对流层大气的受热过程
第三节1对流层大气的受热过程

• 低层大气的3大组成:
干洁空气( N2 、O2 、CO2、O3等)
水汽
成云致雨
固体杂质
• 大气垂直分3层
对流层、平流层、高层大气
1
80-500km高空存在电 离层,反射无线电波
500 电离层
80
27 22
臭氧层
1.气温随高度而增加
(22-27km高空臭氧层)
2.平流运动 3.大气稳定,天气晴
白天多云,对太阳 夜晚多云,大气逆辐射 辐射的削弱作用强。 作用(保温作用)强。
6
4.下列各图中,昼夜温差最小的是
√A
B
C
D
7
5. 沙漠地区气温日较差大的原因是 • A. 沙漠地区距离海洋远 • B. 沙漠地区反射率大
√• C. 沙漠地区水汽少、云量少,大气的保 温作用和削弱作用都小 • D. 沙漠地区大气中的固体杂质含量多
8
朗,高能处见不度胜高,寒适
合高空飞行
地面辐射是对流层 大气的直接热源
1.气温随高度的增加 而递减 -0.6℃/100米 2.对流运动显著 3.天气复杂多变
2
二、对流层大气的受热过程
• 白天大气对太阳辐射的3种削弱 选择性吸收、散射和反射
• 大气对地面的保温作用3过程
太阳辐射→地面增温 地面辐射→大气增温 大气逆辐射→地面保温
宇 宙 空
直接 间
地面辐射
热源
影响因素
纬度 下垫面 气象
4
1.为什么赤道地区终年太阳高度较大,但 它并不是全球太阳辐射强度最大的地区?
(赤道地区空气对流旺盛,多云雨,云量多, 大气的反射作用强的缘故)
2.为什么在月球上白天看太阳只是一个 明亮的圆盘,而四周背景却是黑暗的?
对流层大气的受热过程与热力环流

读图训练 下图为“某地某时刻等温线分布示意图”。读图答题。 1. 最可能出现图示等温线分 布状况的月份和地方时为 A.8月 22时 B.8月 13时 C.1月 22时 D.1月 13时
影响地面辐射的主要因素
纬度因素:纬度不同,年平均正午太阳高度不同
下垫面因素:下垫面状况不同,吸收和反射的太阳辐射比 例也不同 气象因素:大气状况不同,影响地面获得的太阳辐射不同
深度思考
有人把大气的受热过程归纳为“太阳暖大地——大地暖大气——大气还大
地”,结合右图说明该过程的合理性。
深度思考 有同学认为大气逆辐射就是大气对地面辐射的反射,
主要影响因素
地形 洋流
冬季,南北温差大, 越往北温度越低 夏季普遍高温 南北温差不大
太阳辐射 冬季风
太阳辐射
10℃
3km
2、气温垂直递减率的变化
正常情况下,海拔每升高 100m 气温下降 0.6℃, 但在不同地点及不同时间,可能会小于 0.6℃或 大于0.6℃,如图中①曲线。 在曲线②情况下,大 气的对流运动减弱, 大气比较稳定;在① 情况下,大气对流运 动更加强烈
原因
太阳紫外线和 宇宙射线作用
辐射能力(J/cm2•min•μ m]) 12 10
大气反射
大气的受热过程:
太阳短 地面长 大气 地面 太阳辐射能量最集中的部分是可见光区,因此 逸出 波辐射 吸收 波辐射 吸收 逸出说太阳辐射属于短波辐射 (大气辐射) 大气逆 大气(主要指CO2)只能吸收长波,故太阳辐 辐射 射能穿透大气到达地面而不是直接被大气吸收 返回地面 大气吸收 (大气逆辐射)
山坡上的冷空气沿斜坡下沉到谷底 积聚并把较暖的空气抬挤上升 冷暖空气相遇形成锋面,其上方为 暖空气,下方为冷空气
对流层大气的受热过程和大气的水平运动

对流层大气的受热过程和大气的水平运动一、大气的受热过程1.大气的垂直分层读大气垂直分层示意图,回答问题。
代号名称温度变化与人类的关系A 对流层气温随高度增加而降低最密切,云、雨、雾、雪等天气现象均发生在本层B 平流层气温随高度增加而升高气流以平流运动为主,利于高空飞行;臭氧层被称为地球生命的保护伞C 高层大气随高度增加气温先降低再升高存在电离层,对无线电短波通信有重要作用【深度思考1】为什么对流层和平流层的温度垂直分布和大气运动不同?提示对流层大气的直接热源是地面,因此温度随高度增加而降低。
因下部热上部冷,所以对流运动显著;平流层因所含的臭氧层吸收太阳紫外线而使其增温,因此温度随高度增加而升高。
因下部冷上部热,所以大气以平流运动为主。
2.对流层大气的受热过程读太阳辐射与地面辐射、大气逆辐射示意图,回答问题。
(1)大气对太阳辐射的削弱作用:表现形式为a选择性吸收、散射和b反射。
(2)地面辐射和大气辐射:图中字母性质意义地面辐射 B 长波辐射是对流层大气增温的直接能量来源大气辐射 C 长波辐射大气逆辐射(e)使地面增温(3)影响地面辐射的主要因素。
①纬度因素:太阳辐射强度从低纬向两极递减。
②下垫面因素:影响吸收和反射的太阳辐射比例。
③其他因素:其中气象因素的影响最大。
3.大气对太阳辐射的削弱作用(1)表现形式:a选择性吸收、散射和b反射。
(2)削弱强度:对流层大气基本上不能直接吸收太阳辐射的能量。
①平流层臭氧吸收紫外线吸收作用②对流层水汽和二氧化碳吸收红外线反射作用云层和较大颗粒尘埃,无选择性反射散射作用空气分子或微小尘埃→使天空呈蔚蓝或白色(可对比月球) 【深度思考2】为什么晴朗的早晨反而比阴天的早晨气温更低一些?提示晴天的早晨,天空中云量少,大气逆辐射弱,地面损失的热量多,故较阴天的早晨气温低。
4.陆地气温的时间变化规律最高气温出现时间最低气温出现时间差值变化差异日变化约14时日出前后日较差内陆地区日较差较大,沿海地区日较差较小年变化北半球7月北半球1月年较差内陆地区年较差大,沿海地区年较差小南半球1月南半球7月二、热力环流1.形成原因:地面冷热不均。
对流层大气的受热过程

地 面 吸 收
大气吸收
大 气 辐 射
大气增温
大气逆辐射
射向地面
?
大 气 吸 收
地面增温
地
面
大气的保温作用----温室效应
从图中我们可以看出大气逆辐射是整个大气保温作用最关键 的一个环节。其特点是在天空中有云,特别是浓密的低云, 或者空气中湿度比较大时,大气逆辐射就会增强,从而使地 面增温,加强了地面辐射。
大气 上界
1
臭氧层
20
0
对流层
-100 -50 0 50
100 温度(°C)
一、对流层大气的受热过程
(一)大气对太阳辐射的削弱作用
大气反射
大气上界
大气吸收
大气散射
到达地面的太阳辐射
一、对流层大气的受热过程
(一)大气对太阳辐射的削弱作用
辐太 射阳
100%
大气上界
地 面 吸
47%
吸收
大气
反射 散射
O3吸收波长较短的紫外光 CO2和 H2O吸收波长较长 的红外光 水汽、云吸收部分可见光 云层越厚,反射越强 波长较短的蓝色光易被散射
(二)地面辐射与大气辐射
1、地面辐射
⑴地面吸收太阳辐射 获得能量 ⑵地面向外辐射能量 称为地面辐射 ⑶地面辐射是红外线 属于长波辐射 ⑷方向: 向上将热量 传给大气
太阳辐射 地面辐射
大气上界 水汽 二氧化碳
(二)地面辐射与大气辐射
2、大气辐射
⑴对流层大气强烈吸 收地面辐射并保持热量 ⑵地面是对流层大气 的主要直接热源
参与的成分: 空气分子 特点: 波长越短越容 易被散射
夜间,地面辐 射绝大部分热 白天,大气削弱了到 夜间由于没有大气的保温 量又被大气逆 达地面的太阳辐射,效应,月球表面辐射强烈, 白天,由于没有大气对太 辐射还给地面, 气温不会太高 阳辐射的削弱作用,月面 使气温不致降 月面温度骤降,气温很低 温度升得很高,气温很高 得过低 月球 地球
对流层大气的受热过程

散射作用: 散射作用:
波长较短的蓝紫光传播方向改变
参与的大气成分: 参与的大气成分: 空气分子和微小尘埃 特点: 特点: 具有选择性
作用 参与作用的 形式 大气成分 吸收
臭氧(平流层) 臭氧(平流层)
波长范围
作用特点
紫外线 红外线 各种波长同 样被反射
吸收强烈, 吸收强烈,有选 择性, 择性,大部分可
太阳辐射的削弱作用 ),具体 ),具体 表现为( 表现为( 吸收)、(反射)、 ( 散射 ), A2更小的原因 更小的原因
大气吸收有选择性, 是( 大气吸收有选择性,对太阳辐射中能量最强的可见光 却吸收得很少
)。
3、C1表示( 大气吸收地面辐射 ), 、 表示 表示( ),C1>A2说明了 说明了 ( 地面是大气的直接热源 )。 4 、B1称为( 大气逆辐射 )。 称为( 称为
一 对流层大气的受热过程
(一)大气对太阳辐射的削弱作用
吸收作用
(红外线、紫外线、可见光) 红外线、紫外线、可见光 红外线
大气上界
平流层 对流层
臭氧吸收紫外线
二氧化碳、水汽、 二氧化碳、水汽、云、浮尘 吸收红外线
地面
反射作用: 反射作用:
参与的大气成分: 参与的大气成分:
云层、尘埃 云层、
特点: 特点: 无选择性
水汽、二氧化碳 水汽、 对流层) (对流层)
见光可穿透 无选择性, 无选择性,反 射光呈白色 向四面八方散 射 ,有选择性
反射
云层、 云层、尘埃
散射
空气分子、 空气分子、 微小尘埃
蓝色光最 易被散射
(二)地面辐射和大气辐射
太 阳 辐 射 地 面 吸
短 波 辐 射
长 波 辐 射
对流层大气的受热过程解析

对流层大气的受热过程解析流层大气的受热过程是指大气中的空气受到太阳辐射能量的吸收和释放的过程。
它是地球气候系统的重要组成部分,对地球的能量平衡和气候变化起着关键作用。
下面对流层大气的受热过程进行详细分析。
其次,大气层中的气体分子对太阳辐射有选择性的吸收,这是受热过程的关键步骤之一、大气层中的主要气体是氮气、氧气和水蒸气,它们对不同波长的光有不同的吸收能力。
其中,氧气主要吸收较短波长的紫外线,而氮气主要吸收较短波长的紫外线和较长波长的红外线。
水蒸气则主要吸收红外线。
这些吸收过程会导致局部的温度升高。
第三,大气层中的吸收过程会使大气层变得热起来。
当空气分子吸收辐射能量后,会增加其内能,分子间的相互作用增强,从而提高其温度。
这使得大气层中的温度随着海拔的升高而逐渐降低,达到温度递减层。
因此,大气层中的温度分布是非常不均匀的。
第四,大气层中的吸收过程还会导致热辐射的释放。
被激发的气体分子会通过碰撞和辐射的方式将能量传递给周围的空气分子,从而扩散热量。
当空气分子被激发到一个更高的能级时,它会以辐射的形式释放能量。
释放的能量可以是光子(光能)或热能(红外线)。
这些热辐射在大气层内部传递,一部分向上辐射到太空,一部分向下辐射到地表,形成地球的长波辐射。
最后,地表接收到大气层中传递下来的热辐射,会导致地表温度的升高。
地表吸收的热辐射随着太阳辐射能量的增加而增加,因此,白天地表的温度会比夜间高。
地表受热后,再通过传导、对流和辐射的方式将热量传递给大气层中,这些过程共同构成了大气层的能量平衡。
总结起来,流层大气的受热过程是一个复杂的过程,包括太阳辐射的传递、大气层中气体分子的吸收和释放、热辐射的传递等。
这些过程是地球气候系统中能量平衡和气候变化的重要机制。
深入理解流层大气的受热过程,对于更好地掌握气候变化规律以及预测和应对气候变化具有重要意义。
对流层大气的受热过程

对流层大气的受热过程流层大气是指地球大气圈中的最底层,从地球表面到大约15千米高度。
这一层的温度分布和受热过程是影响地球气候和天气变化的重要因素之一、在这篇文章中,我将详细介绍流层大气的受热过程。
流层大气主要是通过辐射和传导两种方式来受热。
辐射是指太阳辐射热能以电磁波的形式传播到地球大气层,它以可见光和红外线的形式到达地球。
太阳辐射主要包括可见光和紫外线,其中大部分是可见光,占据太阳辐射总能量的50%左右。
其中,紫外线被地球大气的臭氧层吸收,而可见光则主要是被地球大气层中的空气分子和云层吸收和散射。
辐射进一步分为太阳辐射的短波辐射和地球辐射的长波辐射。
太阳辐射以短波辐射的形式穿过大气层直接到达地面,而地球辐射则以长波辐射的形式从地面向大气层传播。
对流层大气来说,地面的辐射是一个重要的热源,它主要由太阳辐射的短波辐射作为能量输入。
传导是指由于温度差异引起的能量传递方式,它通过空气分子之间的碰撞来传导热量。
由于流层大气是由空气分子组成的,空气分子之间的碰撞会导致温度的传导。
当地面受到太阳辐射的加热时,地表会升温,而空气分子也会受到热量的传导而升温。
此时,由于密度的差异,热空气会上升,而冷空气则下沉,形成对流循环。
这种对流循环不仅影响地球大气的温度分布,还对天气现象和气候变化起着重要的作用。
此外,也存在一些其他因素影响流层大气的受热过程。
例如,水蒸气是地球大气中的重要成分,它可以吸收和释放大量的热量。
当水蒸气凝结形成云层时,释放的潜热会增加大气的温度。
而当云层通过降水或蒸发释放潜热时,则会对大气的温度产生影响。
总结起来,流层大气的受热过程是一个复杂的过程,既受到太阳辐射和地球辐射的影响,又受到传导和水蒸气等因素的影响。
另外,地球自转和周围大陆和海洋的热导也对流层大气的受热过程产生了影响。
了解这些受热过程对于理解地球气候和天气变化是至关重要的,也对于预测未来气候变化和做出应对措施具有重要的意义。
大气的垂直分层和对流层大气的受热过程

大气的垂直分层和对流层大气的受热过程对流层是大气中最接近地面的一层,它的厚度大约为10∼15km。
在这一层大气中,空气的温度通常随着海拔的增加而递减,这种现象被称为温度递减。
平均温度递减率为6.5℃/km。
这种温度递减的分布形式也被称为标准大气。
对流层中的空气主要靠地面受热而产生对流运动,也就是因为地面受热,将热量传递给空气,使得空气变热,密度减小,从而形成气块上升的气流。
这样,就形成了大气中被称为对流的运动。
对流层的对流运动是大气环流系统的主要形式之一,它使得大气中的热量和水分能够有效地垂直输送。
对流层大气的受热过程主要有辐射、传导和对流三种方式。
第一,辐射是指地面受到太阳辐射的热量,然后将热量辐射向大气。
太阳辐射热量经过大气层的透过、反射和散射后,最终达到地面。
地面吸收到的太阳辐射热量一部分会直接转化为感热,使地表温度升高;另一部分会转化为潜热,使水蒸气从地表蒸发转化为水蒸气。
地面升热后会向空气传递热量,使空气受到加热,从而形成对流运动。
第二,传导是指地面受到太阳辐射热量后,热量从地表向大气传导。
地面与大气之间通过热传导传递热量的主要方式是热对流。
即地面升热后会向空气传递热量,使空气受到加热,从而形成对流运动。
第三,对流是指地面受热后,空气受到加热而产生上升运动。
地面受热后,空气受到加热,温度升高,密度减小,形成气块上升的气流。
空气上升到一定高度后,受到气温递减的影响,空气冷却,水蒸气凝结成云,随着云的不断增加,空气开始下沉,从而形成对流运动。
对流层大气的受热过程影响着大气的动力过程和气候变化。
通过对大气的垂直分层和对流层大气的受热过程的了解,可以更好地理解大气环流的形成机制,预测天气变化以及研究全球气候的变化趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大气逆辐射 保温作用
.
宇宙 空间
22
太 系大阳
气辐 辐射 射、 之地 间面 的辐 关射
、
大气和地面的 反射34
太阳 辐射 100
地面吸收47
射向宇宙空间 60
射向宇宙空间 6
大气上界
114 大气吸收
大气
射向地面 106
地面 辐射 120
对流层大气最主要、直接的热源是地面辐射
对流层大气的根本热. 源是 太阳辐射
干洁空气组成图
氧21.94% 氮78.08%
其他气体不到 1%,如:CO2、O3
.
4
大气的垂直分布
高度 高层大气
(km)
50
平流层
12
对流层
0
空气稀薄,密度小
电 离
电离层,有利于无线电通讯 层
人造卫星等运行、极光、流星
温度随高度增加而增加 平流运动为主 利于高空飞行;臭氧层保护人类环境
温度随高度增加而降低
分三个波段 紫外光、可见光、红外光
• 2、太阳辐射最强部分的波长集中在哪个光区?
可见光
• 3、太阳辐射到达地面之前要经过大气,大气对它 有什么作用,主要表现为哪几种形式?
削弱作用 选择性吸收、散射、反射
.
12
(一)、大气的对太阳辐射的削弱作用
气高 层 大
上层大气吸收紫外线 (<0.175微米)
层平 流
23
大气的温室效应
1.太阳短波辐射使地面吸收能量而增温;
2.地面的长波辐射使大气吸收能量而增温;
是对流层大气增温的直接能量来源
3.大气以大气逆辐射的形式将热量反还给 地面,起到保温作用
气现象都在这一层 与人类关系最密切的一层。
.
6
练习:一架飞机在高空11km处,从南极飞到北极,依 次穿过了哪几层?
8~9KM
南极
17~18KM
赤道 地
8~9KM
北极 面
.
7
2.平流层
(1)概况:对流层顶——50~55千米
有臭氧层存在
吸收紫外线,保护人类环境
(2)特点:
臭氧吸收大量太阳紫 外线增温
.
18
到
达
地
面
大气和地面的
的
反射散射34%
太
大气上界
阳
辐
射
太阳辐射 100%
太阳常数 8.24J/cm2∙min
大气吸收19%
大气
地面吸收47%
.
19
(二)地面辐射和大气辐射
由实验的得知,物体的温度越高,其辐射中最强部分的波 长越短,反之则越长。
辐射类型 太阳辐射
波长类型
原因
短波辐射
表面温度6000k,能量主要集 中在波长较短的可见光部分
太阳辐射经过的大气路径、 云雾的多少、尘埃颗粒的大小 水滴
空气分子和微小尘埃
.
16
小结:大气对太阳辐射的削弱作用
作用 形式
参与作用的 大气成分
波长范围
作用特点
氧原子、臭氧(平 流层)
吸收
水汽、二氧化碳 (对流层)云、浮尘
紫外线 红外线
可见光各种波长被
反射 水汽、云和浮尘 反射一部分
有选择性,大部分 可见光可穿透
大部分来自地面 ) 高纬8∽9千米
天气现象 复杂多 变
最密切
臭氧大量吸
平流 层
随高度30千米以 上气温迅速上升 上升(有臭氧)
水平运动 为主
晴朗
收紫外线, 天然屏障,
有利于高 空飞行
高层 随高度气温下降 大气 再上升
.
晴朗
电离层, 能反射无 线电波
10
一、对流层大气的受热过程
思考
.
11
• 1、太阳辐射根据波长共分为哪几个波段?
.
1
第三节 大气环境
.
2
大气的组成 问:城市上空多雾的原因?
N2 78% 生物体的基本成分
干 O2 21% 维持生命活动必需的物质
洁 空
CO2
植物光合作用的原料;对地面保温
气
O3
吸收紫外线,是“地球生命的保护伞”; 到达地面的少量紫外线有杀菌治病作用
水 汽 成云致雨的必要条件
固体杂质
做为凝结核. ,成云致雨的必要条件 3
地面辐射
长波辐射
地面平均温度22°C,能量主 要集中在红外线部分
.
20
太 阳 辐 射
地 面 吸 收
地面增温
大 气 辐 射
大 气 逆 辐 射 地面
射向宇宙空 间
大气上界
大 气 吸 收
“太阳暖大地” “大气还大地” “大地暖大气”
.
21
总结:
削弱作用(吸收、反射散射)
太
地
大
阳 太阳辐射 面 地面辐射 气
•气温 随高度而增高(原因)
•气流以平流运动为主
有利于高空飞行
.
8
3.高层大气
特点: •空气稀薄、 密度小、气压低 •80~500千米的高空——若干电离层
有利于无线电短波通信
.
9
一、大气的垂直分布
——依据温度、密度和大气运动状况
分层 气温变化
空气运动
天气
与人类 关系
气温随高度增加 对流运动显著
对流 而递减 ,0.6℃ 低纬17∽18, 层 /100m(热量绝 中纬10∽12,
反射
臭氧大量吸收紫外线 (0.175—0.40微米)
层对 流
吸收 二氧化碳、水汽、云 和浮尘吸收红外线
地
.面
散射(蓝色光)
13
1、吸收作用:
⑴、特点
选 O3(平流层)吸收紫外线
择 性
CO2 水汽
对流层
吸收红外线
⑵、到达地面的主要 50 是可见光。 ⑶、大气直接吸收的 太阳辐射的能量很少。12
紫外线 可见光 红外线
无选择性,云层越 多(厚),反射越 强
散射
大气分子、微小尘 埃
大颗粒尘埃、雾粒、ቤተ መጻሕፍቲ ባይዱ小水滴
蓝色光最易 被散射
各种. 波长光
有选择性
向四面八方散射 无选择性
17
• 1、交通信号灯“红灯停,绿灯行”的科学依据。
红色光线波长较长,难被散射,穿透力强,以红灯作为停 止的信号更为醒目
• 2、旭日和夕阳、朝霞和晚霞呈橘红色以及诗句 “日出江花红胜火”的原理。
O
O3
CO2 水汽
. -100 -50 0 50 100 14
(2)反射作用:
特点: 无选择性 影响因素:
云层 越厚 尘埃 越多
反射越强
例:夏季,多云的白天, 气温不会 太高。
.
15
(3)散射作用
特点: 有选择性 波长越短越容易被散射
例:晴朗的天空呈现蔚蓝色 无选择性
所有的光线同样被散射
影响因素:
对流运动显著;
天气现象复杂
10 20 30
.
温度oC 5
1.对流层
(1)概况:平均高度12千米;集中了整个大气质量的 3/4和几乎全部的水汽、固体杂质。
(2)特点
地面是对流层大气的 直接热源
•气温随高度的增加而递减(原因)
每上升1000米温度下降6oC
•对流运动显著——各纬度高度不同
•天气现象复杂多变,云、雨、雾、雪等天
日出、日落前后,太阳高度小,太阳辐射通过的路径长,大气的 削弱作用强,可见光中的蓝色光大都被散射,透射下来的光线中波 长较长的红橙光较多,因此旭日和夕阳呈橘红色,投射到江面上也 使其染成红色。
• 3、晴朗天空呈蔚蓝色;阴沉的天空呈灰白色?
晴天,散射有选择性,波长短的蓝、紫色光易被空气分子所射;
阴天,散射无选择性,可见光被空气分子散射。