2017初中数学知识点中考总复习总结归纳

合集下载

2017年中考数学学习的重点总结

2017年中考数学学习的重点总结

2017年中考数学学习的重点总结我们要锻炼学数学的能力,要改变单纯接受的学习方式,学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题―实验探究―开展讨论―形成新知―应用反思”的学习方法。

在初三数学学习中尤其要做到七个重视:重视构建知识网络——宏观把握数学框架要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考查的重点。

因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行线、三角形、四边形、圆的概念、分类、定义、性质和判定,并会应用这些概念去解决一些问题。

重视夯实数学双基——微观掌握知识技能在复习过程中夯实数学基础,要注意知识的不断深化,注意知识之间的内在联系和关系,将新知识及时纳入已有知识体系,逐步形成和扩充知识结构系统,这样在解题时,就能由题目所提供的信息,从记忆系统中检索出有关信息,选出最佳组合信息,寻找解题途径、优化解题过程。

重视强化题组训练――感悟数学思想方法。

除了做基础训练题、平面几何每日一题外,还可以做一些综合题,并且养成解题后反思的习惯。

反思自己的思维过程,反思知识点和解题技巧,反思多种解法的优劣,反思各种方法的纵横联系。

而总结出它所用到的数学思想方法,并把思想方法相近的题目编成一组,不断提炼、不断深化,做到举一反三、触类旁通。

逐步学会观察、试验、分析、猜想、归纳、类比、联想等思想方法,主动地发现问题和提出问题。

重视建立“病例档案”——做到万无一失准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常地拿出来看看、想想错在哪里,为什么会错,怎么改正,这样到中考时你的数学就没有什么“病例”了。

我们要在教师的指导下做一定数量的数学习题,积累解题经验、总结解题思路、形成解题思想、催生解题灵感、掌握学习方法。

重视常用公式技巧――做到思维敏捷准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。

2017年中考数学复习知识点大全

2017年中考数学复习知识点大全

2017年中考数学复习知识点第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2017年中考初中数学知识点大全(详细、全面)

2017年中考初中数学知识点大全(详细、全面)

2017年中考初中数学知识点大全(详细、全面)第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

(完整)2017年中考初中数学知识点大全(详细、全面),推荐文档

(完整)2017年中考初中数学知识点大全(详细、全面),推荐文档

2017年中考初中数学知识点大全(详细、全面)第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2017年中考初中数学知识点大全(详细全面)

2017年中考初中数学知识点大全(详细全面)

2017年中考初中数学知识点大全(详细、全面)第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

±”。

正数a的平方根记做“a2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a≥0)0≥aa2;注意a的双重非负性:==a-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a-,这说明三次根号内的负号可以移到根号外面。

2017年最新中考数学复习知识点总结

2017年最新中考数学复习知识点总结

2017年最新中考数学复习知识点总结第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2017届九年级数学中考总复习:全等三角形判定一(SAS、ASA、AAS)(提高)知识讲解

2017届九年级数学中考总复习:全等三角形判定一(SAS、ASA、AAS)(提高)知识讲解

全等三角形判定一(SAS,ASA ,AAS )(提高)【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边” 1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、如图,AD是△ABC的中线,求证:AB+AC>2AD.【思路点拨】延长AD到点E,使AD=DE,连接CE.通过证全等将AB转化到△CEA中,同时也构造出了2AD.利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD到点E,使AD=DE,连接CE.在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD.∴△ABD≌△ECD.∴AB=CE.∵AC+CE>AE,∴AC+AB>AE=2AD.即AC+AB>2AD.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB+AC>2AD,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D逆时针旋转180°得到△CED,也就把AB转化到△CEA中,同时也构造出了2AD.若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.2、已知,如图:在△ABC中,∠B=2∠C,AD⊥BC,求证:AB=CD-BD.【思路点拨】在DC上取一点E,使BD=DE,则△ABD≌△AED,所以AB=AE,只要再证出EC =AE即可.【答案与解析】证明:在DC上取一点E,使BD=DE∵ AD⊥BC,∴∠ADB=∠ADE在△ABD和△AED中, BD=DE,AD=AD.∴△ABD≌△AED(SAS).∴AB=AE,∠B=∠AED.又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.举一反三:【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=12(AB+AD),求证:∠B+∠D=180°.【答案】证明:在线段AE上,截取EF=EB,连接FC,∵CE⊥AB,AEDC B∴∠CEB =∠CEF =90° 在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS ) ∴∠B =∠CFE ∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB , 即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS ) ∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE. ∴∠AFC +∠B =180°,∠B +∠D =180°.类型二、全等三角形的判定2——“角边角”2、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC =∠C,∠CBF=∠ADG,则可证△DAE≌△BCF 【答案与解析】 证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC ∴∠ABC=2∠CBF ∵∠ABC=2∠ADG ∴∠CBF=∠ADG在△DAE 与△BCF 中⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA ) ∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等. 举一反三:【高清课堂:379110 全等三角形判定二,例7】【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型三、全等三角形的判定3——“角角边”3、已知:如图,∠ACB =90°,AC =BC ,CD 是经过点C 的一条直线,过点A 、B 分别作AE ⊥CD 、BF ⊥CD ,垂足为E 、F , 求证:CE =BF.【答案与解析】证明:∵ AE ⊥CD 、BF ⊥CD ,∴∠AEC =∠BFC =90° ∴∠BCF +∠B =90° ∵∠ACB =90°,∴∠BCF +∠ACF =90° ∴∠ACF =∠B在△BCF 和△CAE 中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC ∴△BCF ≌△CAE (AAS ) ∴CE =BF【总结升华】要证CE =BF ,只需证含有这两个线段的△BCF ≌△CAE.同角的余角相等是找角等的好方法.4、平面内有一等腰直角三角板(∠ACB =90°)和一直线MN .过点C 作CE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F .当点E 与点A 重合时(如图1),易证:AF +BF =2CE .当三角板绕点A 顺时针旋转至图2的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF 、BF 、CE 之间又有怎样的数量关系,请直接写出你的猜想,不需证明.【思路点拨】过B 作BH ⊥CE 与点H ,易证△ACE ≌△CBH ,根据全等三角形的对应边相等,即可证得AF +BF =2CE . 【答案与解析】解:图2,AF +BF =2CE 仍成立, 证明:过B 作BH ⊥CE 于点H ,∵∠CBH +∠BCH =∠ACE +∠BCH =90° ∴∠CBH =∠ACE在△ACE 与△CBH 中,90ACH CBH AEC CHB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE ≌△CBH .(AAS ) ∴CH =AE ,BF =HE ,CE =EF ,∴AF +BF =AE +EF +BF =CH +EF +HE =CE +EF =2EC .【总结升华】正确作出垂线,构造全等三角形是解决本题的关键. 举一反三:【变式】已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.【答案】解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥, 则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A BAD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS )图2ADBCE M NF∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°, ∴∠ MDE =∠NDF 在△DME 与△DNF 中,90EMD FDN DM DNMDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA ) ∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形 可知ABC DMCN 1S =S 2△四边形, ∴12DEFCEF ABC S S S +=△△△类型四、全等三角形判定的实际应用5、如图为紫舞公园中的揽月湖,现在测量揽月湖两旁A 、B 两棵大树间的距离(不得直接量得).请你根据三角形全等的知识,用几根足够长的绳子及标杆为工具,设计一种测量方案. 要求:(1)画出设计的测量示意图; (2)写出测量方案的理由.【思路点拨】(1)本题属于主观性试题,有多种方案,我们可以构造8字形的全等三角形来测得揽月湖的长度(如下图);(2)根据三角形全等的证明得出对应边相等即可得出答案. 【答案与解析】 解:(1)如图所示;分别以点A 、点B 为端点,作AQ 、BP , 使其相交于点C ,使得CP=CB ,CQ=CA ,连接PQ , 测得PQ 即可得出AB 的长度.(2)理由:由上面可知:PC=BC ,QC=AC , 又∠PCQ=∠BCA ,∴在△PCQ 与△BCA 中,,∴△PCQ ≌△BCA (SAS ),∴AB=PQ.【总结升华】此题考查了全等三角形的应用与证明;此题带有一定主观性,学生要根据已知知识对新问题进行探索和对基础知识进行巩固,这种做法较常见,要熟练掌握.。

(完整版)2017最全初中数学知识点总结,推荐文档

(完整版)2017最全初中数学知识点总结,推荐文档

初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。

在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。

正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。

两个负数比较大小,绝对值大的反而小。

有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。

③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学总复习资料第一章数与式考点一、实数的概念及分类 1、 实数的分类厂正有理数「厂有理数2零 卜有限小数和无限循环小数实数2 L 负有理数J厂正无理数「■-无理数"; 炉 无限不循环小数L 负无理数」2、 无理数:在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: 一 一 n(1 )开方开不尽的数,如 J 7,Q 2等; (2)有特定意义的数,如圆周率 n 或化简后含有 n 的数,如一+8等;3(3 )有特定结构的数,如0.1010010001…等;(4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值 1、 相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有 a+b=0 , a= — b ,反之亦成立。

2、 绝对值一个数的绝对值就是表示这个数的点与原点的距离, |a|%。

零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a%;若|a|=-a ,则a 切。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、 倒数:如果a 与b 互为倒数,则有 ab=1,反之亦成立。

倒数等于本身的数是 1和-1。

零没有倒数。

考点三、平方根、算数平方根和立方根 1、平方根:如果一个数的平方等于a ,那么这个数就叫做 a 的平方根(或二次方跟)。

(1) 一个数有两个平方根,他们 互为相反数;零的平方根是零;负数没有平方根。

(2)正数a 的平方根记做“,a ”。

2、算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“ Va ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

•、a 0a b 0 a b, a b 0 a b,考点六、实数的运算考点七、整式的有关概念1、 代数式:用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、 单项式:只含有数字与字母的积的代数式叫做单项式。

4-a 2b ,这种表示就是错误的,应写成 13aa 2;注意a 的双重非负性:Y'--a ( a <0)3、立方根:如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

Q -v a ,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数1、有效数字:一个近似数四舍五入到哪一位, 就说它精确到哪一位, 这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法:把一个数写做 a 10n 的形式,其中1 a 10 , n 是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较1、 数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

2、 实数大小比较的几种常用方法(1) 数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

a 、 (2)求差比较:设a 、b 是实数,(3) 求商比较法:设 aa 、b 是两正实数,b;; 1b ;绝对值比较法:设 a 、 b 是两负实数,则 a(5)平方法:设a 、b 是两负实数,则a 2 b 2 a b 。

1、加法交换律:a b2、加法结合律:(a b) c (b c)3、乘法交换律:ab ba4、乘法结合律: (ab)c a(bc)5、乘法对加法的分配律a(b c) ab ac 6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如2b 。

一个单项式中,所有字母3 3的指数的和叫做这个单项式的次数。

如5a3b2c是6次单项式。

3、多项式:几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

4、单项式和多项式统称整式。

5、用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

6、同类项:所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

7、去括号法则(1)括号前是“ +”,把括号和它前面的“ + ”号一起去掉,括号里各项都不变号。

(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都变号。

8、整式的运算法则(1 )整式的加减法::①去括号; ②合并同类项。

(2)整式的乘法:a m?a n a m n(m,n都是正整数)(a m)n a mn(m,n都是正整数)(ab)n a n b n(n都是正整数)(a b)(a b) a2 b2(a b)2a2 2ab b2(a b)2a2 2ab b2(3)整式的除法:m a n a a m n(m, n都是正整数,a0)注意:①单项式乘单项式的结果仍然是单项式。

②单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。

③计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。

④多项式与多项式相乘的展开式中,有同类项的要合并同类项。

1⑤公式中的字母可以表示数,也可以表示单项式或多项式。

⑥a0 1(a 0);a p-(a 0, p为正整数)a p⑦多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。

考点八、因式分解1、因式分解:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

2、因式分解的常用方法:(1)提公因式法:ab ac a(b c)考点十、二次根式2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。

3、化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

4、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。

J25、二次根式的性质:(1)( . a) a(a 0)广a(a0)(3)Vab V a ? J b (a0,b 0)(2)佇c3Y1f—;a va , 小,j l (a 0,b\ b <ba(a0)(4)0)6、二次根式混合运算:二次根式的混合运算与实数中的运算顺序一•样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)(2)运用公式法: a2 b2 (a b)(a b) a2 2ab b2 (a b)2a2 2ab b2 (a b)2(3)十字相乘法: 2a (p q)a pq (a p)(a q)3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。

)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:式;(3)分解因式必须分解到每一个因式都不能再分解为止。

2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因考点九、分式1、分式的概念:2、分式的性A A,般地,用A、B表示两个整式,A —B就可以表示成的形式,如果B中含有字母,式子就叫做分式。

其中,B B的分母。

分式和整式通称为有理式。

(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2 )分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

A叫做分式的分子,B叫做分式3、分式的运算法则a c ac a c a d ad n(了%(n为整数);b b a b a bb d bd :1b d bc bc ; c c ca c ad bcb d bd1、二次根式:式子,a (a0)叫做二次根式,二次根式必须满足:含有二次根号V ”;被开方数a必须是非负数。

第二章方程(组)与不等式(组)考点一、一元一次方程的概念1、方程:含有未知数的等式叫做方程。

2、方程的解:能使方程两边相等的未知数的值叫做方程的解。

3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。

(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。

4、一元一次方程:只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程ax b 0( x为未知数,a 0)叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。

考点二、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:ax2 bx c 0(a 0),它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

考点三、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如(x a)2 b的一元二次方程。

根据平方根的定义可知,x a是b的平方根,当b 0时,x a . b,x a b,当b<0时,方程没有实数根。

2、配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式a2 2ab b2(a b)2,把公式中的a看做未知数x,并用x代替,则有x2 2bx b2(x b)2。

3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

2一元二次方程ax2 bx c 0(a 0)的求根公式:x —b 4ac(b2 4ac 0)2a4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

考点四、一元二次方程根的判别式根的判别式:一元二次方程ax2 bx c 0( a 0)中,b24ac叫做一元二次方程ax2bx c 0(a 0)的根的判别式,通常用" ”来表示,即b24ac 考点五、一元二次方程根与系数的关系b c如果方程ax2 bx c 0(a 0)的两个实数根是x1?x2,那么捲x2,乂必2。

相关文档
最新文档