大学物理波动光学英语实验报告、论文

合集下载

大学物理论文(波动与光学)

大学物理论文(波动与光学)

波动与光学(感谢老师这学期为我们的付出,敬佩老师的教学态度,经此我们学到了很多东西,真的很感谢)对于光的认识简史:光是人类和生物生存和发展所必需的,人们对于它的认识却经历了漫长而曲折的过程。

最早的人们认为光是由微粒构成的,牛顿就是微粒说的创始人和坚持者,而惠更斯明确的提出了光是一种波,直至19世纪托马斯—-菲涅耳从实验和理论上建立了光的波动理论。

但他们的认识持有机械论的观点。

19世纪中叶光的电磁理论的建立使人们对于光的认识更近一步,但关于介质的问题仍是矛盾重重,有待解决。

终于于19世纪末迈克尔逊实验及爱因斯坦的相对论得出结论:光是一种电磁波,它的传播不需要任何介质。

首先我们从简单的波动与振动讲起,这是光的波动说的理论基石。

关于振动的理论描述我们有它的简谐振动函数x=Acos(ωt+φ) A Φω是描述简谐运动的三个特征量,通过微分关系我们可以分别得到速度与加速度的公式。

由于简谐运动于匀速圆周运动有许多相似之处,所以在许多方面我们应用参考圆来研究他们的运动。

由简谐运动的动力学方程得k=mω2从这里我们可以对简谐运动下一个动力学定义:质点在与平衡位置成正比而反向的合力的作用下的运动叫简谐运动,由此还可以推出T A 的公式,对于简谐振动的能量我们经过一系列的微分与动力学方程推导我们得到机械能=势能与动能之和而他们的平均值各占一半。

而实际问题中常会遇到几个简谐运动的合成。

我们讨论同意直线相同频率的简谐运动的合成。

经过矢量图法我们可以推得A的合成与φ的函数关系公式。

波动。

一定扰动的传播称为波动。

再此主要研究机械波的一些相关性质的理论。

如声波,地震波,水波等。

虽然各类波的性质不同但他们在形式上由许多相同的特征规律。

我们所讲的简谐波的传播是需要介质的,他的传播形式都要经过介质的传播,这一点是不同于光的。

描述波的运动需要波函数,由于简谐波上的任意质元都在做简谐运动因而简谐波是有周期的,一个周期所传播的距离称为波长λ=uT波形曲线可以详细描述波的运动。

最新物理实验报告(英文)

最新物理实验报告(英文)

最新物理实验报告(英文)Abstract:This report presents the findings of a recent physics experiment conducted to investigate the effects of quantum entanglement on particle behavior at the subatomic level. Utilizing a sophisticated setup involving photon detectors and a vacuum chamber, the experiment aimed to quantify the degree of correlation between entangled particles and to test the limits of nonlocal communication.Introduction:Quantum entanglement is a phenomenon that lies at the heart of quantum physics, where the quantum states of two or more particles become interlinked such that the state of one particle instantaneously influences the state of the other, regardless of the distance separating them. This experiment was designed to further our understanding of this phenomenon and its implications for the fundamental principles of physics.Methods:The experiment was carried out in a controlled environment to minimize external interference. A pair of photons was generated and entangled using a nonlinear crystal. The photons were then separated and sent to two distinct detection stations. The detection process was synchronized, and the data collected included the time, position, and polarization state of each photon.Results:The results indicated a high degree of correlation between the entangled photons. Despite being separated by a significant distance, the photons exhibited a consistent pattern in their polarization states, suggesting a strong entanglement effect. The data also showed that the collapse of the quantum state upon measurement occurred simultaneously for both particles, supporting the theory of nonlocality.Discussion:The findings of this experiment contribute to the ongoing debate about the nature of quantum entanglement and its potential applications. The consistent correlations observed between the entangled particles provide strong evidence for the nonlocal properties of quantum mechanics. This has implications for the development of quantum computing and secure communication technologies.Conclusion:The experiment has successfully demonstrated the robustness of quantum entanglement and its potential for practical applications. Further research is needed to explore the broader implications of these findings and to refine the experimental techniques for probing the quantum realm.References:[1] Einstein, A., Podolsky, B., & Rosen, N. (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47(8), 777-780.[2] Bell, J. S. (1964). On the Einstein Podolsky RosenParadox. Physics, 1(3), 195-200.[3] Aspect, A., Grangier, P., & Roger, G. (1982). Experimental Tests of Realistic Local Theories via Bell's Theorem. Physical Review Letters, 49(2), 91-94.。

大学物理实验报告 英文版

大学物理实验报告 英文版

大学物理实验报告Ferroelectric Control of Spin PolarizationABSTRACTA current drawback of spintronics is the large power that is usually required for magnetic writing, in contrast with nanoelectronics, which relies on “zero-current,” gate-controlled operations. Efforts have been made to control the spin-relaxation rate, the Curie temperature, or the magnetic anisotropy with a gate voltage, but these effects are usually small and volatile. We used ferroelectric tunnel junctions with ferromagnetic electrodes to demonstrate local, large, and nonvolatile control of carrier spin polarization by electrically switching ferroelectric polarization. Our results represent a giant type of interfacial magnetoelectric coupling and suggest a low-power approach for spin-based information control.Controlling the spin degree of freedom by purely electrical means is currently an important challenge in spintronics (1, 2). Approaches based on spin-transfer torque (3) have proven very successful in controlling the direction of magnetization in a ferromagnetic layer, but they require the injection of high current densities. An ideal solution would rely on the application of an electric field across an insulator, as in existing nanoelectronics. Early experiments have demonstrated the volatile modulation of spin-based properties with a gate voltage applied through a dielectric. Notable examples include the gate control of the spin-orbit interaction in III-V quantum wells (4), the Curie temperature T C (5), or the magnetic anisotropy (6) in magnetic semiconductors with carrier-mediated exchange interactions; for example, (Ga,Mn)As or (In,Mn)As. Electric field–induced modifications of magnetic anisotropy at room temperature have also been reported recently in ultrathin Fe-based layers (7, 8).A nonvolatile extension of this approach involves replacing the gate dielectric by a ferroelectric and taking advantage of the hysteretic response of its order parameter (polarization) with an electric field. When combined with (Ga,Mn)As channels, forinstance, a remanent control of T C over a few kelvin was achieved through polarization-driven charge depletion/accumulation (9, 10), and the magnetic anisotropy was modified by the coupling of piezoelectricity and magnetostriction (11, 12). Indications of an electrical control of magnetization have also been provided in magnetoelectric heterostructures at room temperature (13–17).Recently, several theoretical studies have predicted that large variations of magnetic properties may occur at interfaces between ferroelectrics and high-T C ferromagnets such as Fe (18–20), Co2MnSi (21), or Fe3O4 (22). Changing the direction of the ferroelectric polarization has been predicted to influence not only the interfacial anisotropy and magnetization, but also the spin polarization. Spin polarization [i.e., the normalized difference in the density of states (DOS) of majority and minority spin carriers at the Fermi level (E F)] is typically the key parameter controlling the response of spintronics systems, epitomized by magnetic tunnel junctions in which the tunnel magnetoresistance (TMR) is related to the electrode spin polarization by the Jullière formula (23). These predictions suggest that the nonvolatile character of ferroelectrics at the heart of ferroelectric random access memory technology (24) may be exploited in spintronics devices such as magnetic random access memories or spin field-effect transistors (2). However, the nonvolatile electrical control of spin polarization has not yet been demonstrated.We address this issue experimentally by probing the spin polarization of electrons tunneling from an Fe electrode through ultrathin ferroelectric BaTiO3 (BTO) tunnel barriers (Fig. 1A). The BTO polarization can be electrically switched to point toward oraway from the Fe electrode. We used a half-metallic La0.67Sr0.33MnO3(LSMO) (25) bottom electrode as a spin detector in these artificial multiferroic tunnel junctions (26, 27). Magnetotransport experiments provide evidence for a large and reversible dependence of the TMR on ferroelectric polarization direction.Fig. 1(A) Sketch of the nanojunction defined by electrically controlled nanoindentation. A thin resist is spin-coated on the BTO(1 nm)/LSMO(30 nm) bilayer. The nanoindentation is performed with a conductive-tip atomic force microscope, and the resultingnano-hole is filled by sputter-depositing Au/CoO/Co/Fe. (B) (Top) PFM phase image of a BTO(1 nm)/LSMO(30 nm) bilayer after poling the BTO along 1-by-4–μm stripes with either a negative or positive (tip-LSMO) voltage. (Bottom) CTAFM image of an unpoled area of a BTO(1 nm)/LSMO(30 nm) bilayer. Ω, ohms. (C) X-ray absorption spectra collected at room temperature close to the Fe L3,2 (top), Ba M5,4 (middle), and TiL3,2 (bottom) edges on an AlO x(1.5 nm)/Al(1.5 nm)/Fe(2 nm)/BTO(1 nm)/LSMO(30 nm)//NGO(001) heterostructure. (D) HRTEM and (E) HAADF images of the Fe/BTO interface in a Ta(5 nm)/Fe(18 nm)/BTO(50 nm)/LSMO(30 nm)//NGO(001) heterostructure. The white arrowheads in (D) indicate the lattice fringes of {011} planes in the iron layer. [110] and [001] indicate pseudotetragonal crystallographic axes of the BTO perovskite.The tunnel junctions that we used in this study are based on BTO(1 nm)/LSMO(30 nm) bilayers grown epitaxially onto (001)-oriented NdGaO3 (NGO) single-crystal substrates (28). The large (~180°) and stable piezoresponse force microscopy (PFM) phase contrast (28) between negatively and positively poled areas (Fig. 1B, top) indicates that the ultrathin BTO films are ferroelectric at room temperature (29). The persistence of ferroelectricity for such ultrathin films of BTO arises from the large lattice mismatch with the NGO substrate (–3.2%), which is expected to dramatically enhance ferroelectric properties in this highly strained BTO (30). The local topographical and transport properties of the BTO(1 nm)/LSMO(30 nm) bilayers were characterized by conductive-tip atomic force microscopy (CTAFM) (28). The surface is very smooth with terraces separated by one-unit-cell–high steps, visible in both the topography (29) and resistance mappings (Fig. 1B, bottom). No anomalies in the CTAFM data were observed over lateral distances on the micrometer scale.We defined tunnel junctions from these bilayers by a lithographic technique based on CTAFM (28, 31). Top electrical contacts of diameter ~10 to 30 nm can be patterned by this nanofabrication process. The subsequent sputter deposition of a 5-nm-thick Fe layer, capped by a Au(100 nm)/CoO(3.5 nm)/Co(11.5 nm) stack to increase coercivity, defined a set of nanojunctions (Fig. 1A). The same Au/CoO/Co/Fe stack was deposited on another BTO(1 nm)/LSMO(30 nm) sample for magnetic measurements. Additionally, a Ta(5 nm)/Fe(18 nm)/BTO(50 nm)/LSMO(30 nm) sample and a AlO x(1.5 nm)/Al(1.5nm)/Fe(2 nm)/BTO(1 nm)/LSMO(30 nm) sample were realized for structural and spectroscopic characterizations.We used both a conventional high-resolution transmission electron microscope (HRTEM) and the NION UltraSTEM 100 scanning transmission electron microscope (STEM) to investigate the Fe/BTO interface properties of the Ta/Fe/BTO/LSMO sample. The epitaxial growth of the BTO/LSMO bilayer on the NGO substrate was confirmed by HRTEM and high-resolution STEM images. The low-resolution, high-angle annular dark field (HAADF) image of the entire heterostructure shows the sharpness of theLSMO/BTO interface over the studied area (Fig. 1E, top). Figure 1D reveals a smooth interface between the BTO and the Fe layers. Whereas the BTO film is epitaxially grown on top of LSMO, the Fe layer consists of textured nanocrystallites. From the in-plane (a) and out-of-plane (c) lattice parameters in the tetragonal BTO layer, we infer that c/a = 1.016 ± 0.008, in good agreement with the value of 1.013 found with the use of x-ray diffraction (29). The interplanar distances for selected crystallites in the Fe layer [i.e.,~2.03 Å (Fig. 1D, white arrowheads)] are consistent with the {011} planes ofbody-centered cubic (bcc) Fe.We investigated the BTO/Fe interface region more closely in the HAADF mode of the STEM (Fig. 1E, bottom). On the BTO side, the atomically resolved HAADF image allows the distinction of atomic columns where the perovskite A-site atoms (Ba) appear as brighter spots. Lattice fringes with the characteristic {100} interplanar distances of bcc Fe (~2.86 Å) can be distinguished on the opposite side. Subtle structural, chemical, and/or electronic modifications may be expected to occur at the interfacial boundarybetween the BTO perovskite-type structure and the Fe layer. These effects may lead to interdiffusion of Fe, Ba, and O atoms over less than 1 nm, or the local modification of the Fe DOS close to E F, consistent with ab initio calculations of the BTO/Fe interface (18–20).To characterize the oxidation state of Fe, we performed x-ray absorption spectroscopy (XAS) measurements on a AlO x(1.5 nm)/Al(1.5 nm)/Fe(2 nm)/BTO(1 nm)/LSMO(30 nm) sample (28). The probe depth was at least 7 nm, as indicated by the finite XAS intensity at the La M4,5 edge (28), so that the entire Fe thickness contributed substantially to the signal. As shown in Fig. 1C (top), the spectrum at the Fe L2,3 edge corresponds to that of metallic Fe (32). The XAS spectrum obtained at the Ba M4,5 edge (Fig. 1C, middle) is similar to that reported for Ba2+ in (33). Despite the poor signal-to-noise ratio, the Ti L2,3 edge spectrum (Fig. C, bottom) shows the typical signature expected for a valence close to 4+ (34). From the XAS, HRTEM, and STEM analyses, we conclude that theFe/BTO interface is smooth with no detectable oxidation of the Fe layer within a limit of less than 1 nm.After cooling in a magnetic field of 5 kOe aligned along the [110] easy axis of pseudocubic LSMO (which is parallel to the orthorhombic [100] axis of NGO), we characterized the transport properties of the junctions at low temperature (4.2K). Figure 2A (middle) shows a typical resistance–versus–magnetic field R(H) cycle recorded at a bias voltage of –2 mV (positive bias corresponds to electrons tunneling from Fe to LSMO). The bottom panel of Fig. 2A shows the magnetic hysteresisloop m(H) of a similar unpatterned sample measured with superconducting quantuminterference device (SQUID) magnetometry. When we decreased the magnetic field from a large positive value, the resistance dropped in the –50 to –250 Oe range and then followed a plateau down to –800 Oe, after which it sharply returned to thehigh-resistance state. We observed a similar response when cycling the field back to large positive values. A comparison with the m(H) loop indicates that the switching fields in R(H) correspond to changes in the relative magnetic configuration of the LSMO and Fe electrodes from parallel (at high field) to antiparallel (at low field). The magnetically softer LSMO layer switched at lower fields (50 to 250 Oe) compared with the Fe layer, for which coupling to the exchange-biased Co/CoO induces larger and asymmetric coercive fields (–800 Oe, 300 Oe). The observed R(H) corresponds to a negative TMR = (R ap–R p)/R ap of –17% [R p and R ap are the resistance in the parallel (p) and antiparallel (ap) magnetic configurations, respectively; see the sketches in Fig. 2A]. Within the simple Jullière model of TMR (23) and considering the large positive spin polarization of half-metallic LSMO (25), this negative TMR corresponds to a negative spin polarization for bcc Fe at the interface with BTO, in agreement with ab initio calculations (18–20).Fig. 2(A) (Top) Device schematic with black arrows to indicate magnetizations. p, parallel; ap, antiparallel. (Middle) R(H) recorded at –2 mV and 4.2 K showing negative TMR. (Bottom) m(H) recorded at 30 K with a SQUID magnetometer. emu, electromagnetic units. (B) (Top) Device schematic with arrows to indicate ferroelectric polarization. (Bottom) I(V DC) curves recorded at 4.2 K after poling the ferroelectric down (orange curve) or up (brown curve). The bias dependence of the TER is shown in the inset.As predicted (35–38) and demonstrated (29) previously, the tunnel current across a ferroelectric barrier depends on the direction of the ferroelectric polarization. We also observed this effect in our Fe/BTO/LSMO junctions. As can be seen in Fig. 2B, after poling the BTO at 4.2 K to orient its polarization toward LSMO or Fe (with a poling voltage of VP–≈ –1 V or VP+≈ 1 V, respectively; see Fig. 2B sketches),current-versus-voltage I(V DC) curves collected at low bias voltages showed a finite difference corresponding to a tunnel electroresistance as large as TER = (I VP+–I VP–)/I VP–≈ 37% (Fig. 2B, inset). This TER can be interpreted within an electrostatic model (36–39), taking into account the asymmetric deformation of the barrier potential profile that is created by the incomplete screening of polarization charges by different Thomas-Fermi screening lengths at Fe/BTO and LSMO/BTO interfaces.Piezoelectric-related TER effects (35, 38) can be neglected as the piezoelectric coefficient estimated from PFM experiments is too small in our clamped films (29). TER measurements performed on a BTO(1 nm)/LSMO(30 nm) bilayer with the use of a CTAFM boron-doped diamond tip as the top electrode showed values of ~200%(29). Given the strong sensitivity of the TER on barrier parameters and barrier-electrode interfaces, these two values are not expected to match precisely. We anticipate that the TER variation between Fe/BTO/LSMO junctions and CTAFM-based measurements is primarily the result of different electrostatic boundary conditions.Switching the ferroelectric polarization of a tunnel barrier with voltage pulses is also expected to affect the spin-dependent DOS of electrodes at a ferromagnet/ferroelectric interface. Interfacial modifications of the spin-dependent DOS of the half-metallic LSMO by the ferroelectric BTO are not likely, as no states are present for the minority spins up to ~350 meV above E F (40, 41). For 3d ferromagnets such as Fe, large modifications of the spin-dependent DOS are expected, as charge transfer between spin-polarized empty and filled states is possible. For the Fe/BTO interface, large changes have been predicted through ab initio calculations of 3d electronic states of bcc Fe at the interface with BTO by several groups (18–20).To experimentally probe possible changes in the spin polarization of the Fe/BTO interface, we measured R(H) at a fixed bias voltage of –50 mV after aligning the ferroelectric polarization of BTO toward Fe or LSMO. R(H) cycles were collected for each direction of the ferroelectric polarization for two typical tunnel junctions of the same sample (Fig. 3, B and C, for junction #1; Fig. 3, D and E, for junction #2). In both junctions at the saturating magnetic field, high- and low-resistance states are observed when the ferroelectric polarization points toward LSMO or Fe, respectively, with a variation of ~ 25%. This result confirms the TER observations in Fig. 2B.Fig. 3(A) Sketch of the electrical control of spin polarization at the Fe/BTO interface.(B and C) R(H) curves for junction #1 (V DC = –50 mV, T = 4.2 K) after poling the ferroelectric barrier down or up, respectively. (D and E) R(H) curves for junction #2 (V DC = –50 mV, T= 4.2 K) after poling the ferroelectric barrier down or up, respectively.More interestingly, here, the TMR is dramatically modified by the reversal of BTO polarization. For junction #1, the TMR amplitude changes from –17 to –3% when the ferroelectric polarization is aligned toward Fe or LSMO, respectively (Fig. 3, B and C). Similarly for junction #2, the TMR changes from –45 to –19%. Similar results were obtained on Fe/BTO (1.2 nm)/LSMO junctions (28). Within the Jullière model (23), these changes in TMR correspond to a large (or small) spin polarization at the Fe/BTO interface when the ferroelectric polarization of BTO points toward (or away from) the Fe electrode. These experimental data support our interpretation regarding the electrical manipulation of the spin polarization of the Fe/BTO interface by switching the ferroelectric polarization of the tunnel barrier.To quantify the sensitivity of the TMR with the ferroelectric polarization, we define a term, the tunnel electromagnetoresistance, as TEMR = (TMR VP+–TMR VP–)/TMR VP–. Largevalues for the TEMR are found for junctions #1 (450%) and #2 (140%), respectively. This electrical control of the TMR with the ferroelectric polarization is repeatable, as shown in Fig. 4 for junction #1 where TMR curves are recorded after poling the ferroelectric up, down, up, and down, sequentially (28).Fig. 4TMR(H) curves recorded for junction #1 (V DC = –50 mV, T = 4.2 K) after poling the ferroelectric up (VP+), down (VP–), up (VP+), and down (VP–).For tunnel junctions with a ferroelectric barrier and dissimilar ferromagnetic electrodes, we have reported the influence of the electrically controlled ferroelectric barrier polarization on the tunnel-current spin polarization. This electrical influence over magnetic degrees of freedom represents a new and interfacial magnetoelectric effect that is large because spin-dependent tunneling is very sensitive to interfacial details. Ferroelectrics can provide a local, reversible, nonvolatile, and potentially low-power means of electrically addressing spintronics devices.Supporting Online Material/cgi/content/full/science.1184028/DC1Materials and MethodsFigs. S1 to S5References∙Received for publication 30 October 2009.∙Accepted for publication 4 January 2010.References and Notes1. C. Chappert, A. Fert, F. N. Van Dau, The emergence of spin electronics indata storage. Nat. Mater. 6,813 (2007).2.I. Žutić, J. Fabian, S. Das Sarma, Spintronics: Fundamentals andapplications. Rev. Mod. Phys. 76,323 (2004).3.J. C. Slonczewski, Current-driven excitation of magnetic multilayers. J.Magn. Magn. Mater. 159, L1(1996).4.J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48Asheterostructure. Phys. Rev. Lett. 78, 1335 (1997).5.H. Ohno et al., Electric-field control offerromagnetism. Nature 408, 944 (2000).6. D. Chiba et al., Magnetization vector manipulation by electricfields. Nature 455, 515 (2008).7.M. Weisheit et al., Electric field–induced modification of magnetism inthin-film ferromagnets. Science315, 349 (2007).8.T. Maruyama et al., Large voltage-induced magnetic anisotropy changein a few atomic layers of iron.Nat. Nanotechnol. 4, 158 2009).9.S. W. E. Riester et al., Toward a low-voltage multiferroic transistor:Magnetic (Ga,Mn)As under ferroelectric control. Appl. Phys.Lett. 94, 063504 (2009).10.I. Stolichnov et al., Non-volatile ferroelectric control of ferromagnetismin (Ga,Mn)As. Nat. Mater. 7, 464(2008).11. C. Bihler et al., Ga1−x Mn x As/piezoelectric actuator hybrids: A modelsystem for magnetoelastic magnetization manipulation. Phys. Rev.B 78, 045203 (2008).12.M. Overby, A. Chernyshov, L. P. Rokhinson, X. Liu, J. K. Furdyna, GaMnAs-based hybrid multiferroic memory device. Appl. Phys.Lett. 92, 192501 (2008).13. C. Thiele, K. Dörr, O. Bilani, J. Rödel, L. Schultz, Influence of strain on themagnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN-PT(001)(A=Sr,Ca). Phys.Rev.B 75, 054408 (2007).14.W. Eerenstein, M. Wiora, J. L. Prieto, J. F. Scott, N. D. Mathur, Giantsharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6, 348 (2007).15.T. Kanki, H. Tanaka, T. Kawai, Electric control of room temperatureferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor. Appl.Phys. Lett. 89, 242506 (2006).16.Y.-H. Chu et al., Electric-field control of local ferromagnetism using amagnetoelectric multiferroic. Nat. Mater. 7, 478 2008).17.S. Sahoo et al., Ferroelectric control of magnetism in BaTiO3∕Feheterostructures via interface strain coupling. Phys. Rev. B 76, 092108 (2007). 18. C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Predicted magnetoelectric effectin Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev.Lett. 97, 047201 (2006).19.M. Fechner et al., Magnetic phase transition in two-phase multiferroicspredicted from first principles.Phys. Rev. B 78, 212406 (2008).20.J. Lee, N. Sai, T. Cai, Q. Niu, A. A. Demkov, preprint availableat /abs/0912.3492v1.21.K. Yamauchi, B. Sanyal, S. Picozzi, Interface effects at ahalf-metal/ferroelectric junction. Appl. Phys. Lett. 91, 062506 (2007).22.M. K. Niranjan, J. P. Velev, C.-G. Duan, S. S. Jaswal, E. Y. Tsymbal, Magnetoelectric effect at the Fe3O4/BaTiO3 (001) interface: A first-principles study. Phys. Rev. B 78, 104405 (2008).23.M. Jullière, Tunneling between ferromagnetic films. Phys. Lett.A 54, 225 (1975).24.J. F. Scott, Applications of modern ferroelectrics. Science 315, 954 (2007).25.M. Bowen et al., Nearly total spin polarization in La2/3Sr1/3MnO3 fromtunneling experiments. Appl. Phys. Lett. 82, 233 (2003).26.J. P. Velev et al., Magnetic tunnel junctions with ferroelectric barriers:Prediction of four resistance states from first principles. Nano Lett. 9, 427 (2009).27. F. Yang et al., Eight logic states of tunneling magnetoelectroresistancein multiferroic tunnel junctions.J. Appl. Phys. 102, 044504 (2007).28.Materials and methods are available as supporting materialon Science Online.29.V. Garcia et al., Giant tunnel electroresistance for non-destructivereadout of ferroelectric states. Nature460, 81 (2009).30.K. J. Choi et al., Enhancement of ferroelectricity in strained BaTiO3 thinfilms. Science 306, 1005(2004).31.K. Bouzehouane et al., Nanolithography based on real-time electricallycontrolled indentation with an atomic force microscope for nanocontactelaboration. Nano Lett. 3, 1599 (2003).32.T. J. Regan et al., Chemical effects at metal/oxide interfaces studied byx-ray-absorption spectroscopy.Phys. Rev. B 64, 214422 (2001).33.N. Hollmann et al., Electronic and magnetic properties of the kagomesystems YBaCo4O7 and YBaCo3M O7 (M=Al, Fe). Phys. Rev. B 80, 085111 (2009).34.M. Abbate et al., Soft-x-ray-absorption studies of the location of extracharges induced by substitution in controlled-valence materials. Phys. Rev.B 44, 5419 (1991).35. E. Y. Tsymbal, H. Kohlstedt, Tunneling across aferroelectric. Science 313, 181 (2006).36.M. Ye. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, E. Y. Tsymbal, Giantelectroresistance in ferroelectric tunnel junctions. Phys. Rev.Lett. 94, 246802 (2005).37.M. Ye. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, E. Y. Tsymbal, Erratum:Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev.Lett. 102, 169901 2009).38.H. Kohlstedt, N. A. Pertsev, J. Rodriguez Contreras, R. Waser, Theoreticalcurrent-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev.B 72, 125341 (2005).39.M. Gajek et al., Tunnel junctions with multiferroic barriers. Nat.Mater. 6, 296 (2007).40.M. Bowen et al., Spin-polarized tunneling spectroscopy in tunneljunctions with half-metallic electrodes.Phys. Rev. Lett. 95, 137203 (2005).41.J. D. Burton, E. Y. Tsymbal, Prediction of electrically induced magneticreconstruction at the manganite/ferroelectric interface. Phys. Rev.B 80, 174406 (2009).42.We thank R. Guillemet, C. Israel, M. E. Vickers, R. Mattana, J.-M. George,and P. Seneor for technical assistance, and C. Colliex for fruitful discussions on the microscopy measurements. This study was partially supported by theFrance-U.K. Partenariat Hubert Curien Alliance program, the French RéseauThématique de Recherche Avancée Triangle de la Physique, the European Union (EU) Specific Targeted Research Project (STRep) Manipulating the Coupling inMultiferroic Films, EU STReP Controlling Mesoscopic Phase Separation, U.K. Engineering and Physical Sciences Research Council grant EP/E026206/I, French C-Nano Île de France, French Agence Nationale de la Recherche (ANR) Oxitronics, French ANR Alicante, the European Enabling Science and Technology through European Elelctron Microscopy program, and the French Microscopie Electronique et Sonde Atomique network. X.M.acknowledges support from Comissionat per a Universitats i Recerca (Generalitat de Catalunya).。

大学物理光学实验报告(一)

大学物理光学实验报告(一)

大学物理光学实验报告(一)引言概述:本实验报告旨在介绍和分析大学物理光学实验的结果和观察。

通过对不同光学现象和装置的研究,我们能够更好地理解光的性质和光学实验的原理。

正文内容:I. 單色光干涉實驗A. Young's Double-Slit干涉實驗1. 描述Young's Double-Slit干涉實驗裝置2. 觀察到的干涉條紋現象3. 分析干涉條紋之間的距離與波長的關係4. 探討干涉條紋的明暗交替原因B. Lloyd's Mirror干涉實驗1. 解釋Lloyd's Mirror干涉實驗的原理2. 觀察到的干涉圖案3. 討論干涉圖案的變化與鏡面角度的關係4. 探討Lloyd's Mirror干涉實驗的應用II. 衍射實驗A. 單狹縫衍射實驗1. 描述單狹縫衍射實驗的裝置2. 觀察到的衍射條紋現象3. 分析衍射條紋的寬度與狹縫寬度的關係4. 探討單狹縫衍射實驗的應用B. 焦鏡和接區衍射實驗1. 介紹焦鏡和接區衍射實驗的原理2. 觀察到的衍射圖案3. 討論不同焦距的透鏡的影響4. 探討焦鏡和接區衍射實驗的應用III. 偏振實驗A. 偏振光通過偏振片的實驗1. 描述偏振光通過偏振片的裝置2. 觀察不同角度的偏振片的現象3. 分析不同偏振片的透光情況4. 探討偏振片在光學設備中的應用B. 雙折射實驗1. 解釋雙折射現象的原理2. 觀察不同材料的雙折射現象3. 討論雙折射在電子顯示器等設備中的應用4. 探討雙折射的應用在光學儀器中的重要性IV. 電磁波的反射和折射實驗A. 描述反射實驗裝置B. 觀察到的反射現象C. 分析反射角和入射角的關係D. 描述折射實驗裝置E. 觀察到的折射現象F. 分析入射角、入射光速度和折射光速度的關係V. 光的干涉技術在科學和工程中的應用A. 干涉技術在干涉式顯微鏡中的應用B. 干涉技術在光柵中的應用C. 干涉技術在光纖傳輸中的應用D. 干涉技術在光學儀器校準中的應用E. 干涉技術在光學表面檢測中的應用結論:通过本次实验的各个部分,我们对光学实验的原理和现象有了更深入的理解。

波动光学的数值模拟研究毕业论文 5 (1)

波动光学的数值模拟研究毕业论文 5 (1)

波动光学的数值模拟研究毕业设计学院:物理电气信息学院摘要在波动光学相关理论的基础上,通过编程实现了几种常见的干涉和衍射现象的仿真,将其结果形象、直观地体现出来,对于波动光学的教学和学习具有很好的帮助作用。

论文在干涉和衍射理论的基础上,编写了MATLAB程序代码,实现了杨氏干涉、等倾和等厚干涉、夫琅和费衍射和光栅衍射模拟仿真;此外,为方便用户使用,本文设计了对应的图形用户界面(包括设计方案、界面控件的布置和控件后台程序代码的添加),实现了仿真过程中的人机交互。

研究结果表明:通过仿真程序的运行,能形象、直观地展现几种干涉和衍射现象;通过图像用户界面的编制,实现了仿真实验项目的选取,实验参数的灵活设置以及结果的显示。

本文的特色在于:将干涉和衍射的仿真实验做成一个完整系统,并设计了个性化的图形用户界面。

通过仿真实验的图形户用界面,用户实现实验项目的选取,实验参数的灵活设置,实验结果的对比分析。

关键词: 波动光学 MATLAB 计算机仿真AbstractBased on the theory of wave optics-related, it realizes the programming of several common phenomena of interference and diffraction of the simulation by applying MATLAB matrix powerful computing and graphics rendering capabilities through coding. The image of the results will be directly reflected, which help a lot on will wave optics teaching and learning.The thesis achieves the realization of the optical film, spherical wave interference, Y oung's interference, equal-inclination and equal-thickness interference, Fraunhofer diffraction, Fresnel diffraction and grating diffraction simulation through coding, based on the theory of interference and diffraction. To make the studying easier, it made a graphical user interface (including the design, layout and interface control program code controls the addition of the background), achieving human-computer interaction of the simulation in the process.The results show that: by running the simulation program, it can display several interference and diffraction phenomena conveniently and vividly through the establishment of the graphical user interface, it achieves selection of simulation programs, setting experimental parameters of a simulation at random, as well as the flexible display of the resultsThe characteristics of this paper lie in that: this paper cooperated interference and diffraction simulation experiments into one complete system and designed a personalized MATLAB graphical user interface on MA TLAB. Through this platform of the simulation on graphics user interface, users can achieve selection of simulation programs, setting experimental parameters of a simulation randomly, the flexible display of the results as well as the comparative analysis of experimental result. Keywords: wave optics; MATLAB; computer simulation;1. 绪论 (1)1.1波动光学的历史 (1)1.2波动光学的研究对象 (2)1.3光学实验仿真的国内外研究现状 (2)1.4光学实验仿真 (3)2.光的干涉及实验仿真 (4)2.1.光的叠加原理 (4)2.2 杨氏干涉及实验仿真 (6)2.2.1 双光束干涉 (6)2.2.2杨氏干涉 (7)2.3薄膜干涉及实验仿真 (10)2.3.1薄膜干涉的光程差 (11)2.3.2等倾干涉及实验仿真 (13)2.3.3 等厚干涉及实验仿真 (14)2.4 本章小结 (17)3. 光的衍射及实验仿真 (17)3.1 光的衍射现象及其分类 (17)3.2 夫琅和费衍射及实验仿真 (18)3.3 光栅衍射及其仿真实现 (20)3.4 本章小结 (22)4. 结束语 (23)参考文献 (24)致谢...................................................................................... 错误!未定义书签。

波动光学实验报告

波动光学实验报告

一、实验目的1. 理解波动光学的原理,掌握光的干涉、衍射和偏振现象。

2. 通过实验验证波动光学的基本原理,加深对光学知识的理解。

3. 培养学生的实验操作能力和分析问题的能力。

二、实验原理波动光学是研究光的波动性质的科学,主要研究光的干涉、衍射、偏振现象以及光与物质的相互作用。

本实验主要验证以下原理:1. 干涉现象:当两束相干光波相遇时,它们会相互叠加,形成干涉条纹。

干涉条纹的间距与光的波长和两束光之间的距离有关。

2. 衍射现象:当光波通过一个障碍物或狭缝时,会发生衍射现象。

衍射条纹的间距与光的波长和障碍物或狭缝的尺寸有关。

3. 偏振现象:光波是一种横波,可以通过偏振片使光波的电矢量振动方向限定在一个平面内。

通过观察偏振光的变化,可以验证光的偏振现象。

三、实验仪器与设备1. 激光器2. 双缝干涉装置3. 衍射光栅4. 偏振片5. 光屏6. 光具座7. 刻度尺8. 计时器四、实验步骤1. 干涉实验(1)将激光器发出的光通过扩束镜,使其成为平行光。

(2)将平行光照射到双缝干涉装置上,调整双缝间距,使干涉条纹清晰可见。

(3)观察并记录干涉条纹的位置、间距和亮度。

2. 衍射实验(1)将激光器发出的光通过光栅,使光发生衍射。

(2)调整光栅角度,观察并记录衍射条纹的位置、间距和亮度。

3. 偏振实验(1)将激光器发出的光通过偏振片,使其成为偏振光。

(2)调整偏振片角度,观察并记录偏振光的变化。

五、实验数据与分析1. 干涉实验(1)根据实验数据,计算干涉条纹的间距。

(2)根据干涉条纹的间距和光的波长,验证干涉现象。

2. 衍射实验(1)根据实验数据,计算衍射条纹的间距。

(2)根据衍射条纹的间距和光栅的尺寸,验证衍射现象。

3. 偏振实验(1)根据实验数据,观察偏振光的变化。

(2)根据偏振光的变化,验证光的偏振现象。

六、实验结论1. 通过干涉实验,验证了光的干涉现象,加深了对波动光学原理的理解。

2. 通过衍射实验,验证了光的衍射现象,加深了对波动光学原理的理解。

2024版大学物理波动光学总结

2024版大学物理波动光学总结

光波性质及描述方法光波是一种电磁波,具有波动性质,可以用振幅、频率、波长等物理量来描述。

光波在真空中的传播速度最快,且在不同介质中传播速度不同,服从折射定律。

光波具有横波性质,其振动方向与传播方向垂直。

干涉现象与条件010203衍射现象及规律123偏振光可以通过偏振片或反射、折射等方式产生。

偏振现象在光学仪器、光通信、生物医学等领域有广泛应用,如偏振显微镜、偏振光干涉仪等。

偏振现象是指光波中只包含特定振动方向的光波分量。

偏振现象及应用实验操作步骤准备相干光源、双缝装置、屏幕等实验器材;调整光源和双缝装置,使光源发出的光通过双缝照射到屏幕上;观察并记录屏幕上的干涉条纹。

双缝干涉实验原理通过双缝的相干光源产生干涉现象,观察屏幕上明暗相间的干涉条纹,研究光的波动性。

数据分析方法测量干涉条纹间距,计算光源的波长;根据干涉条纹的形状和分布,分析光源的相干性和双缝间距对干涉条纹的影响。

双缝干涉实验原理及操作薄膜干涉实验方法薄膜干涉原理实验操作步骤数据分析方法牛顿环测量光学表面反射相移牛顿环原理实验操作步骤数据分析方法长度测量表面形貌检测折射率测量光学器件性能测试干涉在精密测量中应用单缝衍射实验原理及操作原理:当单色光通过宽度与波长可比拟的单缝时,在屏上形成明暗相间的衍射条纹。

准备实验器材:激光器、单缝装置、分析实验数据,计算波长等参数。

调整激光器,使光束正对单缝装置,并调整单缝宽度。

圆孔衍射特点分析晶格衍射是X射线在晶体中发生的衍射现象,可用于研究晶体结构。

通过测量晶格衍射角度和强度,可以确定晶体中原子排列方式和晶格常数等参数。

晶格衍射技术在材料科学、化学、地质学等领域具有广泛应用。

晶格衍射在晶体结构研究中的应用衍射在光谱分析中的应用衍射可将复合光分解为不同波长的单色光,是光谱分析的基本原理之一。

通过测量不同波长光的衍射角度和强度,可以确定物质的成分和含量等信息。

光谱分析技术在化学、物理学、生物学等领域具有广泛应用,如原子吸收光谱、拉曼光谱等。

物理光学英文总结(精选五篇)

物理光学英文总结(精选五篇)

物理光学英文总结(精选五篇)第一篇:物理光学英文总结1.2.3.4.5.6.7.麦克斯韦方程组(Maxwell’s equation)电感强度, electric displacement 电场强度, electric field strength 磁感强度, magnetic flux density 磁场强度,magnetic field strength 波动方程的平面简谐波解(Simple Harmonic Wave)布儒斯特定律(Brewster’s Law)Brewster’ law, in his own words, states that “when a ray of light is polarized(偏振)by reflection, the reflected(反射)ray forms a right angle with the refracted(折射)ray.On the laws which regulate the polarization of light 偏振光by reflection from transparent bodies.” 8.光波的叠加, Superposition of waves 9.驻波(Standing Wave)10.拍频(Beat frequency)11.相速度(Phase velocity)12.群速度(Group velocity)13.合成波resultant wave 14.振幅amplitude 15.干涉现象(Interference):在两个(或多个)光波叠加的区域形成强弱稳定的光强分布的现象,称为光的干涉现象。

The term Interference refers to the phenomenon that waves, under certain conditions, intensify or weaken each other.16.相干光波(Coherent wave)相干光源,Coherent light source 17.杨氏干涉实验(Young’s interference experiment)18.干涉条纹(Interference fringes)19.Path difference(路径差)20.Phase difference(位相差)21.The order of interference(干涉级)22.The light distribution(光分布)23.A maximum amount of light(maxima)24.A minimum amount of light(minima)25.干涉条纹的可见度The visibility(contrast)of interference fringes 26.对比度(Contrast):It can be defined as the ratio of the difference between maximum areance(面积比)Emax, and mimimumareance, Emin, to the sum of such areances:K=(Emax-Emin)/(Emax+Emin)The amount of power incident per unit area is called areance(illuminance).Visibility:K=(Imax-Imin)/(Imax+Imin)27.相干性与干涉(Coherence & interference)28.空间相干性(spatial coherence)和时间相干性(temporal coherence)29.等厚干涉(Interference of equal thickness)30.平行平板(Plane-Parallel Plates)31.等倾干涉(Interference of equal inclination)32.法布里-泊罗干涉仪(Fabry-Perot interferometer)33.分辨极限和分辨本领(Resolvance of the interferometer)34.光学系统的分辨本领(Resolving power of an optical system)35.光的衍射(Diffraction)36.衍射实验(Diffraction experiment)37.衍射现象的分类(Classification of light diffraction)(1)夫琅和费衍射(Fraunhofer diffraction)(2)菲涅耳衍射(Fresnel diffraction)38.矩孔衍射(Diffraction by a rectangular aperture)39.强度分布计算(Intensity distribution calculation)40.单缝衍射(Diffraction by a single slit)41.夫琅和费圆孔衍射(Fraunhofer diffraction by a circular aperture)42.椭圆的衍射图样(Diffraction pattern)43.光学成像系统的衍射和分辨本领Diffraction and resolving power of an optical system 44.光学系统的分辨本领(Resolving power of an optical system)45.瑞利判据(Rayleigh’s criterion)46.双缝衍射(Double-slit diffraction)47.多缝衍射(Multiple-slit diffraction)48.衍射光栅(Diffraction gratings)49.光栅方程(The grating equation)50.光栅分辨本领(Resolvance of a grating)51.光的偏振(Polarization of light)52.偏振光与自然光,Polarized light and Natural light 53.线偏振光(Linearly polarized light)54.圆偏振光(Circularly polarized light)55.椭圆偏振光(Elliptically polarized light)56.部分偏振光(Partially polarized light)57.偏振光的产生(Production of polarized light)反射和折射、二向色性、散射、双折射Polarization by reflection Polarization by transmission Polarization by dichroism Polarization by scattering Polarization by birefringence 58.马吕斯定律(Malus’ law)和消光比(Extinction ratio)59.起偏器(Polarizer):用来产生偏振光的偏振器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档