几种实用的直流开关电源保护电路

合集下载

常用的六种开关电源输入保护电路

常用的六种开关电源输入保护电路

常用的六种开关电源输入保护电路
开关电源是开关稳压线性电源的简称,以前的电源产品是采用线性电源,这是一种晶体管线性稳压电源,由于效率低下等原因已逐渐被开关电源取代。

开关电源,顾名思义就是通过控制开关管的导通时间以及关断时间来维持输出电压的稳定的电源,已逐渐向小型化、效率化、模块化、高可靠性等方向发展。

对于开关电源,输入保护电路很重要,开关输入保护电路具有过流保护、过压保护以及浪涌抑制等功能,对于电网的电压冲击以及EMC等具有至关重要的作用。

下面列举6种开关电源输入保护电路
一、保险丝形式
保险丝有普通型的也有快速型的,具有熔点低、熔断速度快特点,但是在熔断时候会产生火花、冒烟,甚至有玻璃管的会爆裂,因此安全性较差。

仅有保险丝的输入保护电路,只有过流保护作用,一般选择保险丝时候实际的熔断电流要等于额定电流的1.5倍左右。

二、保险丝、压敏电阻形式
这种电路多了压敏电阻,压敏电阻规格有07471、10471、14471等规格,具有浪涌抑制功能,因此这种电路有过压、过流保护功能,有些还具有防雷击保护
三、熔断电阻器、压敏电阻形式
熔断电阻器与保险丝作用相同,都是起到过流保护,但是与保险丝不同的是熔断电阻器熔断时候不会产生火花以及烟雾,就安全性来说安全高一点;而压敏电阻具有浪涌电压吸收作用,因此这种电路形式具有过压、过流保护功能
四、保险丝、NTC热敏电阻形式
热敏电阻采用的是负温度系数的,它的阻值随温度的升高为降低,它具有抑制电路的浪涌电流能力
五、压敏电阻、NTC热敏电阻形式
六、保险丝、压敏电阻、NTC热敏电阻形式。

一文说清开关电源常用的几种保护

一文说清开关电源常用的几种保护

一文说清开关电源常用的几种保护
【原创版】
目录
一、开关电源的浪涌电流问题
二、开关电源的常用保护电路
1.电流保护
2.电压保护
3.过热保护
4.空载保护
5.短路保护
正文
在电力电子设备中,开关电源的应用越来越广泛,然而由于开关电源的输入电路采用电容滤波型整流电路,在电源接通瞬间,电容器充电会形成很大的浪涌电流,可能会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏,轻者也会使空气开关合不上闸,这些问题都会造成开关电源无法正常工作。

因此,为了解决这些问题,开关电源通常采用以下几种保护电路:
1.电流保护:通过设置电流限制电路,限制电源的输出电流,避免因负载电流过大而损坏电源。

2.电压保护:通过设置电压限制电路,限制电源的输出电压,避免因电压过高而损坏负载设备。

3.过热保护:通过设置过热保护电路,当电源内部温度过高时,自动切断电源,避免因过热而损坏电源。

4.空载保护:通过设置空载保护电路,当电源输出端空载时,自动切
断电源,避免因空载而损坏电源。

5.短路保护:通过设置短路保护电路,当电源输出端发生短路时,自动切断电源,避免因短路而损坏电源。

开关电源常用的几种保护电路

开关电源常用的几种保护电路

开关电源常用的几种保护电路评价开关电源的质量指标应该是以安全性、可靠性为第一原则。

在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。

开关电源常用的几种保护电路如下:1、防浪涌软启动电路开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。

在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

图1 采用晶闸管和限流电阻组成的软启动电路图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。

电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。

限流的延迟时间取决于时间常(R2C2),通常选取为0.3~0.5s。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。

图2 采用继电器K1和限流电阻构成的软启动电路图3 替代RC的延迟电路2、过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

开关电源安全保护电路原理图解

开关电源安全保护电路原理图解

开关电源安全保护电路原理图解对于开关电源而言, 平安、牢靠性历来被视为重要的性能之一. 开关电源在电气技术指标满意电子设备正常使用要求的条件下, 还要满意外界或自身电路或负载电路消失故障的状况下也能平安牢靠地工作. 为此, 须有多种爱护措施. 对爱护电路的特点分析, 对存在不足期盼克服, 盼望设计出更平安、更牢靠的爱护电路。

1 浪涌电流电路剖析浪涌电流是由于电压突变所引起. 如电子设备在第一次加电压时, 由于大容量电源电容器充电引起的涌入初始电流开机浪涌电流; 又如直击雷、感应雷沿着电源线进入开关电源的突变电压所产生瞬态电流雷浪涌电流. 浪涌电流上升时间特别快, 持续时间特别短, 破坏作用特别大. 为防止或减轻浪涌电流的破坏, 设置抑制浪涌电流或将浪涌电流转移到地线等方式来爱护开关电源避开浪涌电流的损害。

1. 1 启动限流爱护开关电源的初级整流电路有大容量滤波电容,开机瞬间整流管向这些大电容充电, 使整流管瞬时电流超过额定值. 为减小开机启动限流( 浪涌电流) ,开关电源通常都设有抗冲击电路. 如图1 电路, 在开机瞬间, 开关电源变压器的3、4 绕组电压为0V, VD5截止, 晶闸管VD6 的G、K 极间电压为0V, VD6 截止.充电电流路径: AC220V→VD1-4 正极→大电容C1→地→R2→VD1- 4 负极. 由于R2 有阻碍大电流作用( 一般设为3. 3Ω) , 因此能有效限制开机浪涌电流。

开关电源正常工作后, 开关电源变压器的1、2绕组上产生感应电压, 对C2 充电( 充电时间常数约等于R3×C2) , 使VD6 导通, 整流电流不再经R2, 而是经VD6 的A、K 极返回整流桥VD1- 4 的负极. 也就是说, 在正常工作状态, VD6 将R2 短路, 防止R2产生功耗.R2 仅在开机瞬间起作用。

用晶闸管作启动限流爱护平安牢靠, 但电路比较简单些, 从电路成本和电路简捷等角度来说用温控电阻作启动限流爱护, 它既经济又简洁更平安牢靠, 如图3。

24V开关电源的几种保护电路

24V开关电源的几种保护电路

24V开关电源常用的几种保护电路1.防浪涌软启动电路24V开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。

在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。

上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。

2.过压、欠压及过热保护电路进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。

因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。

温度是影响电源设备可靠性的最重要因素。

根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。

3.缺相保护电路由于电网自身原因或电源输入接线不可靠,24V开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。

当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。

检测电网缺相通常采用电流互感器或电子缺相检测电路。

由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。

图5是一个简单的电子缺相保护电路。

三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。

当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。

比较器的基准可调,以便调节缺相动作阈值。

该缺相保护适用于三相四线制,而不适用于三相三线制。

电路稍加变动,亦可用高电平封锁PWM信号。

开关直流电源设计(原理及结构)

开关直流电源设计(原理及结构)

并联型高频开关直流电源的系统设计关键字:开关电源 PWM 并联均流模块随着模块化电源系统的发展,开关电源并联技术的重要性日见重要。

这里介绍了一种新型并联型高频开关电源整流模块的系统设计方案。

其中,对开关电源的驱动电路、缓冲电路、控制电路及主要磁元件进行优化、设计。

控制电路以UC3525为核心,构成电流内环、电压外环的双环控制模式,实现系统稳压和限流。

并且通过小信号模型分析,对电压电流环的PI调节器进行设计。

近几年来,各式各样的开关电源以其小巧的体积、较高的功率密度和高效率越来越得到广泛的应用。

随着电力系统自动化程度的提高,特别是其保护装置的微机化,通讯装置的程控化,对电源的体积和效率的要求不断提高。

电源中磁性元件和散热器件成了提高功率密度的巨大障碍。

开关频率的提高可以使开关变换器(特别是变压器、电感等磁性元件以及电容)的体积、重量大为减小,从而提高变换器的功率密度。

另外,提高开关频率可以降低开关电源的音频噪声和改善动态响应。

但是由于开关管的通断控制与开关管上流过的电流和两端所加的电压无关,而早期的脉宽调制(PWM)开关电源工作在硬开关模式,在硬开关中功率开关管的开通或关断是在器件上的电压或电流不等于零的状态下强迫进行的,电路的开关损耗很大,开关频率越高,损耗越大,不但增加了热设计的难度而且大大降低了系统得可靠性,这使得PWM开关技术的高频化受到了许多的限制。

根据高频电力操作电源的设计要求,结合实际的经验和实验结果选择合适的开关器件,设计出稳定可靠、性能优越的控制电路、驱动电路、缓冲电路以及主要的磁性元器件。

对最大电流自动均流法的工作原理以及系统稳定性进行了较为深入的研究。

采用均流控制芯片UC3907设计了电源的均流控制电路,使模块单元具有可并联功能,可以实现多电源模块并联组成更大功率的电源系统。

1、系统原理的设计思想在设计大型的开关电源模块时,首先需要对系统有一个整体的规划,以便于设计整体结构及相应的辅助电源。

开关电源稳各环节电路电路及原理

开关电源稳各环节电路电路及原理

开关电源稳压环路电路及原理1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。

当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。

②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。

因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。

③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。

若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。

C3、C4 为安规电容,L2、L3为差模电感。

②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。

在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。

当C6上的电压充至Z1的稳压值时Q2导通。

如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。

1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。

也称为表面场效应器件。

由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路

几种实用的直流开关电源保护电路1 引言随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。

为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。

2 开关电源的原理及特点2.1工作原理直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。

功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。

它主要由开关三极管和高频变压器组成。

图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。

实际上,直流开关电源的核心部分是一个直流变压器。

2.2特点为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。

因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。

直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。

由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,3 直流开关电源的保护基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多种保护电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种实用的直流开关电源保护电路
1 引言
随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,因此直流开关电源开始发挥着越来越重要的作用,并相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了直流开关电源[1-3].同时随着许多高新技术,包括高频开关技术、软开关技术、功率因数校正技术、同步整流技术、智能化技术、表面安装技术等技术的发展,开关电源技术在不断地创新,这为直流开关电源提供了广泛的发展空间[4].但是由于开关电源中控制电路比较复杂,晶体管和集成器件耐受电、热冲击的能力较差,在使用过程中给用户带来很大不便。

为了保护开关电源自身和负载的安全,根据了直流开关电源的原理和特点,设计了过热保护、过电流保护、过电压保护以及软启动保护电路。

2 开关电源的原理及特点
2.1工作原理
直流开关电源由输入部分、功率转换部分、输出部分、控制部分组成。

功率转换部分是开关电源的核心,它对非稳定直流进行高频斩波并完成输出所需要的变换功能。

它主要由开关三极管和高频变压器组成。

图1画出了直流开关电源的原理图及等效原理框图,它是由全波整流器,开关管V,激励信号,续流二极管Vp,储能电感和滤波电容C组成。

实际上,直流
开关电源的核心部分是一个直流变压器。

2.2特点
为了适应用户的需求,国内外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是通过改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度下获得高的磁性能,同时SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。

因此直流开关电源的发展趋势是高频、高可靠、低耗、低噪声、抗干扰和模块化。

直流开关电源的缺点是存在较为严重的开关干扰,适应恶劣环境和突发故障的能力较弱。

由于国内微电子技术、阻容器件生产技术以及磁性材料技术与一些技术先进国家还有一定的差距,因此直流开关电源的制作技术难度大、维修麻烦和造价成本较高,
3 直流开关电源的保护
基于直流开关电源的特点和实际的电气状况,为使直流开关电源在恶劣环境及突发故障情况下安全可靠地工作,本文根据不同的情况设计了多
种保护电路。

3.1过电流保护电路
在直流开关电源电路中,为了保护调整管在电路短路、电流增大时不被烧毁。

其基本方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流。

如图1所示,过电流保护电路由三极管BG2 和分压电阻R4、R5组成。

电路正常工作时,通过R4与R5的压作用,使得BG2 的基极电位比发射极电位高,发射结承受反向电压。

于是BG2 处于截止状态(相当于开路),对稳压电路没有影响。

当电路短路时,输出电压为零,BG2 的发射极相当于接地,则BG2 处于饱和导通状态(相当于短路),从而使调整管BG1 基极和发射极近于短路,而处于截止状态,切断电路电流,从而达到保护目的。

3.2过电压保护电路
直流开关电源中开关稳压器的过电压保护包括输入过电压保护和输出过电压保护。

如果开关稳压器所使用的未稳压直流电源(诸如蓄电池和整流器)的电压如果过高,将导致开关稳压器不能正常工作,甚至损坏内部器件,因此开关电源中有必要使用输入过电压保护电路。

图3为用晶体
管和继电器所组成的保护电路,在该电路中,当输入直流电源的电压高于稳压二极管的击穿电压值时,稳压管击穿,有电流流过电阻R,使晶体管T导通,继电器动作,常闭接点断开,切断输入。

输入电源的极性保护电路可以跟输入过电压保护结合在一起,构成极性保护鉴别与过电压保护电路。

3.3 软启动保护电路
开关稳压电源的电路比较复杂,开关稳压器的输入端一般接有小电感、大电容的输入滤波器。

在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。

这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。

另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。

为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。

为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,这种电路称之谓直流开关电源的“软启动”电路 .
如图4(a)所示,在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。

当电容器C充电到约80%额定电压时,逆变器正常工作。

经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。

为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图4(b)所示电路替代RC延迟电路。

3.4过热保护电路
直流开关电源中开关稳压器的高集成化和轻量小体积,使其单位体积内的功率密度大大提高,因此如果电源装置内部的元器件对其工作环境温度的要求没有相应提高,必然会使电路性能变坏,元器件过早失效。

因此在大功率直流开关电源中应该设过热保护电路。

本文采用温度继电器来检测电源装置内部的温度,当电源装置内部产生过热时,温度继电器就动作,使整机告警电路处于告警状态,实现对电源的过热保护。

如图5(a)所示,在保护电路中将P型控制栅热晶闸管放置在功率开关三极管附近,根据TT102的特性(由Rr值确定该器件的导通温度,Rr越大,导通温度越低),当功率管的管壳温度或者装置内部的温度超过允许值时,热晶闸管就导通,使发光二极管发亮告警。

倘若配合光电耦合器,就可使整机告警电路动作,保护开关电源。

该电路还可以设计成如图5(b)所示,用作功率晶体管的过热保护,晶体开关管的基极电流被N型控制栅热晶闸管TT201旁路,开关管截止,切断集电极电流,防止过热。

4 小结
文中主要讨论了直流开关电源内部器件的各种保护方式,并介绍了一些具体电路。

对一个给定的直流开关电源来说,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要。

因为开关电源的保护方案和电路结构具有多样性,所以对具体电源装置而言,应选择合理的保护方案和电路结构。

在实际应用中,通常选用几种保护方式加以组合的方式构成完善的保护系统,确保直流开关电源的正常工作。

相关文档
最新文档