中考代数-阅读理解型问题
中考数学《第38讲:阅读理解型问题》总复习讲解含真题分类汇编解析

第38讲阅读理解型问题内容特性阅读理解型问题是指通过阅读材料,理解材料中所提供的新方法或新知识,并灵活运用这些新方法或新知识,去分析、解决类似或相关的问题.解题策略解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.基本思想方程思想,类比思想,化归思想;分析法,比较法等.这是解决阅读理解题常用的数学思想方法.类型一应用型:阅读-理解-建模-应用例1(·湖州)如图,已知抛物线C1∶y=a1x2+b1x+c1和C2∶y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N 都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是__________和__________.【解后感悟】此题通过阅读二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,理解构建根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数,一次项系数、常数项之间的关系,利用矩形知识对定义的应用.1.(·孝感)我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.类型二猜想型:阅读-理解-归纳-验证例2(·衢州)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=-x2+3x-2的“旋转函数”.小明是这样思考的:由函数y=-x2+3x-2可知,a1=-1,b1=3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)写出函数y=-x2+3x-2的“旋转函数”;(2)若函数y =-x 2+43mx -2与y =x 2-2nx +n 互为“旋转函数”,求(m +n)的值;(3)已知函数y =-12(x +1)(x -4)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数y =-12(x +1)(x -4)互为“旋转函数”.【解后感悟】在仔细阅读后,正确理解新定义,理解其中的内容、方法和思想,阅读特殊范例,归纳验证一般结论.2.(·株洲)P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是:P =n (n -1)24·(n 2-an +b)(其中,a ,b 是常数,n ≥4)(1)填空:通过画图可得:四边形时,P =____________________(填数字),五边形时,P =____________________(填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. (注:本题的多边形均指凸多边形)类型三概括型:阅读-理解-概括-拓展例3(·台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C 处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形;(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.【解后感悟】本题要对新定义阅读和理解,通过前面问题的解答积累经验,再概括、拓展解决新问题,要注意分类讨论.解题时关键要领会题中所体现的解题方法,运用已有知识深刻理解解题方法的内涵,予以拓展、应用,解决所提问题.3.(·绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.类型四探究型:阅读-理解-尝试-探究例4(·绍兴)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.4.(·自贡)观察下表序号123图形我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为____________________,第4格的“特征多项式”为____________________,第n格的“特征多项式”为____________________;(2)若第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,①求x,y的值;②在此条件下,第n格的特征多项式是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.【阅读理解题】已知坐标平面上的线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).(1)如图所示,已知长度为2个单位的线段MN在x轴上,M点的坐标为(1,0),求点P(1,1)到线段MN的距离d(P→MN);(2)已知坐标平面上点G到线段DE:y=x(0≤x≤3)的距离d(G→DE)=2,且点G的横坐标为1,试求点G的纵坐标.【对材料的理解不正确,而造成解题错误】阅读下列材料,然后解答下面的问题:我们知道方程2x+3y=12有无数组解,但在实际生活中,我们往往只需要求出其正整数解,例:由2x+3y=12,得y=12-2x3=4-23x(x、y为正整数),而⎩⎪⎨⎪⎧x>0,4-23x>0,则有0<x<6,又y=4-23x为正整数,则23x为正整数,由2与3互质,可知x为3的倍数,从而x=3,则y=4-23x=2.所以,2x+3y=12的正整数解为⎩⎪⎨⎪⎧x=3,y=2.问题:(1)请你写出2x+y=5的一组正整数解:______;(2)若6x-2为自然数,则满足条件的x的正整数值的个数有()A.2 B.3 C.4 D.5(3)九年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?参考答案第38讲阅读理解型问题【例题精析】例1连结AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A 的坐标是(1,3),则⎩⎨⎧3=a +b ,0=4a +2b ,解得:⎩⎨⎧a =-3,b =23,则抛物线C 1的解析式为y=-3x 2+23x ,抛物线C 2的解析式为y =3x 2+23x ,故答案为:y =-3x 2+23x ;y =3x 2+23x(答案不唯一,只要符合条件即可).例2 (1)∵a 1=-1,b 1=3,c 1=-2,∴-1+a 2=0,b 2=3,-2+c 2=0,∴a 2=1,b 2=3,c 2=2,∴函数y =-x 2+3x -2的“旋转函数”为y =x 2+3x +2;(2)根据题意得43m =-2n ,-2+n =0,解得m =-3,n =2,∴(m +n)2015=(-3+2)2015=-1;(3)证明:当x =0时,y =-12(x +1)(x -4)=2,则C(0,2),当y =0时,-12(x +1)(x -4)=0,解得x 1=-1,x 2=4,则A(-1,0),B(4,0),∵点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,∴点A 1(1,0),B 1(-4,0),C 1(0,-2),设经过点A 1,B 1、C 1的二次函数解析式为y =a 2(x -1)(x +4),把C 1(0,-2)代入得a 2·(-1)·4=-2,解得a 2=12,∴经过点A 1,B 1,C 1的二次函数解析式为y =12(x -1)(x +4)=12x 2+32x -2,而y =-12(x +1)(x -4)=-12x 2+32x +2,∴a 1+a 2=-12+12=0,b 1=b 2=32,c 1+c 2=2-2=0,∴经过点A 1,B 1,C 1的二次函数与函数y =-12(x +1)(x -4)互为“旋转函数”. 例3 (1)∵∠A =∠B =∠C ,∴3∠A +∠ADC =360°,∴∠ADC =360°-3∠A.∵0°<∠ADC <180°,∴0°<360°-3∠A <180°,∴60°<∠A <120°;(2)证明:∵四边形DEBF 为平行四边形,∴∠E =∠F ,且∠E +∠EBF =180°.∵DE =DA ,DF =DC ,∴∠E =∠DAE =∠F =∠DCF ,∵∠DAE +∠DAB =180°,∠DCF +∠DCB =180°,∠E +∠EBF =180°,∴∠DAB =∠DCB =∠ABC ,∴四边形ABCD 是三等角四边形;(3)①当60°<∠A <90°时,如图1,过点D 作DF ∥AB ,DE ∥BC ,∴四边形BEDF 是平行四边形,∠DFC =∠B =∠DEA ,∴EB =DF ,DE =FB ,∵∠A =∠B =∠C ,∠DFC =∠B =∠DEA ,∴△DAE ∽△DCF ,AD =DE ,DC =DF =4,设AD =x ,AB =y ,∴AE =y -4,CF =4-x ,∵△DAE ∽△DCF ,∴AE CF =AD CD ,∴y -44-x =x 4,∴y =-14x 2+x +4=-14(x -2)2+5,∴当x =2时,y 的最大值是5,即:当AD =2时,AB 的最大值为5,②当∠A =90°时,三等角四边形是正方形,∴AD =AB =CD =4,③当90°<∠A <120°时,∠D 为锐角,如图2,∵AE =4-AB >0,∴AB <4,综上所述,当AD =2时,AB 的长最大,最大值是5;此时,AE =1,如图3,过点C 作CM ⊥AB 于M ,DN ⊥AB 于N ,∵DA =DE ,DN ⊥AB ,∴AN =12AE =12,∵∠DAN =∠CBM ,∠DNA =∠CMB =90°,∴△DAN ∽△CBM ,∴AD BC =ANBM ,∴BM =1,∴AM =4,CM =BC 2-BM 2=15,∴AC =AM 2+CM 2=16+15=31.例4 (1)答案不唯一,如y =x 2-2x +2.(2)∵y =-(x -b)2+c +b 2+1,∴该抛物线顶点坐标为(b ,c +b 2+1).又∵定点抛物线y =-x 2+2bx +c +1过定点M(1,1),∴1=-1+2b +c +1,即c =1-2b.∴顶点纵坐标为c +b 2+1=1-2b +b 2+1=(b -1)2+1.∴b =1,c =-1时,c +b 2+1最小,即抛物线顶点纵坐标的值最小,此时,抛物线的解析式为y =-x 2+2x.【变式拓展】1.证明:在△ABD 和△CBD 中⎩⎪⎨⎪⎧AB =CB ,AD =CD ,BD =BD ,∴△ABD ≌△CBD(SSS),∴∠ABD =∠CBD ,∴BD 平分∠ABC ,又∵OE ⊥AB ,OF ⊥CB ,∴OE =OF.2.(1)1 5 (2)将上述值代入公式可得:⎩⎨⎧4×(4-1)24·(16-4a +b )=1,①5×(5-1)24·(25-5a +b )=5,②化简得:⎩⎪⎨⎪⎧4a -b =14,5a -b =19,解之得:⎩⎪⎨⎪⎧a =5,b =6. 3.(1)①∵AB =CD =1,AB ∥CD ,∴四边形ABCD 是平行四边形,∵AB =BC ,∴四边形ABCD 是菱形,∵∠ABC =90°,∴四边形ABCD 是正方形,∴BD =AC =12+12= 2.②如图1,连结AC 、BD.∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD ,∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD. (2)若EF ⊥BC ,则AE ≠EF ,BF ≠EF ,∴此时四边形ABFE 不是等腰直角四边形,不符合题意.若EF 与BC 不垂直,①当AE =AB 时,如图2,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5.②当BF =AB 时,如图3,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,∴DE ∶BF =PD ∶PB =1∶2,∴DE =2.5,∴AE =9-2.5=6.5,综上所述,满足条件的AE 的长为5或6.5.4.(1)12x +9y 16x +16y 4nx +n 2y (2)①∵第1格的“特征多项式”的值为-10,第2格的“特征多项式”的值为-16,∴依题意得:⎩⎪⎨⎪⎧4x +y =-10,8x +4y =-16,解之得:⎩⎪⎨⎪⎧x =-3,y =2,∴x =-3,y =2; ②设最小值为W ,则依题意得:W =4nx +n 2y =-12n +2n 2=2(n -3)2-18,答:有最小值为-18,相应的n 值为3.【热点题型】【分析与解】(1)∵M 点的坐标为(1,0),点P 的坐标为(1,1),根据定义可得PM 就是点P 到线段MN 的距离.∴d(P →MN)=1.(2)在坐标平面内作出线段DE :y =x(0≤x ≤3).∵点G 的横坐标为1,∴点G 在直线x =1上,设直线x =1交x 轴于点H ,交DE 于点K.①如图,过点G 1作G 1F ⊥DE 于点F ,则G 1F 就是点G 1到线段DE 的距离.∵线段DE :y =x(0≤x ≤3),∴△G 1FK ,△DHK 均为等腰直角三角形,∵d(G 1→DE)=2,∴KF =2,由勾股定理得G 1K =2.又∵KH =OH =1,∴HG 1=3.即G 1的纵坐标为3.②如图,过点O 作G 2O ⊥OE 交直线x =1于点G 2,由题意知△OHG 2为等腰直角三角形,∵OH =1,∴G 2O = 2.∴点G 2同样是满足条件的点.∴点G 2的纵坐标为-1.综上,点G 的纵坐标为3或-1.【错误警示】(1)⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =2,y =1. (2)C (3)设购买笔记本x 本,钢笔y 支,则3x +5y =35,5y =35-3x ,y =7-35x.∵x 、y 为正整数,∴⎩⎪⎨⎪⎧x>0,7-35x>0,解得0<x<1123,且x 为5的整数倍,∴x 可取5、10,相应的y 的值分别为4、1,∴正整数解为⎩⎪⎨⎪⎧x =5,y =4或⎩⎪⎨⎪⎧x =10,y =1.答:共有两种购买方案:买5本笔记本,4支钢笔或10本笔记本,1支钢笔.。
中考数学复习第五讲《阅读理解型问题》经典题型含答案

中考数学复习专题第五讲阅读理解型问题【要点梳理】阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,实现自主探索主动发展的基础.阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:题型一:考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.题型二:考查解题思维过程的阅读理解题言之有据,言必有据,这是正确解题的关键所在,是提高我们数学水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为了检测我们理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的.题型三:考查纠正错误挖病根能力的阅读理解题理解知识不是拘泥于形式的死记硬背,而是要把握知识的内涵或实质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这类试题意在检测我们对知识的理解以及认识问题和解决问题的能力.题型四:考查归纳、探索规律能力的阅读理解题对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检测我们的“数学化”能力以及驾驭数学的创新意识和才能.【学法指导】解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.【考点解析】阅读新知识,解决新问题(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2阅读解题过程,模仿解题策略(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D 在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB ∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).阅读探索规律,推出一般结论(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:an= =﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+an.【考点】37:规律型:数字的变化类.【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.==﹣,【解答】解:(1)由题意知,a6故答案为:,﹣;(2)a==﹣,n故答案为:,﹣;(3)原式=﹣+﹣+﹣+﹣+﹣+﹣=﹣=,故答案为:;(4)原式=﹣+﹣+…+﹣=﹣=.【真题训练】训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.参考答案:训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.【考点】6B:分式的加减法.【分析】根据所列的等式找到规律=(﹣),由此计算+ ++…+的值.【解答】解:∵ =﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案是:.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【考点】A6:解一元二次方程﹣配方法;A3:一元二次方程的解;A8:解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x 1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;。
九年级数学专题复习 阅读理解型问题课标 试题

阅读理解型问题一、选择题1.假设将代数式中的任意两个字母交换,代数式不变,那么称这个代数式为完全对称式,如a+b+c就是完全对称式.以下三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c +c2a.其中是完全对称式的是( )A.①② B.①③ C.②③ D.①②③答案 A解析假设把a2b+b2c+c2a中的a,b两个字母交换,得b2a+a2c+c2b,代数式发生变化,不是完全对称式;而(a-b)2=(a-a)2,ab+bc+ca=ba+ac+cb,是完全对称式.2.(2021·)假设自然数n使得三个数的加法运算“n+(n+1)+(n+2)〞产生进位现象,那么称n为“连加进位数〞.例如:2不是“连加进位数〞,因为2+3+4=9不产生进位现象;4是“连加进位数〞,因为4+5+6=15产生进位现象;51是“连加进位数〞,因为51+52+53=156产生进位现象.假如从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数〞的概率是( )答案 A解析先利用分类讨论,得到一位数中“连加进位数〞有7个,分别为(3,4,5,6,7,8,9),再考虑到两位数中“连加进位数〞有67个分别为(33,34,35,…,99),再考虑到两位数中(13,…,19)与(23,…,29)中个位数中产生了进位,合计7+67+7+7=88个.故取到“连加进位数〞的概率P=88100=0.88.3.(2021·)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数可以表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.以下数中既是三角形数又是正方形数的是( )A .15B .25C .55D .1225 答案 D解析 第n 个三角数是n n +12,正方形数是n 2,当对于1225,有n n +12=1225,n =49或者-51;n 2=1225,n =±35.所以1225即是三角形数又是正方形数.4.(2021·)因为sin 30°=12,sin 210°=-12,所以sin 210°=sin(180°+30°)=-sin 30°;因为sin 45°=22,sin 225°=-22,所以sin 225°=sin(180°+45°)=-sin 45°;由此猜测,推理知:一般地当α为锐角时有sin(180°+α)=-sin α,由此可知:sin 240°=( )A .-12B .-22C .-32 D .- 3答案 C解析 由sin(180°+α)=-sin α,得sin240°=sin(180°+60)=-sin60°=-32. 5.(2021·)为确保信息平安,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),有一种密码,将英文26个小写字母a ,b ,c ,…,z 依次对应0,1,2,…,25这26个自然数(见表格),当明文中的字母对应的序号为β时,将β+10除以26后所得的余数作为密文中的字母对应的序号,例如明文s对应密文c.按上述规定,将明文“maths〞译成密文后是( )A.wkdrc B.wkhtc C.eqdjc D.eqhjc答案 A解析m对应的数字是12,12+10=22,除以26的余数仍然是22,因此对应的字母是w;a对应的数字是0,0+10=10,除以26的余数仍然是10,因此对应的字母是k;t对应的数字是19,19+10=29,除以26的余数仍然是3,因此对应的字母是d;…,所以此题译成密文后是wkdrc.二、填空题6.(2021·)假设自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,那么称n为“可连数〞,例如32是“可连数〞,因为32+33+34不产生进位现象;23不是“可连数〞,因为23+24+25消费了进位现象,那么小于200的“可连数〞的个数为________.答案24解析利用分类讨论,一位数中“可连数〞有3个,分别为(0,1,2);再考虑两位数中“可连数〞有(10,11,12),(20,21,22),(30,31,32);三位数中“可连数〞有(100,101,102),(110,111,112),(120,121,122),(130,131,132).故合计3×8=24个.7.(2021·)定义新运算:对任意实数a、b,都有a*b=a2-b,例如,3] .答案 3解析 据题意,有2]8.(2021·)把一个正三角形分成四个全等的三角形,第一次挖去中间一个小三角形,对剩下的三个小正三角形再重复以上做法……,一直到第n 次挖去后剩下的三角形有________个.答案 3n解析 第一次操作之后有3个小正三角形,第二次操作之后有9个小正三角形,第三次操工作之后有27个小正三角形,……,那么第n 次操作之后有3n个小正三角形.9.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调上下,取决于弦的长度,绷得一样紧的几根弦,假如长度的比可以表示成整数的比,发出的声音就比拟和谐.例如,三根弦长度之比是15∶12∶10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、so .研究15、12、10这三个数的倒数发现:112-115=110-112.我们称15、12、10这三个数为一组调和数.现有一组调和数:x 、5、3(x >5),那么x 的值是__________.答案 15解析 根据调和数的意义,有15-1x =13-15,解得x =15.10.(2021·)在下表中,我们把第i 行第j 列的数记为a i ,j (其中i ,j 都是不大于5的正整数),对于表中的每个数a i ,j ,规定如下:当i ≥j 时,a i ,j =1;当i <j 时,a i ,j =0.例如:当i =2,j =1时,a i ,j =a 2,1=1.按此规定,a 1,3=________;表中的25个数中,一共有________个1;计算a 1,1·a i,1+a 1,2·a i,2+a 1,3·a i,3+a 1,4·a i,4+a 1,5·a i,5的值是________.a 1,1 a 1,2 a 1,3 a 1,4 a 1,5a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 a 3,1 a 3,2 a 3,3 a 3,4 a 3,5 a 4,1 a 4,2 a 4,3 a 4,4 a 4,5 a 5,1a 5,2a 5,3a 5,4a 5,5答案 0;15;1解析 由题意,i 与j 之间大小分析:当i <j 时,a i ,j =0;当i ≥j 时,a i ,j =1.由图表可知有15个1,故填0;15;1.三、解答题11.(2021·凉山)先阅读以下材料,然后解答问题:材料1:从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A 32=3×2=6.一般地,从n 个不同元素中选取m 个元素的排列数记作A n m,A n m=n (n -1)(n -2)…(n -m +1)(m ≤n ).例:从5个不同元素中选3个元素排成一列的排列数为:A 53=5×4×3=60.材料2:从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C 32=3×22×1=3.一般地,从n 个不同元素中选取m 个元素的组合数记作C n m,C n m=n n -1…n -m +1m m -1…2×1(m ≤n ).例:从6个不同元素中选3个元素的组合数为:C 63=6×5×43×2×1=20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法? (2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法? 解 (1)A 74=7×6×5×4=840(种). (2)C 83=8×7×63×2×1=56(种).12.(2021·)我们把对称中心重合,四边分别平行的两个正方形之间的局部叫“方形环〞,易知方形环四周的宽度相等......一条直线l 与方形环的边线有四个交点M 、M ′、N ′、N .小明在探究线段MM ′与N ′N 的数量关系时,从点M ′、N ′向对边作垂线段M ′E 、N ′F ,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答以下问题:(1)当直线l 与方形环的对边相交时,如图1,直线l 分别交AD 、A ′D ′、B ′C ′、BC 于M 、M ′、N ′、N ,小明发现MM ′与N ′N 相等,请你帮他说明理由;(2)当直线l 与方形环的邻边相交时,如图2,l 分别交AD 、A ′D ′、D ′C ′、DC 于M 、M ′、N ′、N ,l 与DC 的夹角为α,你认为MM ′与N ′N 还相等吗?假设相等,说明理由;假设不相等,求出MM ′N ′N的值(用含α的三角函数表示).解 (1)解:在方形环中, ∵M ′E ⊥AD ,N ′F ⊥BC ,AD ∥BC , ∴M ′E =N ′F ,∠M ′EM =∠N ′FN =90°, ∠EMM ′=∠FNN ′, ∴△MM ′E ≌△NN ′F . ∴MM ′=N ′N .(2)解法一:∵∠NFN ′=∠MEM ′=90°, ∠FNN ′=∠EM ′M =α, ∴△NFN ′∽△M ′EM ,∴MM ′N ′N =M ′ENF. ∵M ′E =N ′F , ∴MM ′N ′N =N ′F NF =tan α(或者sin αcos α). ①当α=45°时,tan α=1,那么MM ′=NN ′; ②当α≠45°时,MM ′≠NN ′, 那么MM ′NN ′=tan α(或者sin αcos α). 解法二:在方形环中,∠D =90°. 又∵M ′E ⊥AD ,N ′F ⊥CD , ∴M ′E ∥DC ,N ′F =M ′E . ∴∠MM ′E =∠N ′NF =α. 在Rt△NN ′F 与Rt△MM ′E 中, sin α=N ′F NN ′,cos α=M ′EMM ′, 即MM ′NN ′=tan α(或者sin αcos α). ①当α=45°时,MM ′=NN ′; ②当α≠45°时,MM ′≠NN ′, 那么MM ′NN ′=tan α(或者sin αcos α). 13.(2021·)如图①,小慧同学把一个正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片绕着顶点A 按顺时针方向旋转120°,此时点O 运动到了点O 1处,点B 运动到了点B 1处;小慧又将三角形纸片AO 1B 1绕B 1点按顺时针方向旋转120°,此时点A 运动到了点A 1处,点O 1运动到了点O 2处(即顶点O 经过上述两次旋转到达O 2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O 运动所形成的图形是两段圆弧,即弧OO 1和弧O 1O 2,顶点O 所经过的路程是这两段圆弧的长度之和,并且这两端圆弧与直线l 1围成的图形面积等于扇形AOO 1的面积、△AO 1B 1的面积和扇形B 1O 1O 2的面积之和.小慧进展类比研究:如图②,她把边长为1的正方形纸片OABC 放在直线l 2上,OA 边与直线l 2重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;小慧又将正方形纸片AO 1C 1B 1绕B 1点按顺时针方向旋转90°,……,按上述方法经过假设干次旋转后,她提出了如下问题:问题①:假设正方形纸片OABC 按上述方法经过3次旋转,求顶点O 经过的路程,并求顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积;假设正方形OABC 按上述方法经过5次旋转,求顶点O 经过的路程;问题②:正方形纸片OABC 按上述方法经过多少次旋转,顶点O 经过的路程是41+20 22π?请你解答上述两个问题.解 问题①:如图,正方形纸片OABC 经过3次旋转,顶点O 运动所形成的图形是三段弧,即弧OO 1、弧O 1O 2以及弧O 2O 3,∴顶点O 运动过程中经过的路程为 90·π·1180×2+90·π·2180=(1+22)π.顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积为90·π·12360×2+90·π·22360+2×12×1×1=1+π.正方形OABC 经过5次旋转,顶点O 经过的路程为 90·π·1180×3+90·π·2180=(32+22)π. 问题②:∵正方形OABC 经过4次旋转,顶点O 经过的路程为90·π·1180×2+90·π·2180=(1+22)π. ∵41+20 22π=20×(1+22)π+12π.∴正方形纸片OABC 经过了81次旋转.创 作人:历恰面 日 期: 2020年1月1日。
中考数学阅读理解型问题

阅读理解型问题一、中考专题诠释阅读理解型问题在近几年的全国中考试题中频频“亮相”,特别引起我们的重视.这类问题一般文字叙述较长,信息量较大,各种关系错综复杂,考查的知识也灵活多样,既考查学生的阅读能力,又考查学生的解题能力的新颖数学题. 二、解题策略与解法精讲解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题. 三、中考考点精讲考点一: 阅读试题提供新定义、新定理,解决新问题 例1 (2013•六盘水)阅读材料: 关于三角函数还有如下的公式: sin (α±β)=sinαcosβ±cosasinβ; tan (α±β)=tan tan 1tan tan αβαβ±m 。
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值. 例:tan15°=tan(45°-30°)=tan 45-tan 301tan 45tan 30︒︒+︒︒g =31(33)(33)1263363(33)(33)13----==+-+=2-3根据以上阅读材料,请选择适当的公式解答下面问题 (1)计算:sin15°;(2)乌蒙铁塔是六盘水市标志性建筑物之一(图1),小华想用所学知识来测量该铁塔的高度,如图2,小华站在离塔底A 距离7米的C 处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC 为 1.62米,请帮助小华求出乌蒙铁塔的高度.(精确到0.1米,参考数据3=1.732, 2=1.414)思路分析:(1)把15°化为45°-30°以后,再利用公式sin (α±β)=sinαcosβ±cosasinβ计算,即可求出sin15°的值;(2)先根据锐角三角函数的定义求出BE 的长,再根据AB=AE+BE 即可得出结论. 解:(1)sin15°=sin (45°-30°)=sin45°cos30°-cos45°sin30°=232162622222444-⨯-⨯=-=;(2)在Rt △BDE 中,∵∠BED=90°,∠BDE=75°,DE=AC=7米, ∴BE=DE•tan ∠BDE=DE•tan75°. ∵tan75°=tan(45°+30°)==tan 45tan 301tan 45tan 30︒+︒-︒︒g =31(33)(33)1263363(33)(33)13++++==+--=2+3。
数学阅读理解型问题(专题4)

阅读理解型问题(专题4)——合情推理【考点透视】阅读理解型问题在近年的全国各地的中考试题中频频出现,特别引人注目,这些试题不再囿于教材的内容及其方法,以新颖别致的取材、富有层次和创造力的设问独树一帜.这些试题中还常常出现新的概念和方法,不仅要求学生理解这些新的概念和方法,而且要灵活运用这些新的概念和方法去分析、解决一些简单的问题.在阅读理解型问题中,除了考查学生的分析分析、综合、抽象、概括等演绎推理能力,即逻辑推理能力外,还经常考查学生的观察、猜想、不完全归纳、类比、联想等合情推理能力,考查学生的直觉思维.因此,这类问题需要学生通过对阅读材料的阅读理解,然后进行合情推理,就其本质进行归纳加工、猜想、类比和联想,作出合情判断和推理, 【典型例题】例1.已知正数a 和b ,有下列命题:(1)a +b =2,ab ≤1; (2)a +b =3,ab ≤23; (3)a +b =6,ab ≤3.根据以上三个命题所提供的规律猜想:若a +b =9,ab ≤ .(2000年北京市东城区中考试题)分析:观察(1)、(2)、(3)中的数字规律:不等号右边的数都是等号右边的数的21,由此可以作出猜想.解:ab ≤29. 说明:本题要求直接通过不完全归纳,总结规律,猜想结论. 例2.例2.(1)判断下列各式是否成立,你认为成立的请在括号内打“√”,不成立的打“×”.①322322=+( );②833833=+( ); ③15441544=+( ); ④24552455=+( ). (2)你判断完以上各题之后,发现了什么规律?请用含有n 的式子将规律表示出来,并注明n 的取值范围: .图4—1AD nB CD 1 D 2D 3E 1 E 2 E 3 E n 图4—2(3)请用数学知识说明你所写式子的正确性.(2000年江苏省常州市中考试题)分析:判断式子①、②、③、④内在的规律时可以发现:①中3=2 2-1;②中8=3 2-1;③中15=4 2-1;④中24=5 2-1.这样就可以统一用含n 的式子表示出来.解:(1)①√;②√;③√;④√.(2)12-+n n n =n 12-n n.其中n 为大于1的自然数. (3)12-+n n n =123-n n =122-⋅n n n =n 12-n n . 说明:本题虽然需要说明所写式子的正确性,但本题主要考查学生的合情推理能力,即用含有n 的式子将规律表示出来.例3.下列每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n >1)盆花,每个图案花盆的总数是S .按此规律推断,S 和n 的关系式是 .(2000年山西省中考试题)分析:由正三角形每条边的花盆数n 与花盆的总数S 之间的关系,可以看出S 总是比n 的3倍少3. 解:S =3n -3.说明:本题的答案不唯一,其它形式也可以. 例4. 如图4—2所示,在△ABC 中,BC =a ,若D 1、E 1分别是AB 、AC 的中点,则D 1E 1=a 21; 若D 2、E 2分别是D 1B 、E 1C 的中点,则D 2E 2=a a a 43)2(21=+; 若D 3、E 3分别是D 2B 、E 2C 的中点,则D 3E 3=a a a 87)43(21=+;…………若D n 、E n 分别是D 1-n B 、E 1-n C 的中点,则D n E n = (n ≥1,且n 为整数).(2001年山东省济南市中考试题)分析:因为12121=;2221243-=;3321287-=;……,所以D n E n 也可以用含数字2的式子来表示.解:D n E n =11212---n n (n ≥1,且n 为整数).说明:寻找数字规律,应把已给的数写成有规律的一组数.n =2,S =3 n =3,S =6 n =4,S =9例5.问题:你能很快算出19952吗?为了解决这个问题,我们考察个位上的数为5的自然数的平方.任意一个个位数为5的自然数可写成10•n+5,即求(10•n+5)2的值(n为自然数).你试分析n=1,n=2,n=3,…,这些简单情况,从中探索规律,并归纳、猜想出结论(在下面空格内填上你的探索结果).(1)通过计算,探索规律:152=225可写成100×1(1+1)+25,252=625可写成100×2(2+1)+25,352=1225可写成100×3(3+1)+25,452=2025可写成100×4(4+1)+25,……752=5625可写成,852=7225可写成,……(2)从第(1)的结果,归纳、猜想得:(10n+5)2=.(3)根据上面的归纳、猜想,请算出:19952=.(1999年福建省三明市中考试题)分析:在对这些式子进行规律探索的时候,要找出哪些数是不变的,哪些数是随式子的序号变化而逐步变化的.然后就可以用n来表示这些逐步变化的数.解:(1)100×7(7+1)+25;100×8(8+1)+25.(2)100n2+100n+25100n(n+1)+25.(3) 100×199(199+1)+25=3980025.说明:本题不仅要求归纳猜想和探索规律,而且要运用归纳猜想得出的结论解决问题.例6.如图4—3,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P',使得OP·OP'=r 2 ,这种把点P变为点P'的变换叫做反演变换,点P与点P'叫做互为反演点.图4—3 图4—4(1) 如图4—4,⊙O 内外各一点A 和B ,它们的反演点分别为A '和B '.求证:∠A '=∠B ; (2) 如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.①选择:如果不经过点O 的直线l 与⊙O 相交,那么它关于⊙O 的反演图形是( ). (A)一个圆 (B)一条直线 (C)一条线段 (D)两条射线 ②填空:如果直线l 与⊙O 相切,那么它关于⊙O 的反演图形是 ,该图形与圆O 的位置关系是 .(2001年江苏省南京市中考试题)分析:求解本题首先要理解“反演变换”的意义,并理解圆内的点的反演点在圆外,圆上的点的反演点在圆上,圆外的点的反演点在圆内;其次,第(2)题的第①小题,由于直线与圆的交点的反演点是它本身,因此只要在该直线的圆内、圆外部分各取几点,画出反演点,便可推测该直线的反演图形.另外,第(2)题的第②小题,由于直线与圆的切点的反演点是它本身,因此只要在该直线上取几点,画出反演点,便可推测该直线的反演图形.(1)证明:∵A 、B 的反演点分别是A’、B’,∴OA ·OA’=r 2,OB ·OB’=r 2. ∴OA ·OA’=OB ·OB’,即''OA OBOB OA . ∵∠O =∠O ,∴△ABO ∽△B’A’O . ∴∠A’=∠B .. (2)解:①A .②圆;内切.说明:本题主要考查学生通过观察、分析,从特殊的点的研究归纳、推测图形形状的合情推理能力.另外,还可以研究下列问题:如果直线⊙O’与⊙O 相切,那么它关于⊙O 的反演图形是什么?该图形与圆O 的位置关系是是什么?例7.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.对于平面图形A ,如果存在两个或两个以上的圆,使图形A 上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A 被这些圆所覆盖.例如:图4—5中的三角形被一个圆所覆盖,图4—6中的四边形被两个圆所覆盖.回答下列问题:(1)边长为1cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (2)边长为1cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是 cm ; (3)长为2cm ,宽为1cm 的矩形被两个半径为r 的圆所覆盖,r 的最小值是 cm , 这两个圆的圆心距是 cm.(2003年江苏省南京市中考试题)图4—5图4—6分析:本题首先要理解图形被圆所覆盖的定义,其次,可以推测正方形、等边三角形被一个半径为r 的圆所覆盖,r 取最小值时,显然这个圆就是正方形、等边三角形的外接圆.而第(3)题可把长为2cm ,宽为1cm 的矩形分割成两个边长为1 cm 的正方形,根据第(1)题,不难得到结论.解:(1)22; (2)33; (3)22,1. 说明:本题的合情推理是建立在空间想象的基础上,并把问题转化为多边形的外接圆问题.另外,还可以研究下列问题:1.如果边长为1cm ,有一个锐角是60°的菱形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?2.如果上低和腰长都是1cm ,下低长是2cm 的梯形被一个半径为r 的圆所覆盖,那么r 的最小值是多少?【习题4】1.观察下列各式,你会发现什么规律?3×5=15,而15=42-1; 5×7=35,而35=62-1;11×13=143,而143=122-1; ……请你猜想到的规律用只含一个字母的式子表示出来: .(2000年山东省济南市中考试题)2.观察下列顺序排列的等式:9×0+1=1, 9×1+2=11, 9×2+3=21, 9×3+4=31, 9×4+5=41, ……猜想:第n 个等式(n 为正整数)应为 .(2003年北京市中考试题)3.观察下列各式: 1×3=12+2×1, 2×4=22+2×2, 3×5=32+2×3,……请你将猜想到的规律用自然数n (n ≥1)表示出来: .(2003年福建省福州市中考试题)4.观察以下等式:1×2=31×1×2×3;1×2+2×3=31×2×3×4;1×2+2×3+3×4=31×3×4×5;1×2+2×3+3×4+4×5=31×4×5×6;……根据以上规律,请你猜测:1×2+2×3+3×4+4×5+…+n ×(n +1)= .(2001年山东省威海市中考试题)5.将正偶数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 …… …… 28 26根据上面的排列规律,则2000应在( ).A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列(2001年湖北省荆州市中考试题)6.细心观察图形4—7,认真分析各式,然后解答问题. 21,21)1(12==+S ; 22,31)2(22==+S ; 23,41)3(32==+S ; ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 1 2+S 2 2+S 3 2+…+S 10 2的值.(2003年山东省烟台市中考试题)7.(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为|AB |.当A 、B 两点中有一点在原点时,不妨设点A 在原点, 如图4—8,|AB |=|OB |=|b |=|a -b |; 当A 、B 两点都不在原点时,①如图4—9,当点A 、B 都在原点右边时,则 |AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |; ②如图4—10,当点A 、B 都在原点左边时,则O (A ) B图4—8O B A图4—9O A B 图4—10O A 2 A 4A 1 …1 A 5S 3 S 5 S 2S 1 S 41 1 1A 6 A 3…图4—7|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |;③如图4—11,当点A 、B 在原点的两边时,则 |AB |=|OA |+|OB |=|a |+|b |=a +(-b )=|a -b |. 综上,数轴上A 、B 两点之间的距离|AB |=|a -b |.(2)回答相应问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 . ②数轴上表示x 和-1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 . ③当代数式|x +1|+|x -2|取最小值时,x 相应的取值范围是 .(2002年江苏省南京市中考试题)8.如图4—12,在正方形ABCD 中,E 是AD 的中点,F 是 BA 延长线上一点, AF =21AB . (1)求证:△ABE ≌△ADF . (2)阅读下面材料:如图4—13,把△ABC 沿直线BC 平行移动线段BC 的长度,可以变到△ECD 的位置; 如图4—14,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置; 如图4—15,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置.象这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换. (3)回答下列问题:①在图4—12中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到 △ADF 的位置?答: . ②指出图4—12中线段BE 与DF 之间的关系.答: .(2000年江苏省南京市中考试题)9.在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生研究这一问题时,发现了如下事实.EDCBADCBAEDCA图4—13 图4—14 图4—15FABC D E图4—12OA B a 图4—11图4—16E A B C O D图4—17 B C A D EOB C A 图4—18 D E O C A 图4—19 D F EO①当11121+==AC AE 时,有21232+==AD AO (如图4-16); ②当21131+==AC AE 时,有22242+==AD AO (如图4-17); ③当31141+==AC AE 时,有32252+==AD AO (如图4-18). 在图4-19中,当n AC AE +=11时,参照上述研究结论,请你猜想用n 表示ADAO的一般结论,并给出证明(其中n 是正整数).(2001年河北省中考试题)10.某厂要制造能装250毫升(1毫升=1厘米3 )饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部的厚度都是0.02厘米,顶部厚度是底部厚度的3倍,这是为了防止“呯”的一声打开易拉罐时把整个顶盖撕下来.设一个底面半径是x 厘米的易拉罐的用铝量是y 厘米3. (1)利用用铝量=底圆面积×底部厚度+顶圆面积×顶部厚度+侧面积×侧壁厚度)求y 与x 之间的函数关系式;(2②根据上表推测:要使用铝量y (厘米)的值尽可能小,底面半径x (厘米)的值所在范围是( ).A .1.6≤x ≤2.4B .2.4<x <3.2C .3.2≤x ≤4(2002年江苏省南京市中考试题)11.如图20,正方形ABCD 和正方形EFGH 对角线BD 、FH 都在直线l 上.O 1、O 2 分别是正方形的中心,O 1D =2,O 2F =1,线段O 1O 2的长叫做两个正方形的中心距....当中心O 2在直线l 上平移时,正方形EFGH 也随之平移,在平移时正方形EFGH 的形状、大小没有改变.(1)当中心O 2在直线l 上平移到两个正方形只有一个公共点时,中心距O 1O 2 = . (2)随着中心O 2在直线l 上的平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程 ).(2003年江苏省徐州市中考试题)图4—20【习题4】1.解:(2n -1)(2n +1)=(2n )2-1. 2.解:9(n -1)+n =10(n -1)+1. 3.解: n (n +2)=n 2 +2n .4.解:1×2+2×3+3×4+4×5+…+n ×(n +1)=31×n ×(n +1)×(n +2).5.解:选C .6.解:(1)2,11)(2nS n n n =+=+. (2)∵OA 1=1,OA 2=2,OA 3=3,…, ∴OA 10=10.(3)S 1 2+S 2 2+S 3 2+…+S 10 2=2)21(+2)22(+2)23(+…+2)210(=41(1+2+3+…+10) =455. 7.解:(1)3,3,4;(2)∣x +1∣,-3或1; (3)-1≤x ≤2. 8.解:(1)证明:在正方形ABCD 中, ∵ AB=AD ,AD ⊥AB , ∴∠BAE =∠DAF =90°.∵AE =21AD ,AF =21AB , ∴AE =AF .∴△ABE ≌△ADF .(3)①答:△ABE 绕点A 逆时针旋转90度到△ADF 的位置. ②答:BE =DF ,且BE ⊥DF .9.解:根据题意,可以猜想:当n AC AE +=11时,有n AD AO +=22成立. 证明:过D 作DF ∥BE 交AC 于点F .∵D 是BC 的中点, ∴F 是EC 的中点. ∵n AC AE +=11, ∴n EC AE 1=. ∴nEF AE 2=.∴nAF AE +=22. ∵DF ∥BE , ∴nAF AE AD AO +==22. 10.解:(1)解:222250202.0302.0xx x x y ππππ⋅+⋅⋅+⋅=·0.02 =xx 102522+π. (2)B .11.解:.(1)2,1. (2)3.(3)①当1<O 1O 2<3时,两个正方形有2个公共点;②当O 1O 2=1时,两个正方形有无数个公共点;③当O 1O 2 <1,或O 1O 2>3时,两个正方形没有公共点.。
2018年山东中考数学试题研究题库--阅读理解问题 代数问题几何化

阅读理解问题——代数问题几何化1.阅读理解以下文字:我们知道,多项式的因式分解就是将一个多项式化成几个整式的积的形式.通过因式分解,我们常常将一个次数比较高的多项式转化成几个次数较低的整式的积,来达到降次化简的目的.这个思想可以引领我们解决很多相对复杂的代数问题.例如:方程2x2+3x=0就可以这样来解:解:原方程可化为x(2x+3)=0,∴x=0或者2x+3=0.3.解方程2x+3=0,得x=-23. ∴原方程的解为x1=0,x2=-2根据你的理解,结合所学知识,解决以下问题:(1)解方程:(x+3)2-4x2=0;(2)解方程:x2-5x=6;(3)已知△ABC的三边长为4,x,y,请你判断代数式16y+2x2-32-2y2的值的符号.解:(1)原方程可化为:(x+3+2x)(x+3-2x)=0,即(3x+3)(-x+3)=0,∴3x+3=0或者-x+3=0,解方程得x1=-1,x2=3,∴原方程的解为x1=3,x2=-1;(2)由原方程得(x-3)(x-2)=0,∴x-3=0或x-2=0, 解得x1=3,x2=2;(3)16y+2x2-32-2y2=2(x2-y2+8y-16)=2[x2-(y2-8y+16)]=2[x2-(y-4)2]=2(x+y-4)(x-y+4), ∵△ABC的三边为4、x、y,∴x+y>4,x+4>y,∴x+y-4>0,x-y+4>0,∴16y+2x2-32-2y2>0,即代数式16y+2x2-32-2y2的值符号为正号.2.我们知道,配方法是解一元二次方程的一种方法其实质就是将一元二次方程由一般式ax2+bx+c=0(a≠0)化成(x+m)2=n,然后利用直接开平方法求一元二次方程的解的过程.公式法中用到的求根公式也可由此方法得到.配方法是把一个代数式变成一个完全平方式或含有完全平方式的代数式的形式,这种变化的手段在解决初中数学问题时有着广泛的应用. 【例】已知a,b为任意实数,∵a2+b2-2ab=(a-b)2≥0,∴a2+b2≥2ab,即对于任意实数a,b,总有a2+b2≥2ab,且当a=b时,代数式a2+b2取得最小值2ab. 仿照上面的方法,对于正数a,b,试比较a+b和2ab的大小关系.【类比应用】运用上面的结论,完成填空: (1)x 2+21x ≥ ,此时代数式x 2+21x有最 值为 ;(2)当x>0时,xx 9+≥ ,此时代数式xx 9+有最 值为 ;(3)当x>0时,代数式xx x 12++有最 值为 ;【问题解决】若一个矩形的面积固定为n ,它的周长是否会有最值呢?若有,求出周长的最值及此时矩形的长和宽;若没有,请说明理由.由此你能得到怎样的结论? 解:【例】a +b ≥2ab ; 【类比应用】(1)2,小,2; (2)6,小,6; (3)小,3.【问题解决】周长最小值为4n ,此时长和宽都为n .结论:当矩形的面积固定时,其为正方形时周长最小.3.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图①可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图②中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;(3)图③中给出了若干个边长为a和边长为b的小正方形纸片及若干个边长分别为a、b的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框中,要求所拼出的几何图形的面积为2a2+5ab+2b2;②再利用另一种计算面积的方法,可将多项式2a2+5ab+2b2分解因式.即2a2+5ab+2b2= .第3题图解:(1)由拼图面积可得(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)由(1)得:a 2+b 2+c 2=(a +b +c )2-2ab -2ac -2bc=(a +b +c )2-2(ab +ac +bc ) =112-2×38 =45;(3)①如解图所示:所拼出的几 何图形的面积为2a 2+5ab +2b 2;②2a 2+5ab +2b 2=(2a +b )(a +2b ). 第3题解图4.数学问题:计算+++32111m m m …n m1+(其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算+++32212121…n21+. 如图①,第1次分割,把正方形的面积二等分,其中阴影部分的面积为21;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为22121+; 第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++32212121…n 21+,最后空白部分的面积是n21. 根据第n 次分割图可得等式:+++32212121…n 21+=1-n21第4题图①探究二:计算+++32313131…n31+. 如图②,第1次分割,把正方形的面积三等分,其中阴影部分的面积为32;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为23232+; 第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++32323232…n32+,最后空白部分的面积是n31. 根据第n 次分割图可得等式:+++32323232…n 32+113n=-, 两边同除以2,得+++32313131…n 31+=n321-21⨯第4题图②探究三:计算+++32414141…n 41+. (仿照上述方法,只画出第n 次分割图,在图③上标注阴影部分面积,并写出探究过程) 第n 次分割第4题图③解决问题:根据前面探究结果:+++32212121…n 21+112n =- +++32313131…n 31+=11223n -⨯+++32414141…n 41+= . … 推出:+++32111m m m …n m1+= .(只填空,其中m 、n 都是正整数,且m>2,n>1)拓展应用:计算2323515151555---+++…n n 515-+. 解:探究三:11334n -⨯,nmm m )1(111---; 【解法提示】计算+++32414141…n 41+. 第1次分割,把正方形的面积四等分,其中阴影部分的面积为43;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为24343+; 第3次分割,把上次分割图中空白部分的面积继续四等分,…;…第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为+++32434343…n 43+,最后空白部分的面积是n41; 根据第n 次分割图可得等式:+++32434343…n 43+114n =-, 两边同除以3,得+++32414141…n 41+=11334n-⨯. 第n 次分割第4题解图①推出:+++32111m m m …n m1+, 第1次分割,把正方形的面积m 等分,其中阴影部分的面积为mm 1-; 第2次分割,把上次分割图中空白部分的面积继续m 等分,阴影部分的面积之和为211mm m m -+-; 第3次分割,把上次分割图中空白部分的面积继续m 等分,…;…第n 次分割,把上次分割图中空白部分的面积最后m 等分,所有阴影部分的面积之和为m -m 1+3211m m m m -+-+…+n mm 1-,最后空白部分的面积是n m1; 根据第n 次分割图可得等式:m -m 1+3211mm m m -+-+…nn m m m 111-=-+两边同时除以m -1,得+++32111m m m …n m 1+n mm m )1(111---=. 第n 次分割第4题解图②应用:计算+++332251-551-551-5…n n 515-+ 23111111555=-+-+-+ (1)15n +-)54141(nn ⨯--= nn 54141⨯+-=.5.阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线 ax +by +c =0的距离公式为d =2200BA CBy Ax +++.例如:求点P 0(0,0)到直线4x +3y -3=0的距离. 解:由直线4x +3y-3=0知,a =4,b =3,c =-3,∴点P 0(0,0)到直线y =4x +3y -3=0的距离为d =2240303|3543⨯+⨯-=+. 根据以上材料,解决下列问题:问题1:点P 1(3,4)到直线y =3544x -+的距离为 ;问题2:已知⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y =34x b -+ 相切,求实数b 的值;问题3:如图,设点P 为问题2中⊙C上的任意一点,点a ,b 为直线3x +4y +5=0上的两点,且AB =2,请求出S △ABP 的最大值和最小值.第5题图解:问题1:4;【解法提示】直线方程整理,得3x +4y -5=0, 故A =3,B =4,C =-5,∴点P 1(3,4)到直线y =3544x -+的距离为d =4435443322=+-⨯+⨯.问题2:直线y =34x b -+整理,得3x +4y -4b =0,故A =3,B =4,C =-4b .∵⊙C 与直线相切,∴点C 到直线的距离等于半径, 即2232414|134b ⨯+⨯-=+,整理得|10-4b |=5,解得b =45或b =415; 问题3:如解图,过点C 作CD ⊥AB 于点D .第5题解图∵在3x +4y +5=0中,A =3,B =4,C =5, ∴圆心C (2,1)到直线AB 的距离CD =3435142322=++⨯+⨯,∴⊙C 上的点到直线ab 的最大距离为3+1=4,最小距离为3-1=2,∴S △ABP 的最大值为44221=⨯⨯,最小值为22221=⨯⨯.。
中考数学复习《阅读理解问题》经典题型及测试题(含答案)

中考数学复习《阅读理解问题》经典题型及测试题(含答案)阅读与理解阅读理解问题是通过阅读材料,理解其实质,揭示其方法规律从而解决新问题.既考查学生的阅读能力、自学能力,又考查学生的解题能力和数学应用能力.这类题目能够帮助学生实现从模仿到创造的思维过程,符合学生的认知规律.该类问题一般是提供一定的材料或介绍一个概念或给出一种解法等,让考生在理解材料的基础上,获得探索解决问题的途径,用于解决后面的问题.基本思路是“阅读→分析→理解→解决问题”.类型一新概念学习型新概念学习型是指在题目中先构建一个新数学概念(或定义),然后再根据新概念提出要解决的相关问题.主要目的是考查学生的自学能力和对新知识的理解与运用能力.解决这类问题:要求学生准确理解题目中所构建的新概念,将学习的新概念和已有的知识相结合,并进行运用.例1 (2017·枣庄) 我们知道,任意一个正整数n都可以进行这样的分解:n=p ×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【自主解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.变式训练1.(2016·常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O 与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”.现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是 ______________2.(2016·荆州) 阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?解:(1)∵点D(m,n),∴点D(m,n)的特征线是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)点D有一条特征线是y=x+1,∴n﹣m=1,∴n=m+1∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3(3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.乳头,当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,即:抛物线向下平移或距离,其顶点落在OP上.类型二新公式应用型新公式应用型是指通过对所给材料的阅读,从中获取新的数学公式、定理、运算法则或解题思路等,进而运用这些知识和已有知识解决题目中提出的数学问题.解决这类问题,一是要所运用的思想方法、数学公式、性质、运算法则或解题思路与阅读材料保持一致;二是要创造条件,准确、规范、灵活地解答.例2(2017•日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.(0,0)到直线4x+3y﹣3=0的距离.例如:求点P解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,(0,0)到直线4x+3y﹣3=0的距离为d==.∴点P根据以上材料,解决下列问题:问题1:点P(3,4)到直线y=﹣x+的距离为 4 ;1问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S的最大值和最小值.△ABP【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.(3,4)到直线3x+4y﹣5=0的距离d=【自主解答】解:(1)点P1=4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣4b=0的距离d=1,∴=1, 解得b=或.(3)点C (2,1)到直线3x+4y+5=0的距离d==3, ∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.变式训练3.一般地,如果在一次实验中,结果落在区域D 中每一个点都是等可能的,用A 表示“实验结果落在D 中的某个小区域M 中”这个事件,那么事件A 发生的概率P(A)= .如图,现在等边△ABC 内射入一个点,则该点落在△ABC 内切圆中的概率是____ .4.(2016·随州)如图1,PT 与⊙O 1相切于点T ,PB 与⊙O 1相交于A ,B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA ·PB .请应用以上结论解决下列问题:如图2,PAB ,PCD 分别与⊙O 2相交于A ,B ,C ,D 四点,已知PA =2,PB =7,PC=3,则CD =______.类型三 新方法应用型新方法应用型是指通过对所给材料的阅读,从中获取新的思想、方法或解题途径,进而运用这些知识和已有的知识解决题目中提出的问题.例3 (2017·毕节)D M 93 35)观察下列运算过程:计算:1+2+22+ (210)解:设S=1+2+22+…+210,①①×2得2S=2+22+23+…+211,②②﹣①得S=211﹣1.所以,1+2+22+…+210=211﹣1运用上面的计算方法计算:1+3+32+…+32017= .【分析】令s=1+3+32+33+…+32017,然后在等式的两边同时乘以3,接下来,依据材料中的方程进行计算即可.【自主解答】解:令s=1+3+32+33+…+32017等式两边同时乘以3得:3s=3+32+33+…+32018两式相减得:2s=32018﹣1,∴s=,故答案为:.变式训练5、仔细阅读下面例题,解答问题:例题:已知二次三项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.设另一个因式为(x+n),得x2-4x+m=(x+3)(x+n),则x2-4x+m=x2+(n+3)x+3n ∴n+3=-4m=3n 解得:n=-7,m=-21∴另一个因式为(x-7),m的值为-21.问题:(1)若二次三项式x2-5x+6可分解为(x-2)(x+a),则a=______;(2)若二次三项式2x2+bx-5可分解为(2x-1)(x+5),则b=______;(3)仿照以上方法解答下面问题:已知二次三项式2x2+5x-k有一个因式是(2x-3),求另一个因式以及k的值.解:(1)∵(x-2)(x+a)=x2+(a-2)x-2a=x2-5x+6,∴a-2=-5,解得:a=-3;(2)∵(2x-1)(x+5)=2x2+9x-5=2x2+bx-5,∴b=9;(3)设另一个因式为(x+n),得2x2+5x-k=(2x-3)(x+n)=2x2+(2n-3)x-3n,则2n-3=5,k=3n,解得:n=4,k=12,故另一个因式为(x+4),k 的值为12.故答案为:(1)-3;(2分)(2)9;(2分)(3)另一个因式是x+4,k=12(6分). 6、(2015遂宁)阅读下列材料,并用相关的思想方法解决问题.计算:11111111111111(1)()(1)()23423452345234---⨯+++-----⨯++. 令111234t ++=,则 原式=11(1)()(1)55t t t t -+--- =22114555t t t t t +---+ =15 问题:(1)计算1111111111111111111(1...)(...)(1...)(...)2342014234520152345201420152342014-----⨯+++++--------⨯++++。
中考代数-阅读理解型问题

中考阅读理解型问题阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.方法点拨题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.阅读理解题一般可分为如下几种类型:(1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.类型一、阅读试题提供新定义、新定理,解决新问题1.问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第 2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.解决问题:根据以上步骤,请你解答“问题情境”.答案与解析举一反三【思路点拨】画出相关图形后可得这些点在一条直线上,设出直线解析式,把任意两点代入可得直线解析式,进而把x=2012代入可得相应的棋子数目.【答案与解析】解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13)依次连接以上各点,所有各点在一条直线上,设直线解析式为 y=kx+b,把(1,4)、(2,7)两点坐标代入得,解得,所以y=3x+1,验证:当 x=3时,y=10.所以,另外一点也在这条直线上.当 x=2012时,y=3×2012+1=6037.答:第 2012个图有6037枚棋子.【总结升华】考查一次函数的应用;根据所给点画出相应图形,从而判断出相应的函数是解决本题的突破点.【变式】如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D 与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含x的代数式填空:当 0≤x≤25时,货车从 H到A往返1次的路程为2xkm,货车从 H到B往返1次的路程为______km,货车从 H到C往返2次的路程为______km,这辆货车每天行驶的路程 y=______.当 25<x≤35时,这辆货车每天行驶的路程 y=______;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?答案与解析【答案】解:(1)∵当0≤x≤25时,货车从 H到A往返1次的路程为2x,货车从 H到B往返1次的路程为:2(5+25-x)=60-2x,货车从 H到C往返2次的路程为:4(25-x+10)=140-4x,这辆货车每天行驶的路程为: y=60-2x+2x+140-4x=-4x+200.当 25<x≤35时,货车从 H到A往返1次的路程为2x,货车从 H到B往返1次的路程为:2(5+x-25)=2x-40,货车从 H到C往返2次的路程为:4[10-(x-25)]=140-4x,故这辆货车每天行驶的路程为: y=2x+2x-40+140-4x=100;故答案为: 60-2x,140-4x,-4x+200,100;(2)根据当0≤x≤25时,y=-4x+200,x=0,y=200,x=25,y=100,当 25<x≤35时,y=100;如图所示:(3)根据(2)图象可得:当25≤x≤35时,y恒等于100km,此时y的值最小,得出配货中心H建CD段,这辆货车每天行驶的路程最短为100km.类型二、阅读试题信息,归纳总结提炼数学思想方法2.[背景资料]低碳生活的理念已逐步被人们接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约 18kg;一个人平均一年少买的衣服,相当于减排二氧化碳约 6kg.[问题解决]甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议.2009年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg.(1)2009年两校响应本校倡议的人数分别是多少?(2)2009年到2011年,甲校响应本校倡议的人数每年增加相同的数量;乙校响应本校倡议的人数每年按相同的百分率增长.2010年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍;2011年两校响应本校倡议的总人数比2010年两校响应本校倡议的总人数多100人.求2011年两校响应本校倡议减排二氧化碳的总量.答案与解析举一反三【思路点拨】(1)设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为y人,根据题意列出方程组求解即可(2)设2009年到2011年,甲校响应本校倡议的人数每年增加m人;乙校响应本校倡议的人数每年增长的百分率为n.根据题目中的人数的增长率之间的关系列出方程组求解即可.【答案与解析】解:(1)方法一:设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为y人依题意得:,解之得x=20,y=40方法二:设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为(60-x)人,依题意得:18x+6(60-x)=600解之得:x=20,60-x=40∴2009年两校响应本校倡议的人数分别是20人和40人.(2)设2009年到2011年,甲校响应本校倡议的人数每年增加m人;乙校响应本校倡议的人数每年增长的百分率为n.依题意得:,由①得m=20n,代入②并整理得2n2+3n-5=0解之得n=1,n=-2.5(负值舍去)∴m=20∴2011年两校响应本校倡议减排二氧化碳的总量:(20+2×20)×18+40(1+1)2×6=2040(千克)答:2011年两校响应本校倡议减排二氧化碳的总量为2040千克.【总结升华】题考查了一元二次方程的应用及二元一次方程组的应用,解题的关键是根据题意找到合适的等量关系.【变式】如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数 x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲: x表示______,y表示______;乙: x表示______,y表示______.(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.【答案】(1)甲:x表示产品的重量,y表示原料的重量,乙:x表示产品销售额,y表示原料费,甲方程组右边方框内的数分别为:15000,97200,乙同甲;(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运费为15000+97200=112200元∴这批产品的销售额比原料费和运费的和多2400000-(400000+112200)=1887800元.类型三、阅读相关信息,通过归纳探索,发现规律,得出结论3.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式 x2-4>0解:∵x2-4=(x+2)(x-2)∴x2-4>0可化为(x+2)(x-2)>0由有理数的乘法法则“两数相乘,同号得正”,得①,②.解不等式组①,得x>2,解不等式组②,得x<-2,∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式 x2-4>0的解集为x>2或x<-2.(1)一元二次不等式x2-16>0的解集为______;(2)分式不等式>0的解集为______;(3)解一元二次不等式2x2-3x<0.答案与解析【思路点拨】(1)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;(2)据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;【答案与解析】解:(1)∵x2-16=(x+4)(x-4)∴x2-16>0可化为:(x+4)(x-4)>0由有理数的乘法法则“两数相乘,同号得正”,得或.解不等式组①,得x>4,解不等式组②,得x<-4,∴(x+4)(x-4)>0的解集为x>4或x<-4,即一元二次不等式 x2-16>0的解集为x>4或x<-4.(2)∵>0∴或,解得:x>3或x<1.(3)∵2x2-3x=x(2x-3)∴2x2-3x<0可化为:x(2x-3)<0由有理数的乘法法则“两数相乘,同号得正”,得或,解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2-3x<0的解集为0<x<.【总结升华】本题考查了一元一次不等式组及方程的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.类型四、阅读试题信息,借助已有数学思想方法解决新问题4.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境 b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是______、______(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.答案与解析举一反三【思路点拨】(1)根据图象,一段一段的分析,再一个一个的排除,即可得出答案;(2)把图象分为三部分,再根据离家的距离进行叙述,即可得出答案.【答案与解析】解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是 0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留∴只有①符合,故答案为:③,①.(2)情境是小芳离开家,在公园休息了一会儿,又返回了家.【总结升华】主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,是一道比较容易出错的题目.【变式】某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A →D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.(1)求甲在每个景点逗留的时间,并补全图象;(2)求C,E两点间的路程;(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候,等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.答案与解析【答案】解:(1)由图2得,甲从A步行到D,用了0.8h,步行了1.6km,则甲步行的速度==2(km/h),而甲步行到 C共用了1.8h,步行了2.6km,所以甲在 D景点逗留的时间=1.8-0.8-=1-0.5=0.5(h),所以甲在每个景点逗留的时间为 0.5h;甲在 C景点逗留0.5h,从2.3h开始步行到3h,步行了(3-2.3)×2=1.4km,即回到A 处时共步行了4km,画图;(2)由(1)得甲从C到A步行了(3-2.3)×2=1.4km,而C到A的路程为0.8km,所以C,E两点间的路程为0.6km;(3)他们的约定能实现.理由如下:∵C,E两点间的路程为0.6km,∴走E-B-E-C的路程为0.4+0.4+0.6=1.4(km),走E-B-C的路程为0.4+1.3=1.7(km),∴乙游览的最短线路为:A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总行程为1.6+1+0.6+0.4×2+0.8=4.8(km),∴乙游完三个景点后回到A处的总时间=3×0.5+=3.1(h),而甲用了 3小时,∴乙比甲晚0.1小时,即6分钟到A处,∴他们的约定能实现.5.问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:______依据2:______(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【思路点拨】(1)根据等腰三角形的性质和角平分线性质得出即可;(2)证△OMA≌△ONB(AAS),即可得出答案;(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC- ∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.【答案与解析】(1)解:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),角平分线上的点到角的两边距离相等.(2)证明:∵CA=CB,∴∠A=∠B,∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°,∵在△OMA和△ONB中,∴△OMA≌△ONB(AAS),∴OM=ON.(3)解:OM=ON,OM⊥ON.理由如下:连接CO,则CO是AB边上的中线.∵∠ACB=90°,∴OC=AB=OB,又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°,∠AOC=∠BOC=90°,∴∠2=∠B,∵BN⊥DE,∴∠BND=90°,又∵∠B=45°,∴∠3=45°,∴∠3=∠B,∴DN=NB.∵∠ACB=90°,∴∠NCM=90°.又∵BN⊥DE,∴∠DNC=90°∴四边形DMCN是矩形,∴DN=MC,∴MC=NB,∴△MOC≌△NOB(SAS),∴OM=ON,∠MOC=∠NOB,∴∠MOC-∠CON=∠NOB-∠CON,即∠MON=∠BOC=90°,∴OM⊥ON.【总结升华】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定,矩形的性质和判定,角平分线性质等知识点的应用,主要考查学生运用定理进行推理的能力,题目比较好,综合性也比较强.6.如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是π?请你解答上述两个问题.【思路点拨】①根据正方形旋转3次和5次的路径,利用弧长计算公式以及扇形面积公式求出即可,②再利用正方形纸片OABC经过4次旋转得出旋转路径,进而得出即可得出旋转次数.【答案与解析】解:问题①:如图,正方形纸片经过3次旋转,顶点O运动所形成的图形是三段圆弧,所以顶点O在此运动过程中经过的路程为.顶点O在此过程中经过的图形与直线围成的图形面积为:.正方形纸片经过5次旋转,顶点O运动经过的路程为:.问题②:∵正方形纸片每经过4次旋转,顶点O运动经过的路程均为:.又,而是正方形纸片第4+1次旋转,顶点O 运动经过的路程.∴正方形纸片OABC按上述方法经过81次旋转,顶点O经过的路程是.【总结升华】此题主要考查了图形的旋转以及扇形面积公式和弧长计算公式,分别得出旋转3,4,5次旋转的路径是解决问题的关键.7.问题情境:已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x,周长为y,则y与x的函数关系式为.探索研究:(1)我们可以借鉴以前研究函数的经验,先探索函数的图象性质.①填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案.【思路点拨】(1)①根据求代数式的值的方法将x的值函数的解析式求出其值就可以了.②根据①表中的数据画出函数的图象,再结合表中的数据就可以写出图象的相应的性质.(2)由③的结论可以把直接代入y与x的函数关系式为就可以求出周长的最小值.【答案与解析】解:(1)①当时,,当时,,当时,,当x=1、2、3、4时,则y的值分别为.∴函数(x>0)的图象如图.②当0<x<1时,y随x增大而减小;当x>1时,y随x增大而增大;当x=1时函数(x>0)的最小值为2.③当时,即x=1时,函数(x>0)的最小值为2.(2)当该矩形的长为时,它的周长最小,最小值为.【总结升华】本题是一道二次函数的综合试题,考查了描点法画函数的图象的方法,二次函数最值的运用.反比例函数的图象性质的运用.巩固练习一、选择题1. 已知坐标平面上的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向其面对方向沿直线行走a,若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A.(-1,) B.(-1,) C.(,-1) D.(,-1)2.任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A.1 B.2 C.3 D.4二、填空题3.阅读下列题目的解题过程:已知a、b、c为△ABC的三边长,且满足,试判断△ABC的形状.解:∵,(A)∴, (B)∴,(C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请写出该错误步骤的代号:________________.(2)错误的原因为:________________________.(3)本题的正确结论为:____________________.4.先阅读下列材料,然后解答问题:从A,B,C三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作.一般地,从m个元素中选取n个元素组合,记作:.例:从7个元素中选5个元素,共有种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有______________种.三、解答题5.已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0又∵pq≠1,∴∴1-q-q2=0可变形为的特征所以p与是方程x 2- x -1=0的两个不相等的实数根则根据阅读材料所提供的方法,完成下面的解答.已知:2m2-5m-1=0,,且m≠n,求:的值.6. 阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理,完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法的计数原理.”如完成沿图①所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图②填出.(1)根据以上原理和图②的提示,算出从A出发到达其余交叉点的走法数,将数字填入图②的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行,求如任选一种走法,从A点出发能顺利开车到达B点(无返回)的概率是多少?7.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③.①②③回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组的解;(2)用阴影表示,所围成的区域.8. 我们学习过二次函数图象的平移,如:将二次函数的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是.类比二次函数图象的平移,我们对反比例函数的图象作类似的变换:(1)将的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________.(2)函数的图象可由的图象向________平移________个单位长度得到;的图象可由哪个反比例函数的图象经过怎样的变换得到?(3)一般地,函数(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作轴和轴的平行线,两直线相交于点M ,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设、,求直线OM对应的函数表达式(用含的代数式表示).(2)分别过点P和R作轴和轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).10. 阅读下列材料:问题:如图1所示,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG,与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).【答案与解析】一、选择题1.【答案】D;2.【答案】B;二、填空题3.【答案】(1)C;(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式,而可能等于0;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考阅读理解型问题阅读理解型问题在近几年的全国中考试题中频频“亮相”,应该特别引起我们的重视. 它由两部分组成:一是阅读材料;二是考查内容.它要求学生根据阅读获取的信息回答问题.提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料等.考查内容既有考查基础的,又有考查自学能力和探索能力等综合素质的.这类问题一般文字叙述较长,信息量较大,内容丰富,超越常规,源于课本,又高于课本,各种关系错综复杂,不仅能考查同学们阅读题中文字获取信息的能力,还能考查同学们获取信息后的抽象概括能力、建模能力、决策判断能力等.同时,更能够综合考查同学们的数学意识和数学综合应用能力.方法点拨题型特点:先给出一段材料,让学生理解,再设立新的数学概念,新概念的解答可以借鉴前面材料的结论或思想方法.解题策略:从给的材料入手,通过理解分析本材料的内容,捕捉已知材料的信息,灵活应用这些信息解决新材料的问题.解决阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含了什么新的数学知识、结论,或揭示了什么数学规律,或暗示了什么新的解题方法,然后依题意进行分析、比较、综合、抽象和概括,或用归纳、演绎、类比等进行计算或推理论证,并能准确地运用数学语言阐述自己的思想、方法、观点.展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.阅读理解题一般可分为如下几种类型:(1)方法模拟型——通过阅读理解,模拟提供材料中所述的过程方法,去解决类似的相关问题;(2)判断推理型——通过阅读理解,对提供的材料进行归纳概括;按照对材料本质的理解进行推理,作出解答;(3)迁移发展型——从提供的材料中,通过阅读,理解其采用的思想方法,将其概括抽象成数学模型去解决类同或更高层次的另一个相关命题.类型一、阅读试题提供新定义、新定理,解决新问题1.问题情境:用同样大小的黑色棋子按如图所示的规律摆放,则第 2012个图共有多少枚棋子?建立模型:有些规律问题可以借助函数思想来探讨,具体步骤:第一步,确定变量;第二步:在直角坐标系中画出函数图象;第三步:根据函数图象猜想并求出函数关系式;第四步:把另外的某一点代入验证,若成立,则用这个关系式去求解.解决问题:根据以上步骤,请你解答“问题情境”.答案与解析举一反三【思路点拨】画出相关图形后可得这些点在一条直线上,设出直线解析式,把任意两点代入可得直线解析式,进而把x=2012代入可得相应的棋子数目.【答案与解析】解:以图形的序号为横坐标,棋子的枚数为纵坐标,描点:(1,4)、(2,7)、(3,10)、(4,13)依次连接以上各点,所有各点在一条直线上,设直线解析式为 y=kx+b,把(1,4)、(2,7)两点坐标代入得,解得,所以y=3x+1,验证:当 x=3时,y=10.所以,另外一点也在这条直线上.当 x=2012时,y=3×2012+1=6037.答:第 2012个图有6037枚棋子.【总结升华】考查一次函数的应用;根据所给点画出相应图形,从而判断出相应的函数是解决本题的突破点.【变式】如图1,A,B,C为三个超市,在A通往C的道路(粗实线部分)上有一D点,D 与B有道路(细实线部分)相通.A与D,D与C,D与B之间的路程分别为25km,10km,5km.现计划在A通往C的道路上建一个配货中心H,每天有一辆货车只为这三个超市送货.该货车每天从H出发,单独为A送货1次,为B送货1次,为C送货2次.货车每次仅能给一家超市送货,每次送货后均返回配货中心H,设H到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)用含x的代数式填空:当 0≤x≤25时,货车从 H到A往返1次的路程为2xkm,货车从 H到B往返1次的路程为______km,货车从 H到C往返2次的路程为______km,这辆货车每天行驶的路程 y=______.当 25<x≤35时,这辆货车每天行驶的路程 y=______;(2)请在图2中画出y与x(0≤x≤35)的函数图象;(3)配货中心H建在哪段,这辆货车每天行驶的路程最短?答案与解析【答案】解:(1)∵当0≤x≤25时,货车从 H到A往返1次的路程为2x,货车从 H到B往返1次的路程为:2(5+25-x)=60-2x,货车从 H到C往返2次的路程为:4(25-x+10)=140-4x,这辆货车每天行驶的路程为: y=60-2x+2x+140-4x=-4x+200.当 25<x≤35时,货车从 H到A往返1次的路程为2x,货车从 H到B往返1次的路程为:2(5+x-25)=2x-40,货车从 H到C往返2次的路程为:4[10-(x-25)]=140-4x,故这辆货车每天行驶的路程为: y=2x+2x-40+140-4x=100;故答案为: 60-2x,140-4x,-4x+200,100;(2)根据当0≤x≤25时,y=-4x+200,x=0,y=200,x=25,y=100,当 25<x≤35时,y=100;如图所示:(3)根据(2)图象可得:当25≤x≤35时,y恒等于100km,此时y的值最小,得出配货中心H建CD段,这辆货车每天行驶的路程最短为100km.类型二、阅读试题信息,归纳总结提炼数学思想方法2.[背景资料]低碳生活的理念已逐步被人们接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约 18kg;一个人平均一年少买的衣服,相当于减排二氧化碳约 6kg.[问题解决]甲、乙两校分别对本校师生提出“节约用电”、“少买衣服”的倡议.2009年两校响应本校倡议的人数共60人,因此而减排二氧化碳总量为600kg.(1)2009年两校响应本校倡议的人数分别是多少?(2)2009年到2011年,甲校响应本校倡议的人数每年增加相同的数量;乙校响应本校倡议的人数每年按相同的百分率增长.2010年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍;2011年两校响应本校倡议的总人数比2010年两校响应本校倡议的总人数多100人.求2011年两校响应本校倡议减排二氧化碳的总量.答案与解析举一反三【思路点拨】(1)设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为y人,根据题意列出方程组求解即可(2)设2009年到2011年,甲校响应本校倡议的人数每年增加m人;乙校响应本校倡议的人数每年增长的百分率为n.根据题目中的人数的增长率之间的关系列出方程组求解即可.【答案与解析】解:(1)方法一:设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为y人依题意得:,解之得x=20,y=40方法二:设2009年甲校响应本校倡议的人数为x人,乙校响应本校倡议的人数为(60-x)人,依题意得:18x+6(60-x)=600解之得:x=20,60-x=40∴2009年两校响应本校倡议的人数分别是20人和40人.(2)设2009年到2011年,甲校响应本校倡议的人数每年增加m人;乙校响应本校倡议的人数每年增长的百分率为n.依题意得:,由①得m=20n,代入②并整理得2n2+3n-5=0解之得n=1,n=-2.5(负值舍去)∴m=20∴2011年两校响应本校倡议减排二氧化碳的总量:(20+2×20)×18+40(1+1)2×6=2040(千克)答:2011年两校响应本校倡议减排二氧化碳的总量为2040千克.【总结升华】题考查了一元二次方程的应用及二元一次方程组的应用,解题的关键是根据题意找到合适的等量关系.【变式】如图,某化工厂与A,B两地有公路和铁路相连,这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),这两次运输共支出公路运费15 000元,铁路运费97 200元,请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下:甲:乙:根据甲,乙两名同学所列方程组,请你分别指出未知数 x,y表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲: x表示______,y表示______;乙: x表示______,y表示______.(2)甲同学根据他所列方程组解得x=300,请你帮他解出y的值,并解决该实际问题.【答案】(1)甲:x表示产品的重量,y表示原料的重量,乙:x表示产品销售额,y表示原料费,甲方程组右边方框内的数分别为:15000,97200,乙同甲;(2)将x=300代入原方程组解得y=400∴产品销售额为300×8000=2400000元原料费为400×1000=400000元又∵运费为15000+97200=112200元∴这批产品的销售额比原料费和运费的和多2400000-(400000+112200)=1887800元.类型三、阅读相关信息,通过归纳探索,发现规律,得出结论3.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式 x2-4>0解:∵x2-4=(x+2)(x-2)∴x2-4>0可化为(x+2)(x-2)>0由有理数的乘法法则“两数相乘,同号得正”,得①,②.解不等式组①,得x>2,解不等式组②,得x<-2,∴(x+2)(x-2)>0的解集为x>2或x<-2,即一元二次不等式 x2-4>0的解集为x>2或x<-2.(1)一元二次不等式x2-16>0的解集为______;(2)分式不等式>0的解集为______;(3)解一元二次不等式2x2-3x<0.答案与解析【思路点拨】(1)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;(2)据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;【答案与解析】解:(1)∵x2-16=(x+4)(x-4)∴x2-16>0可化为:(x+4)(x-4)>0由有理数的乘法法则“两数相乘,同号得正”,得或.解不等式组①,得x>4,解不等式组②,得x<-4,∴(x+4)(x-4)>0的解集为x>4或x<-4,即一元二次不等式 x2-16>0的解集为x>4或x<-4.(2)∵>0∴或,解得:x>3或x<1.(3)∵2x2-3x=x(2x-3)∴2x2-3x<0可化为:x(2x-3)<0由有理数的乘法法则“两数相乘,同号得正”,得或,解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2-3x<0的解集为0<x<.【总结升华】本题考查了一元一次不等式组及方程的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.类型四、阅读试题信息,借助已有数学思想方法解决新问题4.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境 b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是______、______(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.答案与解析举一反三【思路点拨】(1)根据图象,一段一段的分析,再一个一个的排除,即可得出答案;(2)把图象分为三部分,再根据离家的距离进行叙述,即可得出答案.【答案与解析】解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是 0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留∴只有①符合,故答案为:③,①.(2)情境是小芳离开家,在公园休息了一会儿,又返回了家.【总结升华】主要考查学生的观察图象的能力,同时也考查了学生的叙述能力,用了数形结合思想,题型比较好,是一道比较容易出错的题目.【变式】某景区的旅游线路如图1所示,其中A为入口,B,C,D为风景点,E为三岔路的交汇点,图1中所给数据为相应两点间的路程(单位:km).甲游客以一定的速度沿线路“A →D→C→E→A”步行游览,在每个景点逗留的时间相同,当他回到A处时,共用去3h.甲步行的路程s(km)与游览时间t(h)之间的部分函数图象如图2所示.(1)求甲在每个景点逗留的时间,并补全图象;(2)求C,E两点间的路程;(3)乙游客与甲同时从A处出发,打算游完三个景点后回到A处,两人相约先到者在A处等候,等候时间不超过10分钟.如果乙的步行速度为3km/h,在每个景点逗留的时间与甲相同,他们的约定能否实现?请说明理由.答案与解析【答案】解:(1)由图2得,甲从A步行到D,用了0.8h,步行了1.6km,则甲步行的速度==2(km/h),而甲步行到 C共用了1.8h,步行了2.6km,所以甲在 D景点逗留的时间=1.8-0.8-=1-0.5=0.5(h),所以甲在每个景点逗留的时间为 0.5h;甲在 C景点逗留0.5h,从2.3h开始步行到3h,步行了(3-2.3)×2=1.4km,即回到A 处时共步行了4km,画图;(2)由(1)得甲从C到A步行了(3-2.3)×2=1.4km,而C到A的路程为0.8km,所以C,E两点间的路程为0.6km;(3)他们的约定能实现.理由如下:∵C,E两点间的路程为0.6km,∴走E-B-E-C的路程为0.4+0.4+0.6=1.4(km),走E-B-C的路程为0.4+1.3=1.7(km),∴乙游览的最短线路为:A→D→C→E→B→E→A(或A→E→B→E→C→D→A),总行程为1.6+1+0.6+0.4×2+0.8=4.8(km),∴乙游完三个景点后回到A处的总时间=3×0.5+=3.1(h),而甲用了 3小时,∴乙比甲晚0.1小时,即6分钟到A处,∴他们的约定能实现.5.问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.探究展示:小宇同学展示出如下正确的解法:解:OM=ON,证明如下:连接CO,则CO是AB边上中线,∵CA=CB,∴CO是∠ACB的角平分线.(依据1)∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)反思交流:(1)上述证明过程中的“依据1”和“依据2”分别是指:依据1:______依据2:______(2)你有与小宇不同的思考方法吗?请写出你的证明过程.拓展延伸:(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.【思路点拨】(1)根据等腰三角形的性质和角平分线性质得出即可;(2)证△OMA≌△ONB(AAS),即可得出答案;(3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC- ∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案.【答案与解析】(1)解:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),角平分线上的点到角的两边距离相等.(2)证明:∵CA=CB,∴∠A=∠B,∵O是AB的中点,∴OA=OB.∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°,∵在△OMA和△ONB中,∴△OMA≌△ONB(AAS),∴OM=ON.(3)解:OM=ON,OM⊥ON.理由如下:连接CO,则CO是AB边上的中线.∵∠ACB=90°,∴OC=AB=OB,又∵CA=CB,∴∠CAB=∠B=45°,∠1=∠2=45°,∠AOC=∠BOC=90°,∴∠2=∠B,∵BN⊥DE,∴∠BND=90°,又∵∠B=45°,∴∠3=45°,∴∠3=∠B,∴DN=NB.∵∠ACB=90°,∴∠NCM=90°.又∵BN⊥DE,∴∠DNC=90°∴四边形DMCN是矩形,∴DN=MC,∴MC=NB,∴△MOC≌△NOB(SAS),∴OM=ON,∠MOC=∠NOB,∴∠MOC-∠CON=∠NOB-∠CON,即∠MON=∠BOC=90°,∴OM⊥ON.【总结升华】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定,矩形的性质和判定,角平分线性质等知识点的应用,主要考查学生运用定理进行推理的能力,题目比较好,综合性也比较强.6.如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕B1点按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕B1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题:问题①:若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形OABC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是π?请你解答上述两个问题.【思路点拨】①根据正方形旋转3次和5次的路径,利用弧长计算公式以及扇形面积公式求出即可,②再利用正方形纸片OABC经过4次旋转得出旋转路径,进而得出即可得出旋转次数.【答案与解析】解:问题①:如图,正方形纸片经过3次旋转,顶点O运动所形成的图形是三段圆弧,所以顶点O在此运动过程中经过的路程为.顶点O在此过程中经过的图形与直线围成的图形面积为:.正方形纸片经过5次旋转,顶点O运动经过的路程为:.问题②:∵正方形纸片每经过4次旋转,顶点O运动经过的路程均为:.又,而是正方形纸片第4+1次旋转,顶点O 运动经过的路程.∴正方形纸片OABC按上述方法经过81次旋转,顶点O经过的路程是.【总结升华】此题主要考查了图形的旋转以及扇形面积公式和弧长计算公式,分别得出旋转3,4,5次旋转的路径是解决问题的关键.7.问题情境:已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型:设该矩形的长为x,周长为y,则y与x的函数关系式为.探索研究:(1)我们可以借鉴以前研究函数的经验,先探索函数的图象性质.①填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数(x>0)的最小值.解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案.【思路点拨】(1)①根据求代数式的值的方法将x的值函数的解析式求出其值就可以了.②根据①表中的数据画出函数的图象,再结合表中的数据就可以写出图象的相应的性质.(2)由③的结论可以把直接代入y与x的函数关系式为就可以求出周长的最小值.【答案与解析】解:(1)①当时,,当时,,当时,,当x=1、2、3、4时,则y的值分别为.∴函数(x>0)的图象如图.②当0<x<1时,y随x增大而减小;当x>1时,y随x增大而增大;当x=1时函数(x>0)的最小值为2.③当时,即x=1时,函数(x>0)的最小值为2.(2)当该矩形的长为时,它的周长最小,最小值为.【总结升华】本题是一道二次函数的综合试题,考查了描点法画函数的图象的方法,二次函数最值的运用.反比例函数的图象性质的运用.巩固练习一、选择题1. 已知坐标平面上的机器人接受指令“[a,A]”(a≥0,0°<A<180°)后的行动结果为:在原地顺时针旋转A后,再向其面对方向沿直线行走a,若机器人的位置在原点,面对方向为y轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( ) A.(-1,) B.(-1,) C.(,-1) D.(,-1)2.任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:.例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是( ).A.1 B.2 C.3 D.4二、填空题3.阅读下列题目的解题过程:已知a、b、c为△ABC的三边长,且满足,试判断△ABC的形状.解:∵,(A)∴, (B)∴,(C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请写出该错误步骤的代号:________________.(2)错误的原因为:________________________.(3)本题的正确结论为:____________________.4.先阅读下列材料,然后解答问题:从A,B,C三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作.一般地,从m个元素中选取n个元素组合,记作:.例:从7个元素中选5个元素,共有种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有______________种.三、解答题5.已知p2-p-1=0,1-q-q2=0,且pq≠1,求的值.解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0又∵pq≠1,∴∴1-q-q2=0可变形为的特征所以p与是方程x 2- x -1=0的两个不相等的实数根则根据阅读材料所提供的方法,完成下面的解答.已知:2m2-5m-1=0,,且m≠n,求:的值.6. 阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理,完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法的计数原理.”如完成沿图①所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图②填出.(1)根据以上原理和图②的提示,算出从A出发到达其余交叉点的走法数,将数字填入图②的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行,求如任选一种走法,从A点出发能顺利开车到达B点(无返回)的概率是多少?7.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线x=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③.①②③回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组的解;(2)用阴影表示,所围成的区域.8. 我们学习过二次函数图象的平移,如:将二次函数的图象向左平移2个单位长度,再向下平移4个单位长度,所得图象的函数表达式是.类比二次函数图象的平移,我们对反比例函数的图象作类似的变换:(1)将的图象向右平移1个单位长度,所得图象的函数表达式为________,再向上平移1个单位长度,所得图象的函数表达式为________.(2)函数的图象可由的图象向________平移________个单位长度得到;的图象可由哪个反比例函数的图象经过怎样的变换得到?(3)一般地,函数(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?9. “三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB置于直角坐标系中,边OB在轴上、边OA与函数的图象交于点P,以P为圆心、以2OP为半径作弧交图象于点R.分别过点P和R作轴和轴的平行线,两直线相交于点M ,连接OM得到∠MOB,则∠MOB=∠AOB.要明白帕普斯的方法,请研究以下问题:(1)设、,求直线OM对应的函数表达式(用含的代数式表示).(2)分别过点P和R作轴和轴的平行线,两直线相交于点Q.请说明Q点在直线OM上,并据此证明∠MOB=∠AOB.(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明).10. 阅读下列材料:问题:如图1所示,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系的值.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)写出上面问题中线段PG,与PC的位置关系及的值;(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD 的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明.(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺旋转任意角度,原问题中的其他条件不变,请你直接写出的值(用含α的式子表示).【答案与解析】一、选择题1.【答案】D;2.【答案】B;二、填空题3.【答案】(1)C;(2)错误的原因是由(B)到(C)时,等式两边同时约去了因式,而可能等于0;。