故障诊断理论方法综述
设备状态监测及故障诊断综述

设备状态监测与故障诊断综述:摘要从设备管理的角度,介绍了典型的设备状态监测与故障诊断的诊断理论、技术手段和具体方法。
首先对设备状态监测与故障诊断的意义、开展,根底理论和现状进展了介绍,阐述了设备状态监测、故障诊断与设备管理的关系。
进而对振动监测、温度检测、无损检测等根本监测手段的原理及诊断方法。
关键字:状态监测;故障诊断;振动;设备1设备状态监测和故障诊断概述1.1设备状态监测和故障诊断的意义和开展历史1.1.1设备故障及故障诊断的意义随着现代化工业的开展,设备能否平安可靠地以最正确状态运行,对于确保产品质量、提高企业生产能力、保障平安生产都具有十分重要的意义。
设备的故障就是指设备在规定时间内、规定条件下丧失规定功能的状况,通常这种故障是从*一零部件的失效引起的。
设备的故障诊断则是发现并确定故障的部位和性质。
寻找故障的起因,预报故障的趋势并提出相应的对策。
1.1.2 设备故障诊断技术开展历史设备故障诊断技术的开展是与设备的维修方式严密相连的。
可以将故障诊断技术按测试手段分为六个阶段,即感官诊断、简易诊断、综合诊断、在线监测、精细诊断和远程监测。
从时间考察,故障诊断技术大致可以分为20世纪60年代以前、60年代到80年代和80年代以后几个阶段。
1.2现代设备故障诊断技术在故障诊断学建立之前,传统的故障诊断方法主要是依靠经历的积累。
将反映设备故障的特殊信号,从信息论角度出发对其进展分析,是现代设备故障诊断技术的特点。
可以分为统计诊断、逻辑诊断、模糊诊断。
其中有几种方法做简单的介绍。
贝叶斯法,此方法是基于概率统计的推理方法,以概率密度函数为根底,综合设备的故障信息来描述设备的运行状态,进展故障分析。
此外还有最大似然法、时间序列、法灰色系统法和故障树分析法。
故障树分析法模型是一个基于被诊断对象构造、功能特性的行为模型,是一种定性的因果模型。
1.3基于知识的故障诊断方法基于知识的故障诊断方法,不需要待测对象准确的数学模型,而且具有智能特性。
风电机组故障诊断综述

风电机组故障诊断综述随着风电技术的快速发展,风电机组的故障诊断成为了风电运维中的重要环节。
本文将对风电机组故障诊断的研究和应用进行综述,包括故障诊断方法、诊断技术和应用案例等方面的内容。
一、故障诊断方法风电机组故障诊断方法主要包括基于物理模型的方法、基于数据驱动的方法和基于统计学方法。
基于物理模型的方法包括使用电气模型、机械模型和流体模型等来建立风电机组的数学模型,通过对模型进行分析和仿真来诊断故障。
基于数据驱动的方法通过采集风电机组的实时数据,使用数据挖掘和机器学习的方法来建立故障模型,从而进行故障诊断。
基于统计学方法则是通过对大量风电机组数据进行统计分析,找出故障的概率分布特征,从而进行故障诊断。
风电机组故障诊断技术主要包括信号处理技术、特征提取技术和故障诊断算法。
信号处理技术主要包括滤波、降噪和特征提取等方法,用于对采集的传感器信号进行预处理。
特征提取技术主要包括时域分析、频域分析和小波分析等方法,用于从采集的数据中提取故障特征信息。
故障诊断算法主要包括贝叶斯网络、支持向量机和神经网络等方法,用于建立故障模型并进行故障诊断。
三、应用案例风电机组故障诊断在实际应用中已取得了一系列的成果。
利用门架振动传感器数据对风电机组变频器输出电流故障进行诊断,通过特征提取和支持向量机算法进行故障诊断,取得了良好的诊断效果。
利用风电机组振动加速度传感器数据对齿轮箱故障进行诊断,通过小波分析和神经网络算法进行故障诊断,也取得了较好的诊断效果。
总结:风电机组故障诊断是风电领域的重要研究方向,不仅对提高风电机组的可靠性和可用性具有重要意义,也对风电运维的效率和经济性有着重要影响。
当前,基于物理模型、数据驱动和统计学的故障诊断方法仍在不断发展,并且越来越多的应用案例也表明了故障诊断技术的可行性和有效性。
相信随着技术的不断进步,风电机组故障诊断将取得更大的发展。
故障诊断方法综述

故障诊断方法综述故障诊断是指在设备或系统出现故障时,通过一系列的方法和技术,找出故障原因并进行修复的过程。
故障诊断方法的选择和应用,直接影响到故障诊断的效率和准确性。
本文将综述常见的故障诊断方法。
1. 经验法经验法是指通过经验和直觉来判断故障原因的方法。
这种方法的优点是简单易行,但缺点是准确性不高,容易出现误判。
因此,经验法只适用于一些简单的故障诊断。
2. 分析法分析法是指通过对故障现象进行分析,找出故障原因的方法。
这种方法的优点是准确性高,但缺点是需要一定的专业知识和技能。
分析法适用于大多数故障诊断,但需要进行系统性的分析和判断。
3. 测试法测试法是指通过对设备或系统进行测试,找出故障原因的方法。
这种方法的优点是直观、准确,但缺点是需要专业的测试设备和技术。
测试法适用于大多数故障诊断,但需要进行系统性的测试和分析。
4. 模拟法模拟法是指通过模拟故障现象,找出故障原因的方法。
这种方法的优点是可以在不影响正常运行的情况下进行故障诊断,但缺点是需要专业的模拟设备和技术。
模拟法适用于一些特殊的故障诊断,如电路板故障等。
5. 统计法统计法是指通过对设备或系统的历史数据进行统计分析,找出故障原因的方法。
这种方法的优点是可以发现一些隐蔽的故障,但缺点是需要大量的数据和专业的统计技术。
统计法适用于一些长期运行的设备或系统的故障诊断。
故障诊断方法的选择和应用,需要根据具体情况进行综合考虑。
在实际应用中,可以根据故障现象的特点和设备或系统的特点,选择合适的故障诊断方法,以提高故障诊断的效率和准确性。
滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。
然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。
因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。
一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。
通过观察滚动轴承的外观和运行状态来判断是否存在故障。
例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。
2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。
通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。
常用的振动诊断方法包括时域分析、频域分析和小波分析等。
3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。
通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。
常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。
4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。
由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。
通过测量轴承的温度分布,可以判断轴承是否存在异常。
二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。
常用的模式识别技术包括支持向量机、神经网络和决策树等。
2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。
通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。
常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。
3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。
通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。
飞机电源系统故障诊断方法综述及发展趋势

飞机电源系统故障诊断方法综述及发展趋势引言随着航空业的高速发展,飞机电源系统的可靠性和故障诊断的重要性逐渐凸显。
在飞机飞行过程中,电源系统的异常状况可能会导致重大的安全事故或机体故障,因此,研究和发展飞机电源系统故障诊断方法成为一项迫在眉睫的任务。
本文将对目前常用的飞机电源系统故障诊断方法进行综述,并对未来的发展趋势进行展望。
一、传统故障诊断方法1. 人工检查方法:传统的故障诊断方法主要依赖经验丰富的维修人员进行目视检查及多项测试。
然而,这种方法效率低下且易受人为因素的影响,无法满足飞机电源系统故障诊断的准确性和实时性要求。
2. 运行参数监控法:该方法通过对飞机电源系统运行参数的监测和对比,来判断系统是否存在异常状况。
这种方法的优点是能够实时监测系统状态,但是对复杂故障的检测能力有限。
3. 统计学方法:统计学方法通过对电源系统的故障数据进行统计分析,以发现系统中的异常行为。
然而,由于飞行环境和飞机型号的多样性,统计学方法在飞机电源系统故障诊断中的应用受到了一定的局限。
二、基于模型的故障诊断方法基于模型的故障诊断方法是近年来逐渐兴起的技术,它通过建立飞机电源系统的数学模型,结合实时采集的参数数据,对系统进行状态估计和故障诊断。
1. 基于物理模型的方法:该方法基于电源系统的物理特性建立模型,通过对比模型输出与实际测量数据的差异,诊断系统中的故障。
然而,该方法在复杂系统中的应用较为困难,且对模型的准确性要求较高。
2. 基于知识库的方法:这种方法依赖于预先构建的故障知识库,通过匹配实际故障数据与知识库中的模式相似度,来实现故障诊断。
然而,知识库的构建需要大量的人力和资源投入,并且难以适应不同型号飞机的故障诊断需求。
三、基于机器学习的故障诊断方法近年来,随着机器学习技术的飞速发展,越来越多的学者开始将其应用于飞机电源系统的故障诊断。
1. 支持向量机(SVM):SVM是一种常用的机器学习算法,通过训练一组故障样本,在特征空间中构建决策边界,对飞机电源系统进行分类和故障诊断。
铁路信号设备故障诊断方法综述

传 统故 障诊 断方法 , 就是 信 号设备 维修人 员依 靠设备 故障机理 的把握程度和 经验 , 进行现 场分析 、
判 断和 处理 故障 。常用 方法 有盘 面压 缩法 、 步进 电 压法 、 逻辑 推理法 、 选法 、 优 比较法 、 断线法 、 核法 、 校 试 验 分析 法 、 察检 法 、 换法 等 。6 0 观 代 5 2电气集 中
具体 系统 或故 障 的诊断 , 很难 进行 扩充 或应 用于 不
于 电路 原理 逻辑 计算 机仿 真故 障机理 分析 模 型法 、
基 于模拟量监 测数据 的故障诊 断及趋势预测 分析模 型法和基 于专家故 障处 理实 际经 验知识机理 分析模
型法对铁 路信 号系统 的所有控制 电路进行 了故障诊
2故障诊 断方法
根据 铁路 信号 设备 故障 处理技 术 的发展 , 障 故 诊 断方法 可 分为 以下 四类 :传统 故 障诊 断方 法 、 基 于信 号处 理方法 、 于解析 模 型方法 和基 于人 工智 基
能故 障诊 断方 法 。
障和监 视控 制机 故 障 的问题 。
22信号 处理 法 .
ro 模型对 铁路信 号计算机联锁 系统 的具体情况 分 kv 析 了每种 模型 的使用 情7 比如 F A C 模型 应 兄, ME / A 用在部件 和模块 中 、 故障树分 析法应用在 子系统 L 、 f l 事 件树 分 析法 应 用在 子 系统 和集 成部 件 中和 Ma — ro 模 型应 用在 子 系统 和 部件 中 。但在 实 际诊 断 kv 中, 常常难 以构成 被诊断对 象的精确 数学模型 , } 加 : 大 型复 杂设 备的非 线性特 征 , 大大 限制 了解 析模 型 诊 断法 的使用 效果 和使用 范 围 。 24人 工 智能故 障诊 断法 . 人 _ 智 能故 障诊 断法 是利用 专家 系统 、 r 模糊 逻 辑 、 工神 经 网络 等进 行诊 断 以及 与其 他传 统技 术 人 相 融合 的诊 断技术 , 并构成 以诊 断对象 进行状 态识
基于知识的故障诊断方法综述

基于知识的故障诊断方法综述引言故障诊断是解决各种技术问题的关键步骤之一,它涉及到从已知的问题描述中推断出可能的故障原因,并采取相应的措施进行修复。
基于知识的故障诊断方法是一种通过利用专家知识和经验来进行故障诊断的方法。
本文将对基于知识的故障诊断方法进行综述,包括其定义、分类、应用领域以及优缺点等内容。
定义基于知识的故障诊断方法是一种利用专家知识和经验来进行故障判断和定位的方法。
它通过建立一个包含领域专家知识的模型,结合实际问题中出现的异常情况,根据预先定义好的规则和逻辑判断,推测可能存在的故障原因,并给出相应的解决方案。
分类基于知识的故障诊断方法可以按照不同的分类标准进行分类,下面将介绍几种常见的分类方式:基于规则推理基于规则推理是一种常见而直观的基于知识的故障诊断方法。
它通过事先定义好的规则库,将故障现象与规则进行匹配,从而推断出可能的故障原因。
这种方法的优点是易于理解和实现,但需要手动编写大量的规则,并且对专家知识的获取和表示要求较高。
基于案例推理基于案例推理是一种基于经验的故障诊断方法。
它通过建立一个案例库,将已知的故障案例存储起来,并根据当前问题与案例之间的相似度进行匹配,从而找到最相似的故障案例,并借鉴其解决方案。
这种方法可以充分利用历史数据和经验,但对案例库的构建和维护要求较高。
基于知识图谱基于知识图谱是一种以图结构来表示和组织知识的故障诊断方法。
它通过将领域专家知识以及实际问题中出现的异常情况进行抽象和建模,构建一个包含实体、关系和属性等元素的知识图谱,并利用图上的推理算法来进行故障诊断。
这种方法可以灵活地表示复杂的知识关系,但对知识图谱的构建和维护要求较高。
应用领域基于知识的故障诊断方法在许多领域都有广泛的应用,下面将介绍几个常见的应用领域:工业自动化在工业自动化领域,设备故障会导致生产线停机,影响生产效率。
基于知识的故障诊断方法可以帮助工程师快速定位故障原因,并采取相应的措施进行修复,从而减少停机时间和生产损失。
svm 故障诊断综述

svm 故障诊断综述
支持向量机(SVM)是一种广泛使用的机器学习算法,但在实际使
用过程中可能会遇到故障,影响算法的性能和输出结果的准确性。
本
文将对SVM故障诊断进行综述。
SVM故障的主要原因可以分为三类:数据集问题、算法参数问题
和编程语言问题。
对于数据集问题,SVM需要依赖于输入数据,如果输入数据存在问题,就会直接影响SVM的性能。
常见的数据集问题包括
噪声、异常值、数据不平衡等。
解决这些问题的关键是数据清洗和特
征选择。
算法参数问题指的是在使用SVM的过程中,可能会使用不合适的
算法参数,从而导致模型过拟合或欠拟合。
这些参数包括核函数的类型、正则化参数和惩罚参数等。
通常需要通过交叉验证等技术来优化SVM的参数,以获得更好的性能。
编程语言问题是指在编写SVM程序的过程中,可能会出现语法错
误或编译错误。
这通常是由于程序员的疏忽或对编程语言的不熟悉所致。
为了避免这些问题,程序员应该熟悉所使用的编程语言,并遵循
良好的编程习惯。
总之,SVM作为一种常见的机器学习算法,在实际应用中可能会
遇到多种故障。
针对这些故障,需要程序员具备基础知识和分析能力,及时识别和解决问题,保证算法的性能和输出结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故障诊断理论方法综述
故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。
其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法
基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。
它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。
基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。
二、基于信号处理的方法
当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。
基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。
基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。
基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。
基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。
三、基于知识的方法
在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。
对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。
尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。
经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。
利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。
基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。
由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。
如图1.1
图1
1.基于规则的故障诊断专家系统
基于规则的诊断方法是根据以往专家诊断的经验,将其归纳成规则,通过启发式经验知识进行故障诊断的计算机软件系统。
产生式规则的专家系统是其主要形式。
产生式规则的基本形式为:if(条件),then(结论)。
基于产生式规则的专家系统允许用户向系统知识库中输入大量上述类型的规则,并制定规则的解释方式,按照一定步骤进行推理获得诊断结论。
产生式规则推理使得用户不用直接面对实际系统的复杂组成结构和解析模型等,而关注于规则的制定。
另外还有着模块性良好,扩充修改和理解方便等优点。
理论上,只要规则能制定得足够细致、足够准确,产生式规则推理能实现高精度的故障定位。
尽管基于规则的诊断专家系统获得了一定的成功,但由于该方法属于反演推理,因而不是一种确保唯一性的推理形式,存在着知识获取困难、知识台阶窄以及控制策略不灵活等缺点。
对大型规则库来说,容易产生规则匹配冲突、组合爆炸等问题,而且系统缺乏自学习能力,不适用于复杂系统或经验不足系统的故障诊断。
对于大型的诊断对象,其求解过程搜索空间大,速度慢,难以实现实时在线诊断要求。
基于规则的方法对于诊断结论除了重复被采用的规则外,无法作出进一步解释,通常只能诊断单个故障,难以诊断多重故障。
2.基于模型推理的故障诊断专家系统
基于模型的推理(Model-Based Reasoning,MBR)方法于上世纪80年代由人工智能专家Raymond Reiter和Johan de Kleer等提出,该方法的基本思想是根据实际系统的观测行为与系统模型的预测行为之间的差异进行诊断,如图1.2所示。
Reiter提出了故障系统最小冲突集和最小碰集的概念,并将基于模型的故障诊断归纳为计算系统极小冲突集和由极小冲突集计算极小碰集两步,计算得到的每个极小碰集都是系统的候选诊断,然后通过测试,得到极小碰集中唯一正确的诊断。
近年来,通过国内外学者的共同努力,在极小冲突集和极小碰集的计算方面,己经形成了一系列独特的理论和方法,并取得了大量成功的应用。
国内外多年的理论研究和工程实践表明,MBR方法由于不需要预设故障集,推理知识完备,性能较好;
不依赖于诊断实例和诊断经验,因而适用于依据原理进行故障诊断,它也能够诊断多重故障并能对故障结论进行解释。
另外,MBR方法利用系统结构和功能对系统建模,借鉴人脑的推理方式进行诊断推理,可以为故障诊断过程提供更深层的分析。
但是基于模型的诊断专家
系统仍然依赖于专家的专业领域知识,特别是模型的准确性,在实时诊断中还将消耗巨大的计算资源,限制了其应用范围。
3.基于神经网络的故障诊断专家系统
人工神经网络(Artificial Neural Network,ANN)具有较好的容错性、响应快、强大的学习能力、自适应能力和非线性逼近能力等,被广泛应用于故障诊断领域。
基于神经网络的故障诊断专家系统有两种形式:一种是使用神经网络来构造专家系统,变基于符号的推理为基于数字运算的推理,提高系统效率,解决自学习问题;另一种是把神经网络作为知识源的表示和处理模式,并与其它推理机制相融合,实现多模式推理。
神经网络的自组织、自学习等特点也是其它专家系统无法匹敌的,因此基于神经网络的故障诊断专家系统在控制系统故障诊断与容错控制领域获得了广泛的应用。
然而,神经网络专家系统也存在固有的弱点。
首先,系统性能受到所选择的训练样本集的限制,训练样本集选择不当,特别是在训练样本集很少的情形下,很难指望它具有较好的归纳推理能力;其次,神经网络没有能力解释自己的推理过程和推理依据及其存储知识的意义;再次,神经网络利用知识和表达知识的方式单一,通常的神经网络只能采用数值化的知识;最后,也是最根本的一点是神经网络只能模拟人类感觉层次上的智能活动,在模拟人类复杂层次的思维方面,如基于目标的管理、综合判断与因果分析等方面还远远不及传统的专家系统。
因此,人们正试图研究符号推理与数值推理相结合的集成式智能诊断系统,以期能更好地模拟人类的思维过程。
4.基于模糊推理的故障诊断专家系统
模糊诊断的实质是引入隶属函数概念,模糊逻辑以其较强的结构性知识表达能力,适合处理诊断中的不确定信息和不完整信息。
在模糊推理中建立模糊隶属度是一个重要工作,确定隶属度的方法有对比排序法、专家评判法、模糊统计法、概念扩张法等。
采用专家评判法,由专家根据经验直接给出论域中每个函数的隶属度,形成隶属度表,这样给出的隶属度比较准确。
计算机在进行模糊推理时,先从用户接口接收证据及其相应的模糊词,如“很”、“相当”、“轻微”等,然后通过模糊属性表查出条件模糊词的隶属度,由此进行推理得到结论。
基于模糊推理的诊断专家系统已应用在军用电力系统、集成电路、动态控制等方面。
然而,由于模糊诊断知识获取困难,尤其是故障与征兆的模糊关系较难确定,且系统的诊断能力依赖模糊知识库,学习能力差,容易发生漏诊或误诊。
由于模糊语言变量是用隶属函数表示的,实现语言变量与隶属函数之间的转换是一个难点。
5.基于实例推理的故障诊断专家系统
基于实例推理(Case Based Reasoning,CBR)是人工智能发展较为成熟的一个分支,与其它人工智能技术相比,其不同之处在于它不依赖于问题领域的一般知识,也不是产生式规则。
CBR能够利用有经验的、具体事例的特殊知识,通过寻找类似的过去事例来解决新问题。
一个有效的事例表示包括三部分内容:事例发生的原因或背景;事例的特点及过程;事例的解决方法和结果。
事例推理的关键步骤包括事例检索、事例重用、事例修改/修正和事例保留等。
基于事例的推理避免了采用基于规则的推理方法进行知识获取时的瓶颈问题,利用相关事例扩大了解决问题的范围,简化了求解过程,解的质量也得到提高,在车辆诊断、舰艇水压机等方面获得应用。
与神经网络需要大量样本进行训练类似,基于实例推理受制于诊断实例的数量和覆盖范围,如果诊断实例不能覆盖所有解空间,在实例搜索时将得不到最优解,造成误诊或漏诊。