcast【相关命令】4.7.14 ip ospf neighborip ospf pollinterval在NBMA和点到多点接⼝上配置发送轮询HELLO报⽂的时间间隔,no ip ospf pollinterval 命令恢复为缺省值。
ip ospf pollinterval timeno ip ospf pollinterval【参数说明】time为发送轮询HELLO报⽂的时间间隔,以秒为单位,合法的范围是0~65535。
【缺省情况】接⼝缺省发送轮询HELLO报⽂的时间间隔为120秒。
【命令模式】接⼝配置模式【使⽤指南】在NBMA和点到多点⽹络中,当⼀台路由器的邻居⼀直没有响应时(时间间隔超过了dead-interval ),仍然有必要继续发送HELLO 报⽂,但发送的频率要降低为以pollinterval的频率发送。
所以pollinterval要远⼤于hello- interval的值,⾄少为两分钟(120秒)。
华为路由器配置命令表

华为路由器配置命令表华为路由器配置命令表1.系统配置1.1 设备初始化●system-view:进入系统视图●undo saved-configuration:清除设备当前配置●reboot:重启设备1.2 系统时间配置●clock timezone +8:设置时区为东八区●clock datetime 2022-01-01 00:00:00:设置系统时间为指定日期和时间2.接口配置2.1 查看接口信息●display interface brief:显示接口状态和基本信息●display interface GigabitEthernet 0/0/1:显示指定接口详细信息2.2 配置接口●interface GigabitEthernet 0/0/1:进入指定接口视图●ip address 192.16① 24:配置接口IP地质和子网掩码3.路由配置3.1 静态路由●ip route-static 192.168.2.0 255.255.255.0 10.0.0.2:配置静态路由●display ip routing-table:显示IP路由表3.2 动态路由●ospf 1 router-id ①.1:配置OSPF路由进程和路由器ID●quit:退出OSPF视图●interface GigabitEthernet 0/0/1:进入接口视图●ospf enable:启用OSPF●quit:退出接口视图●ospf network-type broadcast:配置接口OSPF网络类型为广播●quit:退出接口视图●display ospf peer:显示OSPF邻居信息4.安全配置4.1 访问控制列表(ACL)●acl number 2001:创建ACL 2001●rule permit source 192.168.1.0 0.0.0.255:添加允许源地质为192.168.1.0/24的规则●quit:退出ACL配置●interface GigabitEthernet 0/0/1:进入接口视图●traffic-filter acl 2001 outbound:应用ACL 2001到接口的出方向●quit:退出接口视图4.2 防火墙配置●firewall zone zone-name untrust:创建一个名为untrust的安全区域●firewall interzone trust untrust:创建trust和untrust之间的安全区域间隔●firewall packet-filter 100:创建一个数据包过滤器●rule 1 permit source 192.168.1.0 0.0.0.255:添加允许源地质为192.168.1.0/24的规则●quit:退出数据包过滤器配置●quit:退出安全区域间隔配置●interface GigabitEthernet 0/0/1:进入接口视图●firewall zone trust:将接口划分到trust安全区域●firewall packet-filter 100 outbound:将数据包过滤器应用到接口的出方向●quit:退出接口视图5.网络服务配置5.1 DHCP服务配置●ip pool huawei:创建一个IP地质池名为huawei●network 192.168.1.0 mask 255.255.255.0:设置IP地质池范围●dns-list 8.8.8.8:设置DNS服务器地质●quit:退出IP地质池配置●interface GigabitEthernet 0/0/1:进入接口视图●dhcp server ip-pool huawei:启用DHCP服务器,并指定IP地质池●quit:退出接口视图6.系统管理6.1 用户管理●aaa:进入AAA视图●local-user admin1234 password irreversible-cipher Hello123:创建本地用户admin1234并设置密码●local-user admin1234 privilege level 3:为用户admin1234设置特权级别●local-user admin1234 service-type telnet ssh http:设置用户admin1234的登录方式●quit:退出AAA视图6.2 SNMP配置●snmp-agent sys-info version v2c:设置SNMP版本为V2c●snmp-agent community read public:设置SNMP共同体字符串并设置读权限●snmp-agent target-host trap address udp-domn192.16①00 params securityname Huawei-Trap version v2c:配置SNMP trap地质和参数●snmp-agent trap enable:启用SNMP trap7.保存配置●save:保存当前配置●quit:退出设备配置模式本文档涉及附件:附件1:华为路由器配置示例图本文所涉及的法律名词及注释:1.IP地质:Internet Protocol Address(Internet协议地质),指在Internet中用于唯一标识设备的数字地质。
华为路由器交换机配置命令大全

华为路由器交换机配置命令大全华为路由器交换机配置命令大全一、登录与认证命令1.Telnet 登录命令2.SSH 登录命令3.Console 登录命令4.用户认证命令二、设备管理命令1.设备信息查看命令2.设备参数配置命令3.设备重启命令4.设备保存配置命令三、接口配置命令1.查看接口状态命令2.配置接口描述命令3.配置接口IP地质命令4.配置接口MTU命令5.开启/关闭接口命令四、路由配置命令1.配置静态路由命令2.配置默认路由命令3.配置动态路由命令4.查看路由表命令5.清空路由表命令五、VLAN 配置命令1.配置VLAN命令2.配置端口VLAN命令3.配置VLAN接口命令六、交换机功能配置命令1.配置端口镜像命令2.配置链路聚合命令3.配置交换机端口安全命令4.配置交换机QoS命令七、安全配置命令1.配置访问控制列表命令2.配置NAT命令3.配置防火墙命令4.配置SSL VPN命令附录:附件:1.示例配置文件2.常见问题解答法律名词及注释:1.Telnet:一种远程登录协议,用于远程连接路由器或交换机进行管理和配置。
2.SSH:Secure Shell,一种用于远程登录的网络协议,提供安全的数据通信和用户认证方式。
3.Console:一种通过串口连接设备进行本地登录的方式。
4.VLAN:Virtual Local Area Network,虚拟局域网,将不同的物理分组划分到不同的逻辑分组中,实现逻辑分离。
5.MTU:Maximum Transmission Unit,最大传输单元,指数据链路层上一次发送的帧的最大长度。
6.NAT:Network Address Translation,网络地质转换,用于在私有网络和公共网络之间进行通信的转换技术。
7.QoS:Quality of Service,服务质量,用于在网络通信中对不同数据流进行优先级和带宽控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OSPF要求每台运行OSPF的路由器都了解整个网络的链路状态信息,这样才能计算出到达目的地的最优路径。
OSPF的收敛过程由链路状态公告LSA(Link State Advertisement)泛洪开始,LSA中包含了路由器已知的接口IP地址、掩码、开销和网络类型等信息。
收到LSA的路由器都可以根据LSA提供的信息建立自己的链路状态数据库LSDB(Link State Database),并在LSDB的基础上使用SPF算法进行运算,建立起到达每个网络的最短路径树。
最后,通过最短路径树得出到达目的网络的最优路由,并将其加入到IP路由表中。
OSPF直接运行在IP协议之上,使用IP协议号89。
OSPF有五种报文类型,每种报文都使用相同的OSPF报文头。
Hello报文:最常用的一种报文,用于发现、维护邻居关系。
并在广播和NBMA(None-Broadcast Multi-Access)类型的网络中选举指定路由器DR(Designated Router)和备份指定路由器BDR(Backup Designated Router)。
DD报文:两台路由器进行LSDB数据库同步时,用DD报文来描述自己的LSDB。
DD报文的内容包括LSDB中每一条LSA的头部(LSA的头部可以唯一标识一条LSA)。
LSA头部只占一条LSA的整个数据量的一小部分,所以,这样就可以减少路由器之间的协议报文流量。
LSR报文:两台路由器互相交换过DD报文之后,知道对端的路由器有哪些LSA是本地LSDB 所缺少的,这时需要发送LSR报文向对方请求缺少的LSA,LSR只包含了所需要的LSA的摘要信息。
LSU报文:用来向对端路由器发送所需要的LSA。
LSACK报文:用来对接收到的LSU报文进行确认。
邻居和邻接关系建立的过程如下:Down:这是邻居的初始状态,表示没有从邻居收到任何信息。
Attempt:此状态只在NBMA网络上存在,表示没有收到邻居的任何信息,但是已经周期性的向邻居发送报文,发送间隔为HelloInterval。
如果RouterDeadInterval间隔内未收到邻居的Hello报文,则转为Down状态。
Init:在此状态下,路由器已经从邻居收到了Hello报文,但是自己不在所收到的Hello报文的邻居列表中,尚未与邻居建立双向通信关系。
2-Way:在此状态下,双向通信已经建立,但是没有与邻居建立邻接关系。
这是建立邻接关系以前的最高级状态。
ExStart:这是形成邻接关系的第一个步骤,邻居状态变成此状态以后,路由器开始向邻居发送DD报文。
主从关系是在此状态下形成的,初始DD序列号也是在此状态下决定的。
在此状态下发送的DD报文不包含链路状态描述。
Exchange:此状态下路由器相互发送包含链路状态信息摘要的DD报文,描述本地LSDB的内容。
Loading:相互发送LSR报文请求LSA,发送LSU报文通告LSA。
Full:路由器的LSDB已经同步。
Router ID是一个32位的值,它唯一标识了一个自治系统内的路由器,可以为每台运行OSPF 的路由器上可以手动配置一个Router ID,或者指定一个IP地址作为Router ID。
如果设备存在多个逻辑接口地址,则路由器使用逻辑接口中最大的IP地址作为Router ID;如果没有配置逻辑接口,则路由器使用物理接口的最大IP地址作为Router ID。
在为一台运行OSPF的路由器配置新的Router ID后,可以在路由器上通过重置OSPF进程来更新Router ID。
通常建议手动配置Router ID,以防止Router ID因为接口地址的变化而改变。
运行OSPF的路由器之间需要交换链路状态信息和路由信息,在交换这些信息之前路由器之间首先需要建立邻接关系。
邻居(Neighbor):OSPF路由器启动后,便会通过OSPF接口向外发送Hello报文用于发现邻居。
收到Hello报文的OSPF路由器会检查报文中所定义的一些参数,如果双方的参数一致,就会彼此形成邻居关系。
邻接(Adjacency):形成邻居关系的双方不一定都能形成邻接关系,这要根据网络类型而定。
只有当双方成功交换DD报文,并能交换LSA之后,才形成真正意义上的邻接关系。
路由器在发送LSA之前必须先发现邻居并建立邻居关系。
本例中,RTA通过以太网连接了三个路由器,所以RTA有三个邻居,但不能说RTA有三邻接关系。
OSPF的邻居发现过程是基于Hello报文来实现的,Hello报文中的重要字段解释如下:Network Mask:发送Hello报文的接口的网络掩码。
Hello Interval:发送Hello报文的时间间隔,单位为秒。
Options:标识发送此报文的OSPF路由器所支持的可选功能。
具体的可选功能已超出这里的讨论范围。
Router Priority:发送Hello报文的接口的Router Priority,用于选举DR和BDR。
RouterDeadInterval:失效时间。
如果在此时间内未收到邻居发来的Hello报文,则认为邻居失效;单位为秒,通常为四倍HelloInterval。
Designated Router:发送Hello报文的路由器所选举出的DR的IP地址。
如果设置为0.0.0.0,表示未选举DR路由器。
Backup Designated Router:发送Hello报文的路由器所选举出的BDR的IP地址。
如果设置为0.0.0.0,表示未选举BDR。
Neighbor:邻居的Router ID列表,表示本路由器已经从这些邻居收到了合法的Hello报文。
------------------------------------------------------(本课程不探讨)如果路由器发现所接收的合法Hello报文的邻居列表中有自己的Router ID,则认为已经和邻居建立了双向连接,表示邻居关系已经建立。
验证一个接收到的Hello报文是否合法包括:如果接收端口的网络类型是广播型,点到多点或者NBMA,所接收的Hello报文中Network Mask字段必须和接收端口的网络掩码一致,如果接收端口的网络类型为点到点类型或者是虚连接,则不检查Network Mask字段;所接收的Hello报文中Hello Interval字段必须和接收端口的配置一致;所接收的Hello报文中Router Dead Interval字段必须和接收端口的配置一致;所接收的Hello报文中Options字段中的E-bit(表示是否接收外部路由信息)必须和相关区域的配置一致。
如图所示,路由器在建立完成邻居关系之后,便开始进行数据库同步,具体过程如下:邻居状态变为ExStart以后,RTA向RTB发送第一个DD报文,在这个报文中,DD序列号被设置为X(假设),RTA宣告自己为主路由器。
RTB也向RTA发送第一个DD报文,在这个报文中,DD序列号被设置为Y(假设)。
RTB也宣告自己为主路由器。
由于RTB的Router ID比RTA的大,所以RTB应当为真正的主路由器。
RTA发送一个新的DD报文,在这个新的报文中包含LSDB的摘要信息,序列号设置为RTB 在步骤2里使用的序列号,因此RTB将邻居状态改变为Exchange。
邻居状态变为Exchange以后,RTB发送一个新的DD报文,该报文中包含LSDB的描述信息,DD序列号设为Y+1(上次使用的序列号加1)。
即使RTA不需要新的DD报文描述自己的LSDB,但是作为从路由器,RTA需要对主路由器RTB发送的每一个DD报文进行确认。
所以,RTA向RTB发送一个内容为空的DD报文,序列号为Y+1。
发送完最后一个DD报文之后,RTA将邻居状态改变为Loading;RTB收到最后一个DD报文之后,改变状态为Full(假设RTB的LSDB是最新最全的,不需要向RTA请求更新)。
邻居状态变为Loading之后,RTA开始向RTB发送LSR报文,请求那些在Exchange状态下通过DD报文发现的,而且在本地LSDB中没有的链路状态信息。
RTB收到LSR报文之后,向RTA发送LSU报文,在LSU报文中,包含了那些被请求的链路状态的详细信息。
RTA收到LSU报文之后,将邻居状态从Loading改变成Full。
RTA向RTB发送LSACK报文,用于对已接收LSA的确认。
此时,RTA和RTB之间的邻居状态变成Full,表示达到完全邻接状态。
OSPF定义了四种网络类型,分别是点到点网络,广播型网络,NBMA网络和点到多点网络。
点到点网络是指只把两台路由器直接相连的网络。
一个运行PPP的64K串行线路就是一个点到点网络的例子。
广播型网络是指支持两台以上路由器,并且具有广播能力的网络。
一个含有三台路由器的以太网就是一个广播型网络的例子。
OSPF可以在不支持广播的多路访问网络上运行,此类网络包括在hub-spoke拓扑上运行的帧中继(FR)和异步传输模式(ATM)网络,这些网络的通信依赖于虚电路。
OSPF定义了两种支持多路访问的网络类型:非广播多路访问网络(NBMA)和点到多点网络(Point To Multi-Points)。
NBMA:在NBMA网络上,OSPF模拟在广播型网络上的操作,但是每个路由器的邻居需要手动配置。
NBMA方式要求网络中的路由器组成全连接。
P2MP:将整个网络看成是一组点到点网络。
对于不能组成全连接的网络应当使用点到多点方式,例如只使用PVC的不完全连接的帧中继网络。
每一个含有至少两个路由器的广播型网络和NBMA网络都有一个DR和BDR。
DR和BDR可以减少邻接关系的数量,从而减少链路状态信息以及路由信息的交换次数,这样可以节省带宽,降低对路由器处理能力的压力。
一个既不是DR也不是BDR的路由器只与DR和BDR形成邻接关系并交换链路状态信息以及路由信息,这样就大大减少了大型广播型网络和NBMA网络中的邻接关系数量。
在没有DR的广播网络上,邻接关系的数量可以根据公式n(n-1)/2计算出,n代表参与OSPF的路由器接口的数量。
在本例中,所有路由器之间有6个邻接关系。
当指定了DR后,所有的路由器都与DR建立起邻接关系,DR成为该广播网络上的中心点。
BDR在DR发生故障时接管业务,一个广播网络上所有路由器都必须同BDR建立邻接关系。
本例中使用DR和BDR将邻接关系从6减少到了5,RTA和RTB都只需要同DR和BDR建立邻接关系,RTA和RTB之间建立的是邻居关系。
此例中,邻接关系数量的减少效果并不明显。
但是,当网络上部署了大量路由器时,比如100台,那么情况就大不一样了。
在邻居发现完成之后,路由器会根据网段类型进行DR选举。
在广播和NBMA网络上,路由器会根据参与选举的每个接口的优先级进行DR选举。