精馏塔---课程设计

合集下载

苯和氯苯精馏塔课程设计

苯和氯苯精馏塔课程设计

苯和氯苯精馏塔课程设计一、引言苯和氯苯是常见的有机化合物,它们在工业生产中有广泛的应用。

苯和氯苯精馏塔是一种有效的分离方法,可以将两者分离出来。

本课程设计旨在探究苯和氯苯精馏塔的原理、设计方法、操作技巧和安全注意事项。

二、原理1. 精馏塔原理精馏是一种利用液体混合物中各组分沸点差异进行分离的物理过程。

精馏塔是一种基于精馏原理设计的设备,通常由填料层和板层组成。

填料层通常由多孔性材料制成,可增加液体与气体之间的接触面积,促进挥发性组分从液相向气相转移;板层则通过板孔将液体和气体分开,使得液体在不同板层之间反复蒸发和凝结,从而实现组分之间的分离。

2. 苯和氯苯之间的沸点差异苯(C6H5)的沸点为80.1℃,而氯苯(C6H5Cl)的沸点为131℃。

因此,在适当温度下,苯和氯苯可以通过精馏塔进行分离。

三、设计方法1. 精馏塔的选择根据物料性质和生产要求,选择合适的精馏塔类型。

常见的精馏塔类型有平板式、填料式、螺旋板式等。

2. 填料的选择填料是影响精馏效果的重要因素之一。

常用的填料有金属网、陶瓷球、聚合物球等。

填料的选取应考虑到其表面积、孔径大小、耐腐蚀性和可再生性等因素。

3. 操作参数的控制在操作过程中,应根据实际情况控制温度、压力和进出料量等参数。

通常情况下,应将温度控制在苯和氯苯沸点之间,并适当增加进出料量以提高分离效率。

4. 填充率的控制填充率是指填料所占据空间与总容积之比。

填充率过高会导致液体无法顺畅流动,从而影响分离效果;而填充率过低则会导致液体在塔内停留时间不足,也会影响分离效果。

一般来说,填充率应控制在50%~70%之间。

四、操作技巧1. 开始操作前应检查设备是否正常运转,并进行必要的维护保养。

2. 在进料前,应先将塔内空气排出,以避免氧化反应和爆炸事故。

3. 操作过程中应注意控制温度、压力和进出料量等参数,并及时调整。

4. 如果发现液位过高或过低,应及时采取措施调整液位。

5. 操作结束后,应清洗设备并进行必要的维护保养。

甲醇水精馏塔化工原理课程设计

甲醇水精馏塔化工原理课程设计

甲醇水精馏塔化工原理课程设计本文将介绍一门关于“甲醇水精馏塔化工原理课程设计”的学习内容,该课程设计将涉及到许多重要的化工原理和技术应用方面。

本文将主要从以下几个方面进行介绍:一、课程设计背景甲醇和水是常见的有机溶剂和溶媒,广泛应用于化学工业、食品工业、医药工业等诸多领域。

但甲醇和水的相互溶解度较低,难以用简单的混合物方法来进行分离。

因此,需要采用精馏技术对甲醇水混合物进行分离与提纯,而甲醇水精馏塔就是典型的精馏设备。

本课程设计就是为了让学生深入了解甲醇水精馏塔的化工原理和工艺操作,并掌握甲醇水分离的关键技术。

二、课程设计内容本课程设计的主要内容包括理论学习和实验操作两部分。

具体来说,理论学习将介绍甲醇水混合物的化学性质、相图、相平衡、相接触、塔、节流和板面效应等理论基础知识,并通过相应的实验操作来加深学生的理解。

实验操作将包括设备组装、实验前检查、实验过程控制和实验后数据处理等环节,以培养学生的实验技能和实际操作能力。

三、课程设计任务本课程设计的主要任务是让学生了解甲醇水精馏塔的化工原理和工艺操作,在此基础上能够独立设计和操作精馏设备,实现甲醇和水混合物的高效分离和提纯。

具体而言,学生需要完成以下任务:1. 研究甲醇水混合物的相图,掌握不同温度下甲醇和水的相互溶解度和相变情况;2. 根据甲醇水混合物的相平衡数据,设计合适的塔板数和塔壳直径,以实现甲醇和水的有效分离;3. 设计甲醇水精馏塔的流程图和操作流程,确保操作步骤合理且安全;4. 根据实验数据,计算塔效和塔效影响因素,并分析其影响和解决方法;5. 总结课程设计过程中遇到的问题和方法,撰写相关实验报告和课程设计论文。

四、课程设计意义本课程设计不仅能够深入学习甲醇和水的化学性质和相互关系,也可以了解甲醇水精馏塔的精细操作技术和机理原理,从而加深对化工实践的理解和认识。

同时,学生还可以在实验操作中培养实际能力和团队配合能力,为今后从事化工实践和科研工作奠定坚实基础。

课程设计--精馏塔分离苯-甲苯混合物

课程设计--精馏塔分离苯-甲苯混合物

课程设计--精馏塔分离苯-甲苯混合物目录摘要 (II)Abstract (III)引言 (1)第一章概述 (1)1.1精馏塔设计任务 (2)1.2精馏塔设计方案的选定 (2)第二章精馏塔设计计算 (3)2.1精馏塔物料衡算 (3)2.2塔板的确定 (4)2.3精馏塔的工艺条件及有关物性数据的计算 (5)2.4精馏塔的塔体工艺尺度计算 (10)第三章塔附属设备选型及计算 (29)3.1接管 (29)3.2塔体总高度 (30)3.3辅助设备 (32)第四章设计结果汇总 (35)设计小结与体会 (37)符号说明 (38)参考文献 (40)摘要化工生产中所处理的物料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质,生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离较纯净或几乎纯态的物质。

精馏是分离液体混合物最常用的一种单元操作, 利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。

实现原料混合物中各组成分离该过程是同时进行传质传热的过程。

本设计任务为精馏塔分离苯-甲苯混合物。

对于二元混合物的分离,采用连续精馏过程。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸气采用全器冷凝,冷凝液在泡点温度下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属易分离物系,最小回流比较小,所以在设计中把操作回流比取最小回流比的1.7倍。

塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。

本设计说明书以通过物料衡算,热量衡算,工艺计算,结构设计和校核等一系列工作来设计一个具有可行性的合理的筛板塔以及相关辅助设备的计算。

绘制了精馏塔装配图,精馏工艺流程图。

关键词:筛板塔;苯;甲苯AbstractIn the chemical production processes the material, the intermediary product, the primary product, nearly is the mixture which is composed of certain components, moreover majority is the homogeneous phase material, in the production to satisfy the storage, the transportation, the processing and the use need, often needs these mixture separation for pure or nearly the pure state material.Separation of distillation is the most commonly used liquid mixture of a unit operation, using liquid mixture of all the different points of the volatile, volatile components from liquid to gas transfer, difficult volatile components from gas to liquid transfer. Mixture of raw materials to achieve the various components of the separation process is at the same time heat and mass transfer process.The design task is to separate the benzene - toluene mixture using the distillation tower. For the separation of binary mixtures, we can use a continuous distillation process. In the design, we feed the raw material in the bubble point ,using preheater where the liquid can be heated up to the bubble point and then give it away to the distillation tower. Up top of the tower ,there is a total condenser which can condense the steam. Part of the condensed steam return to the tower in the bubble point, and the rest product is sent to the tank through the total condenser. It is so easy to isolate material system using this system. the minimum return is relatively small, so we take the minimum reflux ratio of 1.7 times of the operating reflux ratio in our design. Tower reacter is heated with indirect steam and the tower bottom product is sent to storage tanks after cooling.The design specification through the material balance, energy balance, technology, structural design and verification and a series of work to design a reasonable possibility of the sieve tower that should use the relation selective evaporation flow,and drawing assemble diagram of distillation tower and PID of distillation.Keywords:Distillation;Sieve tower;Benzene引言化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

第一章绪论1.1精馏的特点与分类精馏是分离液体混合物的典型单元操作。

它是通过加热造成气液两相物系,利利用物系中各组分挥发度的不同的特性来实现分离的。

按精馏方式分为简单精馏、平衡精馏、精馏和特殊精馏。

1.1.1蒸馏分离具有以下特点(1)通过蒸馏分离,可以直接获得所需要的产品。

(2)适用范围广,可分离液态、气态或固态混合物。

(3)蒸馏过程适用于各种浓度混合物的分离。

(4)蒸馏操作耗能较大,节能是个值得重视的问题。

1.1.2平衡蒸馏将混合液在压力p1下加热,然后通过减压阀使压力降低至p2后进入分离器。

过热液体混合物在分离器中部分汽化,将平衡的气、液两相分别从分离器的顶部、底部引出,即实现了混合液的初步分离。

1.1.3简单蒸馏原料液在蒸馏釜中通过间接加热使之部分汽化,产生的蒸气进入冷凝器中冷凝,冷凝液作为馏出液产品排入接受器中。

在一批操作中,馏出液可分段收集,以得到不同组成的馏出液。

1.1.4连续精馏操作流程化工生产以连续精馏为主。

操作时,原料液连续地加入精馏塔内,连续地从再沸器取出部分液体作为塔底产品(称为釜残液);部分液体被汽化,产生上升蒸气,依次通过各层塔板。

塔顶蒸气进入冷凝器被全部冷凝,将部分冷凝液用泵(或借重力作用)送回塔顶作为回流液体,其余部分作为塔顶产品(称为馏出液)采出。

1-精馏塔 2-全凝器3-储槽 4-冷却器5-回流液泵 6-再沸器 7-原料液预热器图1连续精馏装置示意图1.2精馏塔的踏板分类1.2.1塔板的结构形式1.泡罩塔板泡罩塔板是工业上应用最早的塔板,它由升气管与泡罩构成。

泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。

泡罩有φ80mm、φ100mm和φ150mm三种尺寸,可根据塔径大小选择。

泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。

泡罩在塔板上为正三角形排列。

它的优点是操作弹性适中塔板不易堵塞。

缺点是生产能力与板效率较低结构复杂、造价高。

图2泡罩塔板(a)操作示意图 (b)塔板平面图 (c)圆形泡罩2.筛孔塔板筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。

精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。

本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。

首先,我们来介绍一下精馏塔的原理。

精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。

在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。

其次,我们将介绍精馏塔的结构。

精馏塔通常由塔底、塔体和塔顶三部分组成。

塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。

此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。

最后,我们将讨论精馏塔的设计。

精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。

在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。

此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。

总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。

通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。

化工原理 课程设计 精馏塔

化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。

该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。

乙醇的浓度要求为95%(质量分数),水含量要求低于5%。

二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。

同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。

3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。

4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。

三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。

2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。

3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。

4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。

5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。

6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。

浮阀式精馏塔课程设计

浮阀式精馏塔课程设计

浮阀式精馏塔课程设计
一、设计任务和要求
1.设计一个浮阀式精馏塔,以满足给定的分离要求。

2.根据给定的进料条件、产品要求和操作条件,确定合适的操作方式和工艺参数。

3.使用适当的设计软件进行模拟和优化,以确定最佳塔体尺寸和分离效果。

4.编写设计报告,包括塔体尺寸、分离流程、操作条件、经济效益等方面的分析。

二、设计步骤
1.确定设计任务和要求,明确进料条件、产品要求和操作条件。

2.进行物性分析和热力学分析,选择合适的精馏分离流程。

3.根据流程图和工艺参数,使用设计软件建立浮阀式精馏塔的模型。

4.进行模拟计算,优化塔体尺寸和分离效果。

5.根据模拟结果,确定塔体尺寸、填料和附件等参数。

6.编写设计报告,包括流程图、模拟结果、塔体尺寸、经济效益等方面的分析。

7.准备答辩材料,向老师和同学展示设计成果。

三、注意事项
1.在设计过程中,应充分考虑安全、环保和经济效益等方面的因素。

2.注意数据的准确性和可靠性,以确保设计的可行性和可靠性。

3.在答辩过程中,应注意表达清晰、逻辑严谨,回答问题时要准确、全面。

四、总结
本课程设计通过模拟和优化浮阀式精馏塔,使我们更深入地了解了精馏分离的原理和工艺参数,提高了我们的工程设计能力和实际操作能力。

同时,也使我们认识到了工程实践中的复杂性和多样性,培养了我们的创新思维和实践能力。

在未来的学习和工作中,我们将不断积累经验,提高自己的综合素质和能力水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章绪论1.1课程设计的目的(1)把化工工艺与化工机械设计结合起来,巩固和强化有关机械课程的基本理论和知识基本知识。

(2)培养对化工工程设计上基本技能以及独立分析问题、解决问题的能力。

(3)培养识图、制图、运算、编写设计说明书的能力。

1.2课程设计的要求(1)树立正确的设计思想。

(2)具有积极主动的学习态度和进取精神。

(3)学会正确使用标准和规范,使设计有法可依、有章可循。

(4)学会正确的设计方法,统筹兼顾,抓主要矛盾。

(5)在设计中处理好尺寸的圆整。

(6)在设计中处理好计算与结构设计的关系。

1.3课程设计的内容对二氯乙烷精馏塔的机械设计。

DN=1800mm P N=1.2MPa1.4课程设计的步骤(1)全面考虑按压力大小、温度高低、腐蚀性大小等因素来选材。

(2)选用零部件。

(3)计算外载荷,包括内压、外压、设备自重,零部件的偏载、风载、地震载荷等。

(4)强度、刚度、稳定性设计和校核计算(5)传动设备的选型、计算。

(6)绘制设备总装配图。

第2章 塔体的机械计算2.1 按计算压力计算塔体和封头厚度2.1.1 塔体厚度的计算(1)计算压力 MPa Pc 2.1= (2)塔体计算厚度 mm Pc t PcDi 8.72.185.0170218002.1]δ[2δ=×××==(3)塔体设计厚度 mm 8.9δc δ=+=c (4)塔体名义厚度 n δ=12mm (5)塔体有效厚度 mm c n e 10δδ==2.1.2 封头厚度计算(1)计算厚度 mm Pc t PcDi 5.72.15.085.0170218002.15.0][2=⨯-⨯⨯⨯=⨯-=ϕδδ(2)设计厚度 mm c 5.9c =+=δδ (3)名义厚度 mm n 12=δ (3)有效厚度 mm c n e 10=-=δδ2.2 塔设备质量载荷计算2.2.1 筒体圆筒、封头、裙座质量 m 01(1)圆筒质量 m 1=4.1971979.36536=×Kg (2)封头质量 m 2=8.67624.338=×Kg (3)裙座质量 m 3=2.164006.3536=×Kg 说明:1 塔体圆筒总高度为36.79m ;2查得DN1800mm ,厚度10mm 的圆筒质量为536Kg/m ;3 查得 DN1800mm ,厚度10mm 的椭圆形封头质量为338.4Kg/m ;4 裙座高度3060mm 。

m 01=m 1+m 2+m 3=22036.4Kg2.2.2 塔内构件质量 m 02m 02=6.1335970758.1785.070754π22=×××=××Di Kg浮阀塔盘质量75Kg/m 22.2.3 保温层质量 m 03'03220]2)2(2)22[(785.0m 03m H n Di n Di ++-++⨯=ρδδδ300)83.013.1(230079.36])824.1()024.2[(785.022⨯-⨯+⨯⨯-⨯==6851Kg'03m 为封头保温层质量 2.2.4 平台与扶梯质量 04mm 04=FF p n n H q nq Di B Di ⨯+⨯++-+++⨯21])22()222[(785.022δδδδ394015085.0])1.02012.028.1()9.021.02012.028.1[(785.022⨯+⨯⨯⨯⨯+⨯+-⨯+⨯+⨯+= =6520Kg说明:平台质量q p =150Kg/m 2;笼式扶梯质量F q =40Kg/m ;笼式扶梯高度H F =39m ,平台数n=82.2.5 操作时物料质量05mKgV h N h Di m f w 291861257827.01257)8.1701.0(8.1785.0)(42110205=⨯+⨯+⨯⨯=++=ρρπ说明:物料密度31/800m Kg =ρ,封头容积35864.0m V f =。

塔釜圆筒部分深度8.10=h ,塔板层数N=70,塔板上液层高度m h w 1.0=2.2.6 附件质量a m按经验取附件质量 Kg m m a 1.550925.001==2.2.7 充水质量w mKgV H Di m w f w w 952731000827.02100079.368.1785.024202=⨯⨯+⨯⨯⨯=+=ρρπ其中3/1000m Kg w =ρ2.2.8 各种载荷质量汇总表2-1质量汇总塔段0~1 1~2 2~3 3~4 4~5 5~顶 合计 塔段长度/mm 1000 2000 7000 10000 10000 10000 40000 人孔与平台数 0 0 1 3 2 2 8 塔板数0 0 9 22 22 17 70 1i o m 536 1410.4 3752 5360 5360 5618 22036.4 2i o m - - 1717 4198 4198 3247 13360 3i o m- 90 1269 1813 1813 1866 6851 4i o m 40 80 900 2260 1640 1600 6520 5i o m - 1039 8633.5 7031 7031 5451 29185.5 iam 134 352.6 938 1340 1340 1404.5 5509.1 i w m - 827 17804 25434 25434 25774 95273 i e m - 2800 5200 - - - 8000 i om 710 4733 12402.4 11012.6 10992.6 11137.9 51588.5 各塔段最小质量/kg 710577222409.5220022138219186.591462全塔操作质量/kg 9146205040302010=++++++=a e m m m m m m m m 全塔最小质量/kg 5.515882.004030201min =+++++=e a m m m m m m m 水压试验时最大质量/kg5.15754904030201max =++++++=e w a m m m m m m m m第3章 风载荷与风弯矩的计算3.1.1 风载荷计算2—3段计算风载荷3P222.100.111.072.080.211323323=⨯⨯+=Φ+=f v k ξ,其中3ν0.72=,23φ0.11=,3 1.0f =。

a K K s D oi D 34323e +++=δb δδps d o K s D D e 2432oi 3++++= 取3400mm K =,432A 219001000257mm l 7000K ⨯⨯⨯===∑s3ps δ=δ=100mma K K s D oi D 34323e +++=δ=2677b δδps d o K s D D e 2432oi 3++++==2877 取mm D e 26773=,N D l f q k k P e 68901028777000140022.17.0106633302313=⨯⨯⨯⨯⨯⨯=⨯=--3.1.2 风弯矩的计算截面0—0mm N l l l P l l l P ll P l P M w ⋅⨯=⨯+⨯+⨯+⨯+⨯+⨯=++++++++++=-9621632132121100100814.23288035000245852500017906150006890650011672000500481)2...(....)()2(2截面1—1mmN l l l P l l P l P M w ⋅⨯=⨯+⨯+⨯+⨯+⨯=+++++++=-963263232211109978.13288034000245852400017906140006890550011671000)2...(....)2(2 截面2—2mmN ll l P l P M w ⋅⨯=⨯+⨯+⨯+⨯=+++++=-96436332210832.132880320002458522000179061200068903500)2...(. (2)3.2 地震弯矩计算取第一振型脉动增大系数10.02ζ=,则衰减指数110.05-ζ0.9+0.950.5+5ζγ==,S T 07.21=,地震设防烈度9度,故取max 0.32α=。

查得0.40g T =,023.09/)02.005.0(02.09/)05.0(02.011=-+=-+=ζη319.102.07.106.002.005.017.106.005.01112=⨯+-+=+-+=ζζη,092.01=∂,等直径等厚度的塔,152.221800/40000/>==i D H 按下列方法计算地震弯矩。

截面0—0mm N gH m M E⋅⨯=⨯⨯⨯⨯=⨯=-901'00105.14000081.991462095.035163516α mmN M M EE⋅⨯=⨯⨯==--99'0000109.1105.125.125.1截面1—1mmN h h H H Hg m M E ⋅⨯=⨯+⨯⨯-⨯⨯⨯⨯⨯=+-=-95.35.25.35.25.35.25.35.201'111044.1)10004100040000144000010(4000017581.9914628095.08)41410(1758α mm N M M E E ⋅⨯=⨯⨯==--99'1111108.11044.125.125.1截面2—2mmN h h H H Hgm M E ⋅⨯=⨯+⨯⨯-⨯⨯⨯⨯⨯=+-=-95.35.25.35.25.35.25.35.201'221034.1)30004300040000144000010(4000017581.991462092.08)41410(1758α mm N M M E E ⋅⨯==--9'22221067.125.1。

3.3 偏心弯矩的计算偏心质量 Kg m e 8000= 偏心距mm e 2000=偏心弯矩 mm N ge m M e e ⋅⨯=⨯⨯==81057.1200081.980003.4 各种载荷引起的轴向应力3.4.1 计算压力引起的轴向应力MPa e PcDi 5410418002.241=⨯⨯==δδ 其中 mm c n e 10212=-=-=δδ3.4.2 操作质量引起的轴向压应力2δ截面0—0 MPa Di g m ei 87.1510180014.381.991462000002=⨯⨯⨯==--δπδ截面1—1 MPa Di g m ei 76.1410180014.381.991462110112=⨯⨯⨯==--δπδ其中Kg m 9075283891462110=-=-截面2—2 MPa Di g m ei 76.1410180014.381.991462220222=⨯⨯⨯==--δπδ其中Kg m 85030576683891462220=--=-3.4.3 最大弯矩引起的轴向应力3δ截面0—0 MPa Di M ei 94.99101800785.010542.2429200max 003=⨯⨯⨯==--δπδ截面1—1 MPa Di M ei 02.8812160014.310436.24429222max 223=⨯⨯⨯⨯==--δπδ截面2—2 MPa ei Di M 83.8912160014.310253.24max 4292223=⨯⨯⨯⨯==-δπδ3.5 塔体和裙座危险截面的强度与稳定校核3.5.1 截面的最大组合轴向拉应力校核截面2-2塔体的最大组合轴向拉应力发生在正常操作时的2—2截面上,其中,[]a 170Mp tσ=,0.85φ=, 1.2K =,[]a 1.21700.85173.4Mp tK σφ=⨯⨯=MPa 78.13083.8905.1354223222122max =+-=+-=---δδδδMPa K MPa t 4.173][78.13022max =<=-φδδ 满足要求3.5.2 塔体与裙座的稳定性校核截面2-2塔体2—2截面上的最大做和轴向压应力MPa 88.10283.8905.1322322222max =+=+=---δδδMPa K KB MPa t Cr 4.140}204,4.140m in{}][,m in{][88.10222max ===<=-δδδ满足要求 其中00104.090010094.0094.0=⨯==Ri ei A δ 查图5-9得MPa MPa B MnR t 170][,117)200,16(==δ, K=1.2 截面1-1塔体1—1截面上的最打组合轴向压应力MPa 96.10378.8818.1511311211max =+=+=---δδδMPa K KB MPa t Cr 132}6.135,132m in{}][,m in{][96.10311max ===<=-δδδ满足要求 其中 00104.090010094.0094.0=⨯==Ri A ei δ查图5-8得(Q235-B ,200) B=110MPa MPa t113][=δ K=1.2截面 0-0塔体0—0截面上的最大组合轴向应力MPa 81.11594.9978.1500300200max =+=+=---δδδMPa K KB MPa t Cr 132}6.135,132m in{}][,m in{][81.11500max ===<=-δδδ满足要求其中MPa B 110= MPa t113][=δ K=1.2各危险截面强度校核汇总3.6塔体水压试验和吊装时代应力校核3.6.1水压试验时各种载荷引起的应力(1)试验压力和液柱静压力引起的环向应力MPa ei Di P ei T T 95.171102)101800)(4.05.1(2))((=⨯++=++=δδδ液柱静压力MPa P P i T 5.11701702.125.1][][25.1=⨯⨯==δδ 液柱静压力=4.081.9/40000001.081.9/=⨯=rH (2)试验压力引起的轴向拉应力 MPa Di P e T T 5.6710418005.141=⨯⨯==δδ (3)最大质量引起的轴向压应力 MPa e Di g m T T 32.2710180014.381.9157550222=⨯⨯⨯==-δπδ (4)弯矩引起的轴向应力 MPa Di Me M eW T 76.2710180014.3)1057.110832.13.0(4)3.0(42892223=⨯⨯⨯+⨯⨯⨯=+=-δπδ 3.6.2 水压试验时应力校核(1)筒体环向应力校核MPa s 9.2639.0=ϕδ MPa MPa T 9.26395.171<=δ 满足要求 (2)最大组合轴向应力校核MPa T T T 78.130321=+-δδδ液压试验时 MPa K MPa s T T T 9.2639.078.130321=<=+-ϕδδδδ 满足要求(3)最大组合轴向压应力校核MPa KB MPa s Cr T T 4.140}5.310,4.140m in{}9.0,m in{][88.10293.2727.1932===<=+=+σδδδ 满足要求。

相关文档
最新文档