气相色谱法的分离原理及理论基础

合集下载

气相色谱仪原理结构及操作

气相色谱仪原理结构及操作

气相色谱仪原理、结构及操作1、基本原理气相色谱GC是一种分离技术;实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析;混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离;待分析样品在汽化室汽化后被惰性气体即载气,一般是N2、He等带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡;但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出;当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图假设样品分离出三个组分,它包含了色谱的全部原始信息;在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线;2、气相色谱结构及维护进样隔垫进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃;正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”即不是样品本身的峰,从而影响分析;解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫;一般更换进样隔垫的周期以下面三个条件为准:1出现“鬼峰”;2保留时间和峰面积重现性差;3手动进样次数70次,或自动进样次数50次以后;玻璃衬管气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型;衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱;如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响;比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换;玻璃衬管清洗的原则和方法当以下现象:1出现“鬼峰”;2保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗;清洗的方法和步骤如下:1拆下玻璃衬管;2取出石英玻璃棉;3用浸过溶剂比如丙酮的纱布清洗衬管内壁; 玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm;要求填充均匀、平整;气体过滤器变色硅胶可根据颜色变化来判断其性能,但分子筛等吸附有机物的过滤器就不能用肉眼判断了,所以必须定期更换,一般3个月更换或再生一次;由于分流气路中的分子筛过滤器饱和或受污严重,就会出现基线漂移大的现象,这个时候就必须更换或再生过滤器了;再生的方法是:1卸下过滤器,反方向连接于原色谱柱位置;2再生条件:载气流速40~50ml/min,温度340℃,时间5h;检测器如果说色谱柱是色谱分离的心脏,那么,检测器就是色谱仪的眼睛;无论色谱分离的效果多么好,若没有好的检测器就会“看”不出分离效果;因此,高灵敏度、高选择性的检测器一直是色谱仪发展的关键技术;目前,GC所使用的检测器有多种,其中常用的检测器主要有火焰离子化检测器FID、火焰热离子检测器FTD、火焰光度检测器FPD、热导检测器TCD、电子俘获检测器ECD等;下面对检测器的日常维护作简单讨论:2.4.1火焰离子化检测器FID1 FID虽然是准通用型检测器,但有些物质在检测器上的响应值很小或无响应,这些物质包括永久气体、卤代硅烷、H2O、NH3、CO、CO2、CS2、CCl4,等等;所以检测这些物质时不应使用FID;2FID的灵敏度与氢气、空气、氮气的比例有直接关系,因此要注意优化,一般三者的比例应接近或等于1∶10∶1;3FID是用氢气在空气燃烧所产生的火焰使被测物质离子化的,故应注意安全问题;在未接上色谱柱时,不要打开氢气阀门,以免氢气进入柱箱;测定流量时,一定不能让氢气和空气混合,即测氢气时,要关闭空气,反之亦然;无论什么原因导致火焰熄灭时,应尽量关闭氢气阀门,直到排除了故障重新点火时,再打开氢气阀门;4为防止检测器被污染,检测器温度设置不应低于色谱柱实际工作的最高温度;检测器被污染的影响轻则灵敏度明显下降或噪音增大,重则点不着火;消除污染的办法是对喷嘴和气路管道的清洗;具体方法是:断开色谱柱,拔出信号收集极;用一细钢丝插入喷嘴进行疏通,并用丙酮、乙醇等溶剂浸泡;2.4.2 火焰热离子检测器FTDFTD使用注意事项:1 铷珠:避免样品中带水,使用寿命大约600~700h;2 载气:N2或He,要求纯度%;一般He的灵敏度高;3 空气:最好是选钢瓶空气,无油;4 氢气:要求纯度%;另外需要注意的是使用FTD时,不能使用含氰基固定液的色谱柱,比如OV-1701;2.4.3火焰光度检测器FPDFPD使用注意事项:1 FPD也是使用氢火焰,故安全问题与FID相同;2 顶部温度开关常开250℃;3 FPD的氢气、空气和尾吹气流量与FID不同,一般氢气为60~80ml/min,空气为100~120ml/min,而尾吹气和柱流量之和为20~25ml/min;分析强吸附性样品如农药等,中部温度应高于底部温度约20℃;4 更换滤光片或点火时,应先关闭光电倍增管电源;5 火焰检测器,包括FID、FPD,必须在温度升高后再点火;关闭时,应先熄火再降温;2.4.4热导检测器TCDTCD使用注意事项:1确保热丝不被烧断;在检测器通电之前,一定要确保载气已经通过了检测器,否则,热丝就可能被烧断,致使检测器报废;关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;2载气中含有氧气时,热丝寿命会缩短,所以载气中必须彻底除氧;3用氢气作载气时,气体排至室外;4基线漂移大时,要考虑以下几个问题:双柱是否相同,双柱气体流速是否相同;是否漏气;更换色谱柱至检测器的石墨垫圈; 池体污染;清洗措施:正己烷浸泡冲洗;2.4.5 电子俘获检测器ECDECD使用注意事项:1 气路安装气体过滤器和氧气捕集器;氧气捕集器再生:2 使用填充柱时也需供给尾吹气2~3ml/min;3 操作温度为250~350℃;无论色谱柱温度多么低,ECD的温度均不应低于250℃, 否则检测器很难平衡;4 关闭载气和尾吹气后,用堵头封住ECD出口,避免空气进入;3、基本操作加热由于气相色谱仪的生产厂家和质量的不同.测定温度的方式也不相同对于用微机设数法或拨轮选择法给定温度.一般是直接设数或选择合适给定温度值加以升温.而如果是采用旋钮定位法.则有技巧可言3.1.1过温定位法将温控旋钮调至低于操作温度约30℃处给气相色谱仪升温当过温至约为操作温度时.配台温度指示和加热指示灯.再逐渐将温控旋钮调至台适位置3.1.2 分步递进定位法将温控旋钮朝升温方向转动一个角度.升温开始.指示灯亮:当温度基本稳定时再同向转动温控旋钮.开始继续升温:如此递进调节、直至恒温在工作温度上. 调池平衡调池平衡实际是调热导电桥平衡.使之有较为台适的输出讲调节技巧.其实是对具有池平衡、调零和记录调零等第一步.用池平衡或调零旋钮将记录仪指针调至台适位置;第二步.自衰减至l6倍左右.观察记录仪指针移动情况;第三步.用记录谓零旋钮将记录仪指针调回原处;第四步.退回衰减.观察记录仪指针移动情况;第五步.用调零或池平衡旋钮将记录仪指针调回原处点火氢焰气相色谱仪开机时需要点火.有时因各种原因致使熄火后.也需要点火然而.我们经常会遇到点火不着的情况下面介绍两种点火技巧.供同行们相试3.3.1 加大氢气流量法先加大氢气流量.点着火后.再缓慢调回工作状况此法通用3.3.2 减少尾吹气流量法先减少尾吹气流量.点着火后.再调回工作状况此法适用于用氢气怍载气.用空气作助燃气和尾畋气情况气比的调节氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气:l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢本人认为为各气旌以良好匹配.目的是既有高的检测器灵敏度又能有较好的分离效果.还不致于容易熄火;本着上述原则气比应按下法调节:1氮气流量的调节在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止2氢气和空气流量的调节氢气和空气流量的调节效果.可以用基流的大小来检验先调节氢气流量使之约等于氮气的流量.再调节空气流量在调节空气流量时.要观察基流的改变情况只要基流在增加.仍应相向调节.直至基流不再增加不止最后.再将氢气流量上调少许;进样技术在气相色谱分析中,一般是采用注射器或六通阀门进样在考虑进样技术的时候.主要是以注射器进样为对象3.5.1 进样量进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化.达到规定分离要求和线性响应的允许范围之内填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升.气体样品一般为0.1~ 10毫升在定量分析中.应注意进样量读数准确1排除注射器里所有的空气用微量注射器抽取液体样品时.只要重复地把液体抽凡注射器又迅速把其排回样品瓶.就可做到遗一点;还有一种更好的方法.可以排除注射器里所有的空气那就是用计划注射量的约2倍的样品置换注射器3~5次.每扶取到样品后,垂直拿起注射器.针尖朝上任何依然留在注射器里的空气都应当跑到针管顶部推进注射器塞子.空气就会被排掉;2保证进样量的准确用经畿换过的注射器取约计划进样量2倍左右的样品.垂直拿起注射器.针尖朝上.让针穿过一层纱布.这样可用纱布吸收从针尖排出的液体推进注射器塞子.直到读出所需要的数值用纱布擦干针尖至此准确的液体体积已经测得.需要再抽若干空气到注射器里.如果不慎推动柱塞.空气可以保护液体使之不被排走3.5.2 进样方法双手章注射器用一只手通常是左手把针插入垫片.洼射大体积样品即气体样品或输入压力极高时.要防止从气相色谱仪来的压力把柱塞弹出用右手的大拇指让针尖穿过垫片尽可能踩的进入进样口.压下柱塞停留1~ 2秒钟.然后尽可能快而稳地抽出针尖继续压住柱塞3.5.3 进样时间进样时间长短对柱效率影响很大,若进样时间过长.遇使色谱区域加宽而降低柱效率因此.对于冲洗法色谱而言.进样时间越短越好.一般必须小于1秒钟;。

气相色谱法基本原理

气相色谱法基本原理

气相色谱法基本原理1.相分离:在气相色谱法中,样品以气态或挥发性液态的形式被注入色谱柱,并与气相移动相进行交换。

色谱柱通常是非极性或中极性的聚合物或硅胶填充物,具有较高的表面活性。

色谱柱中的固定液体相被称为静止相,而与之相互作用的气体被称为移动相。

2.分配行为:样品分子在静止相和移动相之间的分配行为是气相色谱分离的基础。

分子在色谱柱中的分配取决于其性质,如分子量、极性、分子结构等。

当分子与静止相的相互作用力强于与移动相的相互作用力时,分子会在静止相中停留更久,从而分离出来。

分子在静止相和移动相之间分配的原理可由经验分配系数(K)来描述。

3.柱温控制:气相色谱柱的温度是一种重要的参数,通过控制柱温可以改变分析物质分离的速率和分离度。

一般来说,提高柱温可以加快分离速度,但可能会损害柱性能。

柱温过高可能导致色谱柱表面的覆盖物剥落,而柱温过低可能会引起热断裂。

因此,在选择适当的柱温时需要考虑样品的性质和色谱柱的限制。

4.检测器:气相色谱分离后的物质需要通过检测器进行定量和检测。

常用的检测器包括火焰离子检测器(FID)、热导率检测器(TCD)、电子捕获检测器(ECD)、氮磷检测器(NPD)等。

5.定性与定量分析:气相色谱法可以用于分析多种不同性质的样品,包括有机化合物、无机化合物、小分子量气体等。

定性分析通过比对样品特征峰的保留时间与已知标准物质进行比对,确定样品中的成分。

定量分析则通过峰的面积或高度与已知浓度标准曲线进行比对,从而确定样品中各组分的浓度。

在实际应用中,为了提高分离的效果和结果的准确性,可以采取一系列方法,如选择适当的静止相、优化进样量和柱温、使用适当的检测器等。

此外,GC还可以与其他技术如质谱联用,进一步提高分析的灵敏度和选择性。

总之,气相色谱法是一种高效、敏感、特异性好的分离与定量分析方法,广泛应用于化学、环境、食品、农药、制药等领域。

简述气相色谱分析法的基本原理

简述气相色谱分析法的基本原理

简述气相色谱分析法的基本原理
气相色谱分析法是一种用于快速分析具有复杂组成的物质的分析
技术,在现代分析化学中有着重要的应用。

气相色谱分析法的基本原理是将微量物质以气体形式进行脱附,然后用色谱柱对其进行分离,再用检测器对分离的各种成分进行
检测。

该分析法以气态物质的不同稳定性、溶解度以及穿透率为基础,通过对物质电离和离子转移作用,使被测物质根据其不同性质在柱身
内分离,具有分离效率高、分析时间短、精度高等优点。

气相色谱分析法的基本步骤主要包括样品的脱附、检测剂的
检测、柱身的分离和筛选等步骤。

样品经过搅拌后进入搅拌室,在这里,样品混合分解,并以气态形式向色谱柱端面施压,也就是在柱子
内进行脱附。

经过样品的脱附和检测剂的加入,所得到的混合气体在
色谱柱内分离,根据其不同稳定性、溶解度以及分子量等性质,各种
成分在柱身中行走时间也不一样,通过检测器可以检测不同成分的浓度,形成各种成分的曲线,从而得出被测物质的组成。

气相色谱分析法在现代化学分析中有着重要的应用价值,以
它为基础,可以开展具有一系列新性质的研究,如食品、环境、生物
医药分析中的有机气体、挥发性有机物、无机气体等物质的组成研究等。

在污染源的检测方面,气相色谱分析法也发挥着重要的作用。

总之,气相色谱分析法具有分离效率高、分析时间短、精度高等
特点,在食品、环境、生物医药以及污染源检测等方面具有重大的应
用价值。

气相色谱法的基本原理

气相色谱法的基本原理

气相色谱法的基本原理
气相色谱法(Gas Chromatography),是一种广泛应用于化学分析的一
种技术,它利用流动的相乎作为柱剂,能够将混合物转变为单独的组分,供检测。

一、基本原理
1、样品的分离:分离效果取决于样品分子颗粒大小和组成。

它在柱中被分解为单独的化学物质,以便进行检测。

2、样品的流动:用活性气体作为流体,把样品溶解在体系中并实现样品的流动和甩掉。

3、色谱室的温度控制:传热器控制色谱室的温度,当分子被连续加热和充满时,不同分子的稳定性越差,分离效率越高。

4、测定:检测各分子的浓度,可以通过元素测定仪器,例如:热电偶、热电阻、IEF等,用来检测分离得到的组分,使样品进行定量分析。

5、解析:记录检测数据,通过相对密度、元素信息以及表明分离物分子量的柱面分离,获得加入到样品中所包含的物质。

二、工作原理
1、引入混合样品:通过用N2或H2等气体将混合样品在色谱柱中进
行渗透。

2、对样品的第一次划分:使混合样品分为两组,一组比另一组相对密度较低的小分子。

3、增加温度:将色谱室的温度陆续加热,让更小的分子从色谱柱的出口处流出。

4、多次环路:重复上面的三步,多次进行环路,最终实现混合物的分离。

5、检测:通过元素测定仪器(如:热电偶、热电阻、红外)测定每个分离得到的组分,对样品进行定量分析。

三、应用
气相色谱法有较高的分离效果和灵敏度,具有检测多组分精细物质的
能力,能够采用可调精度的测定方法。

常用于环境监测(毒气检测、
有害物质检测),气体分析(氧气含量分析),食品检测(风味检测)等各种实际工程中,为样品的安全分析提供快速准确的基础数据。

气相色谱法工作原理

气相色谱法工作原理

气相色谱法工作原理
气相色谱法(Gas chromatography, GC)是一种常用的分离和
分析技术,其工作原理基于样品分子在固定相和流动相之间的分配平衡。

在气相色谱法中,样品首先被注入进色谱柱,色谱柱通常是由具有高表面活性的固定相填充的长管状物质构成。

接下来,通过使用一个称为载气的流动相,样品组分被推送通过色谱柱。

在色谱柱内,样品组分与固定相发生相互作用。

具有极性的组分会与固定相之间的化学吸附力发生作用,而非极性的组分则会通过色谱柱的惰性表面发生物理吸附作用。

这些作用力会导致样品组分在色谱柱内以不同的速度进行分离。

最终,在色谱柱的出口处,各个组分将会陆续出现。

为了检测和分析这些组分,常常会使用一种称为检测器的设备。

检测器可以根据被分离组分的特性,如折射率、导电性或化学反应性,对它们进行识别和测量。

由于气相色谱法的灵敏度高、分离效果好、分析速度快等优点,因此在许多领域得到了广泛应用。

无论是在环境监测、食品质量控制还是药物分析等方面,气相色谱法都扮演着重要的角色。

3--第二章色谱分析理论基础

3--第二章色谱分析理论基础

当待分离组分随着载气进入色谱柱,组分就开始在两相间进行 分配,平衡后,再随着载气进入下一个塔板进行分配,平衡后 再进入下一个塔板。以此类推,从而不断达到分配平衡。
1.塔板理论基本假设
(1)在色谱柱中的每一小段长度H内,组分迅速达到分 配平衡,这一小段色谱柱称为理论塔板,其长度称为理论 塔板高度,简称板高,记为H; (2)载气不是连续通过色谱柱,而是脉冲式,每次进气 量为一个板体积; (3)试样开始时都加在0号塔板上,且试样沿柱纵向扩 散忽略不计; (4)分配系数在各塔板上是常数; (5)塔板与塔板之间不连续。
结论: 分配系数K是色谱分离中的一个重要参数。 两组分分配系数K相差越大,两峰分离的就越好。 不同物质的分配系数K相同时,组分不能分离。因此是色 谱分离依据。
3.分配比k
又叫容量比、容量因子。
在一定温度、压力下,在两相间达到分配平衡时,组分在 两相之间的质量比值,以k表示。
组分在固定相中的质量
k=
分子扩散大。
3.传质阻力项C
组分在气相和液相两相间进行反复分配时,遇到阻力。传质阻 力C包括气相传质阻力Cg和液相传质阻力CL 。液相传质阻力 大于气相传质阻力。
C =(Cg + CL)
气相传质过程是指试样组分从气相移动到固定相表面的过程。
这一过程中试样组分将在两相间进 行质量交换,即进行浓度分配。有 的分子还来不及进入两相界面,就 被气相带走;有的则在进入两相界 面后又来不及返回气相。这样,使 得试样在两相界面上不能瞬间达到 分配平衡,引起滞后现象,从而使 色谱峰变宽。
(3)对于某确定的色谱分配体系,组分的分离最终决定于 组分在每相中的相对量,而不是决定于组分在每相中的相对 浓度,因此分配比是衡量色谱柱对组分保留能力的重要参数。 k越大,组分保留时间越长,k=0,组分的保留时间为死时间。

气相色谱法分离原理

气相色谱法分离原理

三、气相色谱法分离过程
气-固色谱分析中的固定相是一种具有多孔性及较大表面积的吸附剂颗粒。试 样由载气携带进入柱子时,立即被吸附剂所吸附。载气不断流过吸附剂时,吸 附着的被测组分就会被洗脱下来。这种洗脱下来的现象称为“解吸”(或“脱 附”)。 解吸下来的组分随着载气继续前行时,又可被前面的吸附剂所吸附。随着载气 的流动,被测组分在吸附剂表面进行上述这种反复的物理吸附、解吸过程。由 于被测物质中各个组分的性质不同,它们在吸附剂上的吸附能力就不一样,较 难被吸附的组分就容易解吸下来,较快地前移。容易被吸附的组分就不易被解 吸,前移得就慢些。经过一定时间之后,试样中的各个组分就彼此被拉开了距 离即实现了分离,进而顺序流出色谱柱。
三、气相色谱法分离过程
物质在固定相和流动相之间发生的吸附和解吸、溶解和挥发的过程,叫做
“分配”过程。被测组分按其溶解和挥发能力(或吸附和解吸能力)的大小,以
一定的比例分配在固定相和流动相之间。
“分配系数”,记为K 。即:
K Cs Cm
在实际工作中,常应用另外一个表征色谱分离过程的参数——“分配比”。以
一、色谱法定义、分类
色谱法分类: 1、从流动相的存在状态来区分,色谱法分为:
气相色谱法(流动相为气体的色谱法) 液相色谱法(流动相为液体的色谱法); 2、从固定相的存在状态区分的话,色谱法分为: 气-固色谱法(固定相为固体吸附剂); 气-液色谱法(固定相为涂渍在固体表面或管子内壁上的液体); 液-固色谱法; 液-液色谱法。
二、色谱专用术语
在色谱分析中,将以组分浓度由检测器转变为相应的电信号为纵坐标,流出时 间为横坐标所作的关系曲线称之为“色谱流出曲线”或“色谱图”,如图4-11 所示。
1.基线 当色谱柱中只有载气经过时,检测 器相应信号的记录就叫“基线”。 基线反映了在实训操作条件下,检 测系统噪声随时间变化的情况。稳 定的基线是一条直线。

气相色谱分析的基本原理

气相色谱分析的基本原理

气相色谱分析的基本原理气相色谱分析是一种常用的分离和检测技术,它广泛应用于化学、生物、环境等领域。

其基本原理是利用气相色谱柱对混合物中的化合物进行分离,然后通过检测器对分离后的化合物进行检测和定量分析。

下面将详细介绍气相色谱分析的基本原理。

首先,气相色谱分析的样品处理。

在进行气相色谱分析之前,样品需要经过一系列的处理步骤,包括样品的提取、净化和浓缩。

这些步骤的目的是将需要分析的化合物从样品中提取出来,并去除干扰物质,以便进行后续的分离和检测。

其次,气相色谱柱的选择和分离。

气相色谱柱是气相色谱仪的核心部件,它的选择对于分离效果和分析结果具有重要影响。

在气相色谱分析中,常用的色谱柱包括吸附柱、填充柱和毛细管柱等。

不同类型的色谱柱适用于不同的分析目标,选择合适的色谱柱对于保证分离效果至关重要。

接下来,气相色谱分析的分离原理。

气相色谱分析的分离原理基于化合物在色谱柱中的分配和传递过程。

当样品混合物经过色谱柱时,不同化合物会根据其在柱中的亲和性和传递速率而发生分离。

这种分离原理可以实现对混合物中各种化合物的有效分离,为后续的检测和定量分析提供了可靠的基础。

最后,气相色谱分析的检测和定量。

分离后的化合物会通过检测器进行检测和定量分析。

常用的检测器包括火焰光度检测器(FID)、质谱检测器(MSD)等。

这些检测器可以对化合物进行灵敏的检测,并通过信号的强弱来实现对化合物的定量分析。

综上所述,气相色谱分析的基本原理包括样品处理、色谱柱的选择和分离、分离原理以及检测和定量。

通过对这些基本原理的理解和掌握,可以更好地实现对混合物中化合物的分离和检测,为科研和生产提供可靠的数据支持。

希望本文能够对读者对气相色谱分析的基本原理有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气相色谱法的分离原理及理论基础
气相色谱法的分离原理是利用要分离的诸组分在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数),当两相作相对运动时,这些组分在两相间的分配反复进行,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动可以有明显的差距,最后使这些组分得到分离。

气相色谱法的理论基础主要表现在两个方面,即色谱过程动力学和色谱过程热力学,也可以这样说,组分是否能分离开取决于其热力学行为,而分离得好不好则取决于其动力学过程。

色谱过程动力学��发展高效色谱技术及色谱峰形预测的理论基础
色谱过程动力学是研究物质在色谱过程中运动规律的科学。

其研究的主要目的是根据物质在色谱柱内运动的规律解释色谱流出曲线的形状;探求影响色谱区域宽度扩张及峰形拖尾的因素和机理,从而为获得高效能色谱柱系统提供理论上的指导,为峰形预测、重叠峰的定量解析以及为选择最佳色谱分离条件奠定理论基础。

在色谱发展过程中,用来描述色谱过程动力学的理论模型主要有:1940年提出的平衡色谱理论,解释了部分实验事实,但由于该理论忽略了传质速率有限性与物质分子纵向扩散性的影响,对一些现象不能解释;1941年Martin等人引入了理论塔板的概念,在该理论中,色谱过程被比拟为蒸馏过程,而色谱柱被视为一系列平衡单元-理论塔板的结合。

在色谱柱足够长、理论塔板高度充分小,以及分配等温线呈线性的情况下,这一理论对色谱流出曲线分布和谱带移动规律,以及柱长与理论塔板高度H对区域扩张的影响等给予了近似的解释。

但是塔板理论对影响理论塔板高度H的各种因素没有从本质上考虑,而色谱过程本质上并不是分馏过程,因而这一理论还只是半经验式的理论。

首先揭露影响色谱区域宽度内在因素的是纵向扩散理论和考察传质速率有
限性的的速率理论。

在气相色谱中有同时考察传质速率和纵向扩散影响的van Deemter方程式,考察径向扩散的Golay毛细管色谱方程式。

van Deemter方程式和Golay方程式分别描述了填充柱和毛细管柱两种色谱柱的理论塔板高度H的各种影响因素,两个公式综合到一起可简化如下:
H=A+B/u+(Cg+Cl)u 色谱过程热力学��色谱定性及研究高选择性色谱方法和柱系统等的理论基础
由气相色谱的分离原理可知,实现气相色谱分离的基本条件是欲被分离的物质有不同的分配系数,而不同的分配系数也是气相色谱定性鉴别组分的基础。


质在色谱过程中的保留是一种宏观现象,但引起保留的原因却是分子之间的微观作用。

因此要研究影响物质保留的原因,必须从分子间的微观作用、分子的微观结构着手,在这一方面,统计热力学是的工具。

色谱过程热力学能够很好地解释气相色谱的保留值规律:利用分子结构参数直接预测气相色谱保留值;容量因子k’随柱温变化的规律;同类化合物中同系物保留值随分子中碳原子数目变化的规律;同族化合物的保留值随沸点变化的规律;双固定液的保留值变化规律。

相关文档
最新文档