1939年诺贝尔物理学奖——回旋加速器的发明
质谱仪和回旋加速器

1.3质谱仪和回旋加速器一、单选题1.1930年劳伦斯制成了世界上第一台回旋加速器,凭借此项成果,他于1939年获得诺贝尔物理学奖,其原理如图所示,置于真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略;磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U 。
若A 处粒子源产生质子的质量为m 、电荷量为q +,在加速过程中不考虑相对论效应和重力的影响。
则下列说法正确的是( )A .带电粒子由加速器的边缘进入加速器B .被加速的带电粒子在回旋加速器中做圆周运动的周期随半径的增大而增大C .质子离开回旋加速器时的最大动能与D 形盒半径成正比D .该加速器加速质量为4m 、电荷量为2q 的α粒子时,交流电频率应变为2f 2.质谱仪的结构原理图如图所示,带有小孔的两个水平极板12S S 、间有垂直极板方向的匀强电场,圆筒N 内可以产生质子和氚核,它们由静止进入极板间,经极板间的电场加速后进入下方的匀强磁场,在磁场中运动半周后打到底片P 上。
不计质子和氚核的重力及它们间的相互作用。
则下列判断正确的是( )A .质子和氚核在极板12S S 、B .质子和氚核在磁场中运动的时间之比为C .质子和氚核在磁场中运动的速率之比为D.质子和氚核在磁场中运动的轨迹半径之比为3.笔记本电脑趋于普及,电脑机身和显示屏对应部位分别有磁体和霍尔元件。
当显示屏开启时磁体远离霍尔元件,电脑正常工作;当显示屏闭合时磁体靠近霍尔元件,屏幕熄灭,电脑进入休眠状态。
如图,一块宽为a、长为c的矩形半导体霍尔元件,元件内的导电粒子是电荷量为e的自由电子,通入方向向右的电流时,电子的定向移动速度为v。
当显示屏闭合时元件处于垂直于上表面、方向向上的匀强磁场中,于是元件的前、后表面间出现电压U,以此控制屏幕的熄灭。
则关于元件的说法正确的是()A.前表面的电势比后表面的高B.前、后表面间的电压U与v有关C.前、后表面间的电压U与c成正比D.自由电子受到的洛伦兹力大小为eU c4.1930年劳伦斯提出回旋加速器理论并于1932年制成了世界上第一台回旋加速器,其原理如图所示。
高中物理第一题常考的物理学史

高中物理第一题常考的物理学史(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高中物理第一题常考的物理学史1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的);2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验;3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。
4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。
同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。
17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。
7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。
8、17世纪,德国天文学家开普勒提出开普勒三大定律;9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量;10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。
历届诺贝尔物理学奖得主及成就

诺贝尔物理学奖诺贝尔物理学奖是1900年6月根据诺贝尔的遗嘱设立的,属诺贝尔奖之一。
该奖项旨在奖励那些对人类物理学领域里作出突出贡献的科学家。
由瑞典皇家科学院颁发奖金,每年的奖项候选人由瑞典皇家自然科学院的瑞典或外国院士、诺贝尔物理和化学委员会的委员、曾被授与诺贝尔物理或化学奖金的科学家、在乌普萨拉、隆德、奥斯陆、哥本哈根、赫尔辛基大学、卡罗琳医学院和皇家技术学院永久或临时任职的物理和化学教授等科学家推荐。
奖项由来诺贝尔生于瑞典的斯德哥尔摩,诺贝尔一生致力于炸药的研究,在硝化甘油的研究方面取得了重大成就。
他不仅从事理论研究,而且进行工业实践。
他一生共获得技术发明专利355项,并在欧美等五大洲20个国家开设了约100家公司和工厂,积累了巨额财富。
1896年12月10日,诺贝尔在意大利逝世。
逝世的前一年,他留下了遗嘱,设立诺贝尔奖。
据此,1900年6月瑞典政府批准设置了诺贝尔基金会,并于次年诺贝尔逝世5周年纪念日,即1901年12月10日首次颁发诺贝尔奖。
自此以后,除因战时中断外,每年的这一天分别在瑞典首都斯德哥尔摩和挪威首都奥斯陆举行隆重授奖仪式。
1968年瑞典中央银行于建行300周年之际,提供资金增设诺贝尔经济奖(全称为瑞典中央银行纪念阿尔弗雷德·伯恩德·诺贝尔经济科学奖金,亦称纪念诺贝尔经济学奖,并于1969年开始与其他5项奖同时颁发。
诺贝尔经济学奖的评选原则是授予在经济科学研究领域作出有重大价值贡献的人,并优先奖励那些早期作出重大贡献者。
颁奖时间每次诺贝尔奖的发奖仪式都是下午举行,这是因为诺贝尔是1896年12月10日下午4:30去世的。
为了纪念这位对人类进步和文明作出过重大贡献的科学家,在1901年第一次颁奖时,人们便选择在诺贝尔逝世的时刻举行仪式。
这一有特殊意义的做法一直沿袭到如今。
评选过程每年9月至次年1月31日,接受各项诺贝尔奖推荐的候选人。
通常每年推荐的候选人有1000— 2000人。
物理学家和他们的故事 劳伦斯

在1938年4月30日给查德威克的信中,他无法抑制对可能的医学突破的兴奋之情:
关于人工放射性物质和中子在医学研究和临床治疗上的重要作用已毫无疑问,因此我认为您在伦敦的生物物理学方面的朋友,应该建造一台回旋加速器进行这方面的探索。作为一个由于实验仍在进展还需大约一年才能明确地公之于众的。现在不应该提及的例子,我想提一下,目前我的弟弟约翰·劳伦斯正利用放射性磷治疗一名骨髓性白血病患者,取得了显著的效果。最近他一直在研究老鼠的白血病,发现放射性磷不仅被骨骼和淋巴组织有选择性地吸收,而且还被病变的白细胞以不寻常的程度吸收。例如,他发现患病动物每克脾组织所吸收的放射性磷是正常动物每克脾组织所吸收的5倍,这暗示着临床治疗人类疾病的可能性。从一月初开始,在大约两个月的期间内,他给一个白血病患者总共施用了70mC的放射性磷。起先患者的白细胞数为60万,而红细胞数为250万。放射性磷施用不久,白细胞数量稳定下降,骨髓细胞数量比其他细胞数量下降得更快,而红细胞数量稳定地增加到正常值。几周以前,患者的血象已经接近了正常,白细胞总数大约为0.8万,而红细胞数为500万,只有低于0.5%的白细胞被诊断为病变细胞。现在放射性磷治疗已经结束,患者正在被观察随后会出现什么情况。约翰医生和所有医务人员都觉得这位患者对放射性磷的反应是显著的,但是在另一方面,他们觉得还没有证据表明放射性磷已经治愈了这种疾病。恐怕如果我弟弟知道了我向您叙述这些,他一定会责备我的。
1932年,劳伦斯与耶鲁医学院名誉教务长的女儿布卢默(M.K.Blumer)结婚,生有两男四女。
劳伦斯的生活节奏很快,不知疲倦,他总是一位鼓舞人心的领导者。1958年,他作为美国代表,去日内瓦参加了西方和苏维埃集团科学家的会议,讨论了核试验检测方法。在这次会谈期间,劳伦斯病倒了,在他回到加利福尼亚后一个月于1958年8月27日劳伦斯在加州帕洛河阿托去世,终年57岁。1961年美国一个研究小组在劳伦斯曾经工作过的实验室里发现了一种新的元素,也就是第103号元素,人们为了纪念劳伦斯,把它叫他“铹”。
《回旋加速器》教学的反思

《回旋加速器》教学的反思高中物理新课程标准将学生探究能力的培养作为物理教学的目标之一,探究性教学法是培养学生科学探究能力和创新能力的一种重要的教学方法。
在教学活动中,教师通过创设问题情景来引导学生通过分析判断、交流讨论、总结归纳及教师的点拨提示等途径。
使学生理解、掌握知识,进而产生创见并能发现问题、分析问题和解决问题。
这里,我以“回旋加速器”一节为例,谈谈探究性教学的过程及体会。
1探究性学习的阅读准备阶段先给出如下材料,让学生阅读并思考:材料1:在现代物理学中,人们要用能量很高的带电粒子去轰击原子核,来观察它们的变化情况,怎样才能在实验室里大量产生高能量的带电粒子呢?这就要用一种常用的实验设备——加速器。
思考:请你根据已学过的知识,设计一种加速器,并画出原理图。
接着将学生所画的加速器的原理图投影展示出来,如图1所示。
®I s®l!II!卜+1/6+-i--+「+4「雄二螳三跳n®2图L图再给出一段材料,进一步启发学生思考:材料2:这种加速器的原理是利用电场进行加速的,早期的加速器就是利用高压电源的电势差来加速带电粒子的。
但它受实际所能达到的电势差的限制,粒子获得的能量只能达到几十万到几兆eV。
如何改进加速器,使粒子能获得更高的能量呢?让学生汇报改进的方法:采用多级电场的加速,如图2所示。
教师评价学生的设计思想:采用这种多级直线加速器,是很合乎道理的想法,但要实现这一设想,需要建一个很长很长的实验装置,长度要达几km到几十km,其中包含多级提供加速电压的装置。
在2O世纪初,人们很难建造。
思考:能否设计一种加速器,使粒子在较小的空间内得到电场多次的加速呢?体会:在阅读准备阶段,教师在课前要精心编写材料和思考题,创设问题情景,以激发学生解决问题的动机。
在课上让学生通过阅读,驱使他们在好奇心的诱发下去思考、去探究。
2交流、讨论阶段将学生分成若干小组,先让学生各自独立思考,并在小组内交流讨论,筛选出一种小组内一致同意的方案,然后由各组代表在课堂上展示原理图并陈述自己设计的思想。
1901至今历届诺贝尔物理学奖得主及小故事

目录1901-1950 (1)1951-1980 (4)1981-2000 (7)2001-2010 (8)2011-2020 (10)2021 (12)独享还是共享? (13)人选空缺怎么办? (13)最年轻和最年长的获奖者 (13)史上获两次诺贝尔物理学奖的人 (14)获得诺贝尔物理学奖的华人科学家 (14)作为根据诺贝尔遗嘱设立的五大奖项之一,物理学奖被授予“在物理学领域作出最重要发现或发明的人”,与其他诺贝尔奖相比,物理学奖的荐举和甄选过程更长、更缜密。
诺贝尔物理学奖规则规定,获奖者的贡献必须“已经受时间的考验”。
这意味着诺贝尔委员会往往会在科学发现的数十年以后才会为此颁发奖项。
自1901年设立至今,诺贝尔物理学奖已走过百年历程,记录了物理学发展史上的无数个里程碑,已成为人类文明不可分割的一部分。
1901-19501、1901年:威尔姆·康拉德·伦琴(德国)发现X射线2、1902年:亨德瑞克·安图恩·洛伦兹(荷兰)、塞曼(荷兰)关于磁场对辐射现象影响的研究3、1903年:安东尼·亨利·贝克勒尔(法国)发现天然放射性;皮埃尔·居里(法国)、玛丽·居里(波兰裔法国人)发现并研究放射性元素钋和镭4、1904年:瑞利(英国)气体密度的研究和发现氩5、1905年:伦纳德(德国)关于阴极射线的研究6、1906年:约瑟夫·汤姆生(英国)对气体放电理论和实验研究作出重要贡献并发现电子7、1907年:迈克尔逊(美国)发明光学干涉仪并使用其进行光谱学和基本度量学研究8、1908年:李普曼(法国)发明彩色照相干涉法(即李普曼干涉定律)9、1909年:伽利尔摩·马克尼(意大利)、布劳恩(德国)发明和改进无线电报;理查森(英国)从事热离子现象的研究,特别是发现理查森定律10、1910年:范德华(荷兰)关于气态和液态方程的研究11、1911年:维恩(德国)发现热辐射定律12、1912年:达伦(瑞典)发明可用于同燃点航标、浮标气体蓄电池联合使用的自动调节装置13、1913年:卡末林-昂内斯(荷兰)关于低温下物体性质的研究和制成液态氦14、1914年:马克斯·凡·劳厄(德国)发现晶体中的X射线衍射现象15、1915年:威廉·亨利·布拉格、威廉·劳伦斯·布拉格(英国)用X射线对晶体结构的研究16、1916年:未颁奖17、1917年:查尔斯·格洛弗·巴克拉(英国)发现元素的次级X辐射特性18、1918年:马克斯·卡尔·欧内斯特·路德维希·普朗克(德国)对确立量子论作出巨大贡献19、1919年:斯塔克(德国)发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象20、1920年:纪尧姆(瑞士)发现镍钢合金的反常现象及其在精密物理学中的重要性21、1921年:阿尔伯特·爱因斯坦(德国)他对数学物理学的成就,特别是光电效应定律的发现22、1922年:尼尔斯·亨利克·大卫·玻尔(丹麦)关于原子结构以及原子辐射的研究23、1923年:罗伯特·安德鲁·密立根(美国)关于基本电荷的研究以及验证光电效应24、1924年:西格巴恩(瑞典)发现X射线中的光谱线25、1925年:弗兰克·赫兹(德国)发现原子和电子的碰撞规律26、1926年:佩兰(法国)研究物质不连续结构和发现沉积平衡27、1927年:康普顿(美国)发现康普顿效应;威尔逊(英国)发明了云雾室,能显示出电子穿过空气的径迹28、1928年:理查森(英国)研究热离子现象,并提出理查森定律29、1929年:路易·维克多·德布罗意(法国)发现电子的波动性30、1930年:拉曼(印度)研究光散射并发现拉曼效应31、1931年:未颁奖32、1932年:维尔纳·海森伯(德国)在量子力学方面的贡献33、1933年:埃尔温·薛定谔(奥地利)创立波动力学理论;保罗·阿德里·莫里斯·狄拉克(英国)提出狄拉克方程和空穴理论34、1934年:未颁奖35、1935年:詹姆斯·查德威克(英国)发现中子36、1936年:赫斯(奥地利)发现宇宙射线;安德森(美国)发现正电子37、1937年:戴维森(美国)、乔治·佩杰特·汤姆生(英国)发现晶体对电子的衍射现象38、1938年:恩利克·费米(意大利)发现由中子照射产生的新放射性元素并用慢中子实现核反应39、1939年:欧内斯特·奥兰多·劳伦斯(美国)发明回旋加速器,并获得人工放射性元素40、1940—1942年:未颁奖41、1943年:斯特恩(美国)开发分子束方法和测量质子磁矩42、1944年:拉比(美国)发明核磁共振法43、1945年:沃尔夫冈·E·泡利(奥地利)发现泡利不相容原理44、1946年:布里奇曼(美国)发明获得强高压的装置,并在高压物理学领域作出发现45、1947年:阿普尔顿(英国)高层大气物理性质的研究,发现阿普顿层(电离层)46、1948年:布莱克特(英国)改进威尔逊云雾室方法和由此在核物理和宇宙射线领域的发现47、1949年:汤川秀树(日本)提出核子的介子理论并预言∏介子的存在48、1950年:塞索·法兰克·鲍威尔(英国)发展研究核过程的照相方法,并发现π介子1951-198049、1951年:科克罗夫特(英国)、沃尔顿(爱尔兰)用人工加速粒子轰击原子产生原子核嬗变50、1952年:布洛赫、珀塞尔(美国)从事物质核磁共振现象的研究并创立原子核磁力测量法51、1953年:泽尔尼克(荷兰)发明相衬显微镜52、1954年:马克斯·玻恩(英国)在量子力学和波函数的统计解释及研究方面作出贡献;博特(德国)发明了符合计数法,用以研究原子核反应和γ射线53、1955年:拉姆(美国)发明了微波技术,进而研究氢原子的精细结构;库什(美国)用射频束技术精确地测定出电子磁矩,创新了核理论54、1956年:布拉顿、巴丁(犹太人)、肖克利(美国)发明晶体管及对晶体管效应的研究55、1957年:李政道、杨振宁(美籍华人)发现弱相互作用下宇称不守衡,从而导致有关基本粒子的重大发现56、1958年:切伦科夫、塔姆、弗兰克(苏联)发现并解释切伦科夫效应57、1959年:塞格雷、欧文·张伯伦(OwenChamberlain)(美国)发现反质子58、1960年:格拉塞(美国)发现气泡室,取代了威尔逊的云雾室59、1961年:霍夫斯塔特(美国)关于电子对原子核散射的先驱性研究,并由此发现原子核的结构;穆斯堡尔(德国)从事γ射线的共振吸收现象研究并发现了穆斯堡尔效应60、1962年:达维多维奇·朗道(苏联)关于凝聚态物质,特别是液氦的开创性理论61、1963年:维格纳(美国)发现基本粒子的对称性及支配质子与中子相互作用的原理;梅耶夫人(美国人.犹太人)、延森(德国)发现原子核的壳层结构62、1964年:汤斯(美国)在量子电子学领域的基础研究成果,为微波激射器、激光器的发明奠定理论基础;巴索夫、普罗霍罗夫(苏联)发明微波激射器63、1965年:朝永振一郎(日本)、施温格、费因曼(美国)在量子电动力学方面取得对粒子物理学产生深远影响的研究成果64、1966年:卡斯特勒(法国)发明并发展用于研究原子内光、磁共振的双共振方法65、1967年:贝蒂(美国)核反应理论方面的贡献,特别是关于恒星能源的发现66、1968年:阿尔瓦雷斯(美国)发展氢气泡室技术和数据分析,发现大量共振态67、1969年:盖尔曼(美国)对基本粒子的分类及其相互作用的发现68、1970年:阿尔文(瑞典)磁流体动力学的基础研究和发现,及其在等离子物理富有成果的应用;内尔(法国)关于反磁铁性和铁磁性的基础研究和发现69、1971年:加博尔(英国)发明并发展全息照相法70、1972年:巴丁、库柏、施里弗(美国)创立BCS超导微观理论71、1973年:江崎玲于奈(日本)发现半导体隧道效应;贾埃弗(美国)发现超导体隧道效应;约瑟夫森(英国)提出并发现通过隧道势垒的超电流的性质,即约瑟夫森效应72、1974年:马丁·赖尔(英国)发明应用合成孔径射电天文望远镜进行射电天体物理学的开创性研究;赫威斯(英国)发现脉冲星73、1975年:阿格·N·玻尔、莫特尔森(丹麦)、雷恩沃特(美国)发现原子核中集体运动和粒子运动之间的联系,并且根据这种联系提出核结构理论74、1976年:丁肇中、里希特(美国)各自独立发现新的J/ψ基本粒子75、1977年:安德森、范弗莱克(美国)、莫特(英国)对磁性和无序体系电子结构的基础性研究76、1978年:卡皮察(苏联)低温物理领域的基本发明和发现;彭齐亚斯、R·W·威尔逊(美国)发现宇宙微波背景辐射77、1979年:谢尔登·李·格拉肖、史蒂文·温伯格(美国)、阿布杜斯·萨拉姆(巴基斯坦)关于基本粒子间弱相互作用和电磁作用的统一理论的贡献,并预言弱中性流的存在78、1980年:克罗宁、菲奇(美国)发现电荷共轭宇称不守恒1981-200079、1981年:西格巴恩(瑞典)开发高分辨率测量仪器以及对光电子和轻元素的定量分析;布洛姆伯根(美国)非线性光学和激光光谱学的开创性工作;肖洛(美国)发明高分辨率的激光光谱仪80、1982年:K·G·威尔逊(美国)提出重整群理论,阐明相变临界现象81、1983年:萨拉马尼安·强德拉塞卡(美国)提出强德拉塞卡极限,对恒星结构和演化具有重要意义的物理过程进行的理论研究;福勒(美国)对宇宙中化学元素形成具有重要意义的核反应所进行的理论和实验的研究82、1984年:卡洛·鲁比亚(意大利)证实传递弱相互作用的中间矢量玻色子[[W+]],W-和Zc的存在;范德梅尔(荷兰)发明粒子束的随机冷却法,使质子-反质子束对撞产生W 和Z粒子的实验成为可能83、1985年:冯·克里津(德国)发现量子霍耳效应并开发了测定物理常数的技术84、1986年:鲁斯卡(德国)设计第一台透射电子显微镜;比尼格(德国)、罗雷尔(瑞士)设计第一台扫描隧道电子显微镜85、1987年:柏德诺兹(德国)、缪勒(瑞士)发现氧化物高温超导材料86、1988年:莱德曼、施瓦茨、斯坦伯格(美国)产生第一个实验室创造的中微子束,并发现中微子,从而证明了轻子的对偶结构87、1989年:拉姆齐(美国)发明分离振荡场方法及其在原子钟中的应用;德默尔特(美国)、保尔(德国)发展原子精确光谱学和开发离子陷阱技术88、1990年:弗里德曼、肯德尔(美国)、理查·爱德华·泰勒(加拿大)通过实验首次证明夸克的存在89、1991年:皮埃尔·吉勒德-热纳(法国)把研究简单系统中有序现象的方法推广到比较复杂的物质形式,特别是推广到液晶和聚合物的研究中90、1992年:夏帕克(法国)发明并发展用于高能物理学的多丝正比室91、1993年:赫尔斯、J·H·泰勒(美国)发现脉冲双星,由此间接证实了爱因斯坦所预言的引力波的存在92、1994年:布罗克豪斯(加拿大)、沙尔(美国)在凝聚态物质研究中发展了中子衍射技术93、1995年:佩尔(美国)发现τ轻子;莱因斯(美国)发现中微子94、1996年:D·M·李、奥谢罗夫、R·C·理查森(美国)发现了可以在低温度状态下无摩擦流动的氦同位素95、1997年:朱棣文、W·D·菲利普斯(美国)、科昂·塔努吉(法国)发明用激光冷却和捕获原子的方法96、1998年:劳克林、霍斯特·路德维希·施特默、崔琦(美国)发现并研究电子的分数量子霍尔效应97、1999年:H·霍夫特、韦尔特曼(荷兰)阐明弱电相互作用的量子结构98、2000年:阿尔费罗夫(俄国)、克罗默(德国)提出异层结构理论,并开发了异层结构的快速晶体管、激光二极管;杰克·基尔比(美国)发明集成电路2001-201099、2001年:克特勒(德国)、康奈尔、卡尔·E·维曼(美国)在“碱金属原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基本性质研究”方面取得成就100、2002年:雷蒙德·戴维斯、里卡尔多·贾科尼(美国)、小柴昌俊(日本)“表彰他们在天体物理学领域做出的先驱性贡献,其中包括在“探测宇宙中微子”和“发现宇宙X射线源”方面的成就。
1935-1942年诺贝尔物理学奖获得者简介概要

1938:中子辐照可产生的新放射性元素,以及慢中子 引发的核反应的发现
恩里科· 费米 (Enrico Fermi) 1901.9.29-1954.11.28 美籍意大利裔物理学家,被公认为二十世纪的首席 物理大师之一,首创了β衰变理论,是弱相互作用理论的 前导,负责设计建造了世界首座自持续链式裂变核反应 堆,曼哈顿计划的主要领导者,与罗伯特· 奥本海默共同 被尊称为原子弹之父。以其名命名的有费米黄金定则、 费米-狄拉克统计、费米子、费米面、费米液体及费米常 数等。他的学生中有六位获得过诺贝尔物理学奖。 为纪念他,费米国家实验室和芝加哥大学的费米研究 所,以及100号化学元素镄都以其名字命名。 2008年6月11日发射的大面积伽玛射线空间望远镜于 同年8月26日改名为费米伽玛射线空间望远镜做为他身为 高能物理先驱的纪念。
诺贝尔物理学奖获得者简介 1935--1942
1935:发现中子
詹姆斯· 查德威克爵士,CH,FRS (Sir James Chadwick) 1891.10.20-1974.7.24 英国物理学家,曾在剑桥大学任教,后为 剑桥大学卡文迪许实验室副主任,任利物浦大 学教授,因“α射线穿过金属箔时发生偏离”的 成功实验,获英国国家奖学金。1932年在《自 然》发表《中子可能存在》,证实中子的存在 而获得诺贝尔物理学奖,曾领导英国的原子弹 研制工作,1945年被封为爵士。
历年诺贝尔物理学奖

历年诺贝尔物理学奖1901-19101901年诺贝尔物理学奖—— X射线的发现1902年诺贝尔物理学奖——塞曼效应的发现和研究1903年诺贝尔物理学奖——放射形的发现和研究1904年诺贝尔物理学奖——氩的发现1905年诺贝尔物理学奖——阴极射线的研究1906年诺贝尔物理学奖——气体导电1907年诺贝尔物理学奖——光学精密计量和光谱学研究1908年诺贝尔物理学奖——照片彩色重现1909年诺贝尔物理学奖——无线电报1910年诺贝尔物理学奖——气夜状态方程1911-19201911年诺贝尔物理学奖——热辐射定律的发现1912年诺贝尔物理学奖——航标灯自动调节器1913年诺贝尔物理学奖——低温物质的特性1914年诺贝尔物理学奖——晶体的X射线衍射1915年诺贝尔物理学奖—— X射线晶体结构分析1916年诺贝尔物理学奖——未授奖1917年诺贝尔物理学奖——元素的标识X辐射1918年诺贝尔物理学奖——能量级的发现1919年诺贝尔物理学奖——斯塔克效应的发现1920年诺贝尔物理学奖——合金的反常特性1921-19301921年诺贝尔物理学奖——对理论物理学的贡献1922年诺贝尔物理学奖——原子结构和原子光谱1923年诺贝尔物理学奖——基本电荷和光电效应实验1924年诺贝尔物理学奖—— X射线光谱学1925年诺贝尔物理学奖——弗兰克-赫兹实验1926年诺贝尔物理学奖——物质结构的不连续性1927年诺贝尔物理学奖——康普顿效应和威尔逊云室1928年诺贝尔物理学奖——热电子发射定律1929年诺贝尔物理学奖——电子的波动性1930年诺贝尔物理学奖——拉曼效应1931-19401931年诺贝尔物理学奖——未授奖1932年诺贝尔物理学奖——量子力学的创立1933年诺贝尔物理学奖——原子理论的新形式1934年诺贝尔物理学奖——未授奖1935年诺贝尔物理学奖——中子的发现1936年诺贝尔物理学奖——宇宙辐射和正电子的发现1937年诺贝尔物理学奖——电子衍射1938年诺贝尔物理学奖——中子辐照产生新放射性元素1939年诺贝尔物理学奖——回旋加速器的发明1940年诺贝尔物理学奖——未授奖1941-19501941年诺贝尔物理学奖——未授奖1942年诺贝尔物理学奖——未授奖1943年诺贝尔物理学奖——分子束方法和质子磁矩1944年诺贝尔物理学奖——原子核的磁特性1945年诺贝尔物理学奖——泡利不相容原理1946年诺贝尔物理学奖——高压物理学1947年诺贝尔物理学奖——电离层的研究v1948年诺贝尔物理学奖——云室方法的改进1949年诺贝尔物理学奖——预言介子的存在1950年诺贝尔物理学奖——核乳胶的发明1951-19601951年诺贝尔物理学奖——人工加速带电粒1952年诺贝尔物理学奖——核磁共振1953年诺贝尔物理学奖——相称显微法1954年诺贝尔物理学奖——波函数的统计解释和用符合法作出的发现1955年诺贝尔物理学奖——兰姆位移与电子磁矩1956年诺贝尔物理学奖——晶体管的发明1957年诺贝尔物理学奖——宇称守恒定律的破坏1958年诺贝尔物理学奖——切连科夫效应的发现和解释1959年诺贝尔物理学奖——反质子的发现1960年诺贝尔物理学奖——泡室的发明1961-19701961年诺贝尔物理学奖——核子结构和穆斯堡尔效应1962年诺贝尔物理学奖——凝聚态理论1963年诺贝尔物理学奖——原子核理论和对称性原理1964年诺贝尔物理学奖——微波激射器和激光器的发明1965年诺贝尔物理学奖——量子电动力学的发展1966年诺贝尔物理学奖——光磁共振方法1967年诺贝尔物理学奖——恒星能量的生成1968年诺贝尔物理学奖——共振态的发现1969年诺贝尔物理学奖——基本粒子及其相互作用的分类1970年诺贝尔物理学奖——磁流体动力学和新的磁性理论1971-19801971年诺贝尔物理学奖——全息术的发明1972年诺贝尔物理学奖——超导电性理论1973年诺贝尔物理学奖——隧道现象和约瑟夫森效应的发现1974年诺贝尔物理学奖——射电天文学的先驱性工作1975年诺贝尔物理学奖——原子核理论1976年诺贝尔物理学奖—— J/?粒子的发展1977年诺贝尔物理学奖——电子结构理论1978年诺贝尔物理学奖——低温研究和宇宙背景辐射1979年诺贝尔物理学奖——弱电统一理论1980年诺贝尔物理学奖—— C_P破坏的发现1981-19901981年诺贝尔物理学奖——激光光谱学与电子能谱学1982年诺贝尔物理学奖——相变理论1983年诺贝尔物理学奖——天体物理学的成就1984年诺贝尔物理学奖——W±和Z?粒子的发现1985年诺贝尔物理学奖——量子霍尔效应1986年诺贝尔物理学奖——电子显微镜与扫描隧道显微镜1987年诺贝尔物理学奖——高温超导电性1988年诺贝尔物理学奖——中微子的研究1989年诺贝尔物理学奖——原子钟和离子捕集技术1990年诺贝尔物理学奖——核子的深度非弹性散射1991-20011991年诺贝尔物理学奖——液晶和聚合物1992年诺贝尔物理学奖——多斯正比室的发明1993年诺贝尔物理学奖——新型脉冲星1994年诺贝尔物理学奖——中子谱学和中子衍射技术1995年诺贝尔物理学奖——中微子和重轻子的发现1996年诺贝尔物理学奖——发现氦-3中的超流动性1997年诺贝尔物理学奖——激光冷却和陷俘原子1998年诺贝尔物理学奖——分数量子霍耳效应的发现1999年诺贝尔物理学奖——亚原子粒子之间电弱相互作用的量子结构2000年诺贝尔物理学奖——半导体研究的突破性进展2001年诺贝尔物理学奖——玻色爱因斯坦冷凝态的研究2002年诺贝尔物理学奖——天体物理学领域的卓越贡献(资料来源:山东大学物理系张承踞老师)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1939年诺贝尔物理学奖——回旋加速器的发明
1939年诺贝尔物理学奖授予美国加利福尼亚州伯克利加州大学的劳伦斯(Ernest Orlando Lawrence,1901——1958),以表彰他发明和发展了回旋加速器,以及用之所得到的结果,特别是人工放射性元素。
核物理学的诞生揭开了物理学发展史中崭新的一页,它不但标志了人类对物质结构的认识进入了更深的一个层次,而且还意味着人类开始以更积极的方式变革自然、探索自然、开发自然和更充分地利用大自然的潜力。
各种加速器的发明对核物理学的发展起了很大的促进作用,而劳伦斯的回旋加速器则是这类创造中最有成效的一项。
从30年代起,以劳伦斯不断革新回旋加速器的活动为代表,物理学转入了大规模的集体研究,仪器设备越来越复杂,物理学家越来越多地参加有组织的研究工作,物理学与技术的关系也越来越密切,操作调试要求协调配合,实验室的规模要以工程的尺度来衡量,可以说,大规模物理学的出现是我们时代的特征。
劳伦斯顺应这一形势,走在时代的前列。
他以天才的设计思想、惊人的毅力和高超的组织才能,为原子核物理学和粒子物理学的发展作出了重大贡献。
劳伦斯1901年8月8日出生于美国南达科他州南部的坎顿(Canton)教师的家庭里,早年就对科学有浓厚兴趣,喜欢作无线电通讯实验,在活动中表现出非凡的才能,他聪慧博学,善于思考。
劳伦斯原想学医,却于1922年以化学学士学位毕业于南达科他大学,后转明尼苏达大学当研究生。
导师斯旺(W.F.G.Swann)对劳伦斯有很深影响,使他对电磁场理论进行了深入的学习。
劳伦斯获得硕士学位后随斯旺教授转芝加哥大学,在那里他遇见了著名的年轻物理学家康普顿(pton)教授。
他往往在康普顿的实验室里陪康普顿整夜地进行X射线实验,和康普顿倾谈,从康普顿那里吸取了许多经验。
劳伦斯在1925年以钾的光电效应为题完成博士学位。
在这期间,业余从事用示波管做显像实验,如果不是有人捷足先登,说不定他会取得电视机的发明专利。
他兴趣广泛,思路开阔,深得同行的赞许。
劳伦斯在耶鲁大学继续研究两年之后,于1927年当上了助理教授。
1928年转到伯克利加州大学任副教授。
两年后提升,是最年轻的教授。
在这里他一直工作到晚年,使伯克利加州大学由一所新学校变成了核物理的研究基地。
在劳伦斯选择科研方向时,卢瑟福学派的工作吸引了他,使他了解到“实验物理学家下一个重要阵地肯定是原子核”。
但是,像卢瑟福那样用镭辐射的α粒子轰击原子核效果毕竟是有限的,因为能量不足,强度也弱。
他深知出路在于找到一种办法,人为地使粒子加速,才能取得更好的效果。
1928年前后,人们纷纷在寻找加速粒子的方法。
当时实验室中用于加速粒子的主要设备是变压器和整流器、冲击发生器、静电发生器、特斯拉(Tesla)线圈等等。
这些方法全都要靠高电压,可是电压越高,对绝缘的要求也越苛刻,否则仪器就会被击穿。
正在劳伦斯苦思解决方案之际,一篇文献吸引了他的注意,使他领悟到可以采用一种巧妙的方法解决这个矛盾。
他后来在诺贝尔奖领奖演说中讲到:
“1929年初的一个晚上,当我正在大学图书馆测览期刊时,我无意中发现在一本德文电气工程杂志上有一篇维德罗(Wideroe)的论文,讨论正离子的多级
加速问题。
我读德文不太容易,只是看看插图和仪器照片。
从文章中列出的各项数据,我就明确了他处理这个问题的一般方法,即在联成一条线的圆柱形电极上加一适当的无线电频率振荡电压,以使正离子得到多次加速。
这一新思想立即使我感到找着了真正的答案,解答了我一直在寻找的加速正离子的技术问题。
我没有更进一步阅读这篇文章,就停下来估算把质子加速到一百万电子伏的直线加速器一般特性该是怎样。
简单的计算表明,加速器的管道要好几米长,这样的长度在当时作为实验室之用已是过于庞大了。
于是我就问自己这样的问题:不用直线上那许多圆柱形电极,可不可以靠适当的磁场装置,只用两个电极,让正离子一次一次地来往于电极之间?再稍加分析,证明均匀磁场恰好有合适的特性,在磁场中转圈的离子,其角速度与能量无关。
这样它们就可以以某一频率与一振荡电场谐振,在适当的空心电极之间来回转圈。
这个频率后来叫做‘回旋频率’。
”
图39-1就是劳伦斯回旋加速器的原理图。
图中显示了置于真空室中的两个金属D形盒D1、D2,两盒之间加以高频电压,离子源处于中心O附近,均匀磁场垂直加于盒的平面。
由于盒内无电场,离子将在盒内空间作匀速圆周运动,只有在两盒间的空隙才受电场作用。
如果电场方向的改变正好与离子运动的周期合拍,就有可能在每次通过间隙时加速。
随着速度的增加,离子做圆周运动的半径也将逐步加大,最后从窗口逸出。
1930年春,劳伦斯让他的一名研究生爱德勒夫森(Nels Edlefson)做了两个结构简陋的回旋加速器模型。
真空室的直径只有4英寸(10 cm),其中的一个还真的显示了能工作的迹象。
同年9月,美国科学院在伯克利开会,劳伦斯在会上宣布了这一新方法,并向与会者展示了一个小模型。
随后,劳伦斯让另一名研究生利文斯顿(M.S.Livingston)用黄铜和封蜡作真空室,直径也只有4.5英寸(11.4 cm),但这个“小玩意”已具有正式回旋加速器的一切主要特征。
1931年1月2日,在这微型回旋加速器上加了不到1000 V的电压,可使质子加速到80 000eV的能量,也就是说,不到1000 V的电压达到了80 000V的加速效果。
这次实验标志着回旋加速器的成功。
1932年,劳伦斯又做了9英寸(23 cm)和11英寸(28 cm)的同类仪器,可把质子加速到1.25兆电子伏(MeV)。
正好这时英国卡文迪什实验室的科克饶夫(J.D.Cockcroft)和瓦尔顿(E.T.S.Walton)用高压倍加器作出了锂(Li)转变实验。
消息传来,人心振奋,劳伦斯看到了加速器的光明前程,更加紧工作,不久就用11英寸(28 cm)回旋加速器轻而易举地实现了锂转变的实验,验证了科。