概率论与数理统计课件(第六章)
合集下载
概率与统计学课件-第六章-数理统计的基本概念2-1

6.1
�总体与样本
基本概念: 总体:研究的问题所涉及的对象的全体 个体:总体中的每个成员 样本:从总体中抽取部分个体 样本容量:样本所包含的个体数量 样本观测值:
数的属性 样本的二重性 随机变量的属性
设X1,X2, …,Xn为总体X的一个容量为 n的 样本。若它满足 独立性,即X1,X2, …,Xn 相互独立; 同分布性,即每个 Xi都与总体X服从相 同的分布. 则称这样的样本为简单随机样本,简称为 样本。
�统计量
设是总体X的样本,g(X1,X2, …,Xn)是样本 的实值函数,且不包含任何未知参数,则 称g(X1,X2, …,Xn)为统计量。
例2.若X1,X2, X3是来自总体X~N(μ, σ 2)的 其中参数μ未知, σ2已知,则
X 1 X 3 − 3µ , X12 + 4 X 22 + 5µ 都不是统计量
�定理
若X1,X2, …,Xn是来自总体X的样本,设X 的分布函数为 F(x),则样本X1,X2, …,Xn的 联合分布函数为
n
∏ F (x )
i i =1
例1.若X1,X2, …,Xn是来自总体X的样本,设 X的分布函数为 F(x),则样本 X1,X2, …,Xn的联合分布函数为
⎧ n − λ xi (1 − e ), xi > 0(i = 1, 2,⋯ , n) ⎪∏ F ( x1 , x2 ,⋯ , xn ) = ⎨ i =1 ⎪ 0 , 其他 ⎩
1/8, 25 ≤ x<27 2/8, 27 ≤ x<30 3/8, 30 ≤ x<33 Fn(x)= 5/8, 33 ≤ x<35 6/8, 35 ≤ x<45 7/8, 45 ≤ x<65 1, 65 ≤ x
�总体与样本
基本概念: 总体:研究的问题所涉及的对象的全体 个体:总体中的每个成员 样本:从总体中抽取部分个体 样本容量:样本所包含的个体数量 样本观测值:
数的属性 样本的二重性 随机变量的属性
设X1,X2, …,Xn为总体X的一个容量为 n的 样本。若它满足 独立性,即X1,X2, …,Xn 相互独立; 同分布性,即每个 Xi都与总体X服从相 同的分布. 则称这样的样本为简单随机样本,简称为 样本。
�统计量
设是总体X的样本,g(X1,X2, …,Xn)是样本 的实值函数,且不包含任何未知参数,则 称g(X1,X2, …,Xn)为统计量。
例2.若X1,X2, X3是来自总体X~N(μ, σ 2)的 其中参数μ未知, σ2已知,则
X 1 X 3 − 3µ , X12 + 4 X 22 + 5µ 都不是统计量
�定理
若X1,X2, …,Xn是来自总体X的样本,设X 的分布函数为 F(x),则样本X1,X2, …,Xn的 联合分布函数为
n
∏ F (x )
i i =1
例1.若X1,X2, …,Xn是来自总体X的样本,设 X的分布函数为 F(x),则样本 X1,X2, …,Xn的联合分布函数为
⎧ n − λ xi (1 − e ), xi > 0(i = 1, 2,⋯ , n) ⎪∏ F ( x1 , x2 ,⋯ , xn ) = ⎨ i =1 ⎪ 0 , 其他 ⎩
1/8, 25 ≤ x<27 2/8, 27 ≤ x<30 3/8, 30 ≤ x<33 Fn(x)= 5/8, 33 ≤ x<35 6/8, 35 ≤ x<45 7/8, 45 ≤ x<65 1, 65 ≤ x
概率论与数理统计(06)第6章 统计量及其抽样分布

一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计第2版教学课件第6章

随机样本与统计量
6.1.2
样本统计量
定义4 (极差) 设X1,X2,…,Xn是来自总体X的样本,则称统计量
R=X(n)-X(1)
为样本的极差。
极差反映了样本观测值的波动幅度。它同方差一样是反映观察值离散程度的数量指标。
(6-8)
6.1
随机样本与统计量
6.1.2
样本统计量
例 从某工厂生产的轴承中随机地抽取10只,测得其重量(以kg计)为
从一个总体X抽取n个个体,由于抽样的独立性与随机性,每个个体都是一个随机变量
Xi(i=1,2,…,n)。这里X1,X2,…,Xn相互独立,并且Xi与X具有相同分布。这样的n个随机变量称为总体X的
一个容量为n的样本。但是在具体抽样后,它们就有了具体的数值
x1,x2,…,xn,
称为样本观察值。
6.1
随机样本与统计量
有钢筋视为一个总体,则这一天生产的每一根钢筋为个体。又如,要检验一批灯泡的质量,这一批灯
泡可看成是一个总体,每一个灯泡则为个体。
在数理统计中,我们往往对表征总体性质的某一个或某n个数量指标感兴趣。如灯泡的使用寿命X
就是灯泡质量的一个重要的数量指标;钢筋的抗拉强度Y1,抗剪切力的大小Y2是表征钢筋质量的两个
一些带有严重破坏性的自然灾害进行必要的估计与预测。如在建造桥梁时,为了防止洪水冲塌桥梁这
类事故发生,设计时就必须事先考虑到在使用期间该河流可能爆发的最高水位;在建造高大建筑物时,
也要考虑到今后若干年内的最大风压、地震的最大震级等。了解这些随机变量的概率分布,就是极值
的分布。
6.2
抽样分布
6.2.2
6.1.1
总体、个体与样本
定义1 设X1,X2,…,Xn是来自总体X的容量为n的样本,若X1,X2,…,Xn相互独立,且每个
概率论数理统计课件第6讲

(2) X的分布函数为
F x
x
5 3 5 3 (3) P X F F 2 2 2 2 1 0.9375 0.0625
2.3.3 常见的连续型随机变量
均匀分布、指数分布、正态分布
1. 均匀分布 (Uniform) 若随机变量X 的概率密度为:
(2).
f ( x) dx 1;
这两条性质是判定函数 f(x) 是否为某随机变量 X 的概率密度函数的充 要条件。
f(x)与x轴所围 面积等于1。
(3). 对 f(x)的进一步理解:
若x是 f(x)的连续点,则 x x f (t )dt P( x X x x) x lim lim x 0 x 0 x x =f(x), 故, X的概率密度函数f(x)在 x 这一点的值, 恰 好是X 落在区间 [x , x +△x]上的概率与区间长 度△x 之比的极限。 这里, 如果把概率理解为 质量,f (x)相当于物理学中的线密度。
这100个数据中,最小值是128,最大值是155。
作频率直方图的步骤
(1). 先确定作图区间 (a, b); a = 最小数据-ε/ 2,b = 最大数据+ε/ 2,
ε 是数据的精度。 本例中 ε = 1, a = 127.5, b = 155.5 。
(2). 确定数据分组数 m = 7, 组距 d = (b − a) / m=28/7=4,
1
。
p k 0, k 1,2,,
2。
p
k 1
k
1.
随机变量X 的所有取值 随机变量X的 各个取值所 对应的概率
常用的离散型随机变量的分布
1.两点分布( 0-1分布) 模型:一个人射击,射中的概率为p,不中的概 率为 q=1-p. 规定:
西北工业大学《概率论与数理统计》课件-第六章 参数估计

最大概率的思想就是最大似然法的基本思想 .
(2) 似然函数
定义6.1 设总体X的分布密度(或分布律)为 p(x; ), 其中 (1, 2, ,m )为未知参数. 又设
( x1, x2,, xn ) 为自总体X的样本(X1,X2,…,Xn) 的一 个观察值,则称样本的联合分布
n
L( ) p(x1, x2, … , xn; ) p( xi; )
2º似然估计方程组与最大似然估计之间没有必 然
从中解得 pˆ k n
参数 p的估计值
这时, 对一切 0< p <1, 均有
P{Y k; pˆ } P{Y k; p}
综上所述: 设某试验的可能结果为: A1, A2 , ···, Ai , ···
若在一次试验中,某结果 Ai 出现,则应选择参 数使Ai 出现的概率最大.
以上这种选择一个参数使得实验结果具有
(k 1,2,, m)
(4) 求最大似然估计(MLE)的步骤:
1 写出似然函数
(1, 2 , ,m )
n
L( ) L( x1, x2,, xn; ) p( xi; )
n
i 1
2 取对数 ln L( ) ln p( xi; )
i 1
3 解似然方程(组)
ln L
ln L
2
为来自总体X的简单随机样本. 矩估计法的具体步骤:
1 求出k E( X k ) (1,2,,m ), k 1,2,,m;
2 要求k Ak , k 1,2,, m
这是一个包含 m个未知参数1,2 ,,m的方程组.
3 解出其中1,2,,m , 用ˆ1,ˆ2,,ˆm表示.
4 用方程组的解ˆ1, ˆ2 , ,ˆm 分别作为 1,2 ,,m的估计量,这个估计量称为
(2) 似然函数
定义6.1 设总体X的分布密度(或分布律)为 p(x; ), 其中 (1, 2, ,m )为未知参数. 又设
( x1, x2,, xn ) 为自总体X的样本(X1,X2,…,Xn) 的一 个观察值,则称样本的联合分布
n
L( ) p(x1, x2, … , xn; ) p( xi; )
2º似然估计方程组与最大似然估计之间没有必 然
从中解得 pˆ k n
参数 p的估计值
这时, 对一切 0< p <1, 均有
P{Y k; pˆ } P{Y k; p}
综上所述: 设某试验的可能结果为: A1, A2 , ···, Ai , ···
若在一次试验中,某结果 Ai 出现,则应选择参 数使Ai 出现的概率最大.
以上这种选择一个参数使得实验结果具有
(k 1,2,, m)
(4) 求最大似然估计(MLE)的步骤:
1 写出似然函数
(1, 2 , ,m )
n
L( ) L( x1, x2,, xn; ) p( xi; )
n
i 1
2 取对数 ln L( ) ln p( xi; )
i 1
3 解似然方程(组)
ln L
ln L
2
为来自总体X的简单随机样本. 矩估计法的具体步骤:
1 求出k E( X k ) (1,2,,m ), k 1,2,,m;
2 要求k Ak , k 1,2,, m
这是一个包含 m个未知参数1,2 ,,m的方程组.
3 解出其中1,2,,m , 用ˆ1,ˆ2,,ˆm表示.
4 用方程组的解ˆ1, ˆ2 , ,ˆm 分别作为 1,2 ,,m的估计量,这个估计量称为
概率论与数理统计教程第二版茆诗松课件PPT第六章

( 其中 是 可能的取值范围)
ˆ 与样本值 x1 , x2 ,, xn 有关, 记为 这样得到的 ˆ ( x1 , x2 ,, xn ), 参数 的最大似然估计值 ,
ˆ ( X 1 , X 2 , , X n ) 参数 的最大似然估计量 .
12 April 2016
L( ) 1
n
I
i 1
n
{0 xi }
1
n
I{ x
( n ) }
要使L( )达到最大,首先一点是示性函数取值 n n 应该为1,其次是1/ 尽可能大。由于1/ 是 的单调减函数,所以 的取值应尽可能小,但 示性函数为1决定了 不能小于x(n),由此给出 的极大似然估计 ˆ x( n ) 。
经计算有
x 28.695,
2 sn 0.9185,源自m0.5 28.6由此给出总体均值、方差和中位数的估计分别 为: 28.695, 0.9185 和 28.6。 矩法估计的实质是用经验分布函数去替换总体 分布,其理论基础是格里纹科定理。
12 April 2016
第六章 参数估计
第6页
二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体具有已知的概率函数 P(x, 1, …, k), x1, x2 , …, xn 是样本,假定总体的k阶原点矩k 存在,若1, …, k 能够表示成 1, …, k 的函数 j = j(1, …,k),则可给出诸j 的矩法估计为
数作出估计。
参数估计的形式有两种:点估计与区间估计。
12 April 2016
第六章 参数估计
第3页
设 x1, x2,…, xn 是来自总体 X 的一个样本,
ˆ ˆ( x ,, x ) 我们用一个统计量 的 1 n ˆ 取值作为 的估计值, 称为 的点估计 ˆ (量),简称估计。在这里如何构造统计量 并没有明确的规定,只要它满足一定的合理 性即可。这就涉及到两个问题:
ˆ 与样本值 x1 , x2 ,, xn 有关, 记为 这样得到的 ˆ ( x1 , x2 ,, xn ), 参数 的最大似然估计值 ,
ˆ ( X 1 , X 2 , , X n ) 参数 的最大似然估计量 .
12 April 2016
L( ) 1
n
I
i 1
n
{0 xi }
1
n
I{ x
( n ) }
要使L( )达到最大,首先一点是示性函数取值 n n 应该为1,其次是1/ 尽可能大。由于1/ 是 的单调减函数,所以 的取值应尽可能小,但 示性函数为1决定了 不能小于x(n),由此给出 的极大似然估计 ˆ x( n ) 。
经计算有
x 28.695,
2 sn 0.9185,源自m0.5 28.6由此给出总体均值、方差和中位数的估计分别 为: 28.695, 0.9185 和 28.6。 矩法估计的实质是用经验分布函数去替换总体 分布,其理论基础是格里纹科定理。
12 April 2016
第六章 参数估计
第6页
二、概率函数P(x,θ)已知时未知参数的矩法估计 设总体具有已知的概率函数 P(x, 1, …, k), x1, x2 , …, xn 是样本,假定总体的k阶原点矩k 存在,若1, …, k 能够表示成 1, …, k 的函数 j = j(1, …,k),则可给出诸j 的矩法估计为
数作出估计。
参数估计的形式有两种:点估计与区间估计。
12 April 2016
第六章 参数估计
第3页
设 x1, x2,…, xn 是来自总体 X 的一个样本,
ˆ ˆ( x ,, x ) 我们用一个统计量 的 1 n ˆ 取值作为 的估计值, 称为 的点估计 ˆ (量),简称估计。在这里如何构造统计量 并没有明确的规定,只要它满足一定的合理 性即可。这就涉及到两个问题:
东华大学《概率论与数理统计》课件 第6章样本与抽样分布

X
的
n
一
个
样
本的
观察
值
,
则g( x1 , x2 , xn )是统计量g( X1 , X 2 , X n )的观察值.
例1 设总体X 服从两点分布b(1, p) ,其中p 是未知参数,
X1,
,
X
是
5
来自X的简
单
随机样本.试指出
X1
X
,
2
max
1 i 5
X
i
,
X5 2 p,
( X5 X1)2
哪些是统计量,哪些不是统计量,为什么?
从国产轿车中抽5辆进行耗 油量试验
样本容量为5 抽到哪5辆是随机的
对总体X在相同条件下,进行n次重复、独立观察,其结果依次记 为 X1,X2,…,Xn.这样得到的随机变量X1,X2,…,Xn.是来自总体的一个简单 随机样本,其特点是:
1. 代表性:X1,X2,…,Xn中每一个与所考察的总体X有相同的分布. 2. 独立性:X1,X2,…,Xn相互独立.
k同分布,
E(
X
k i
)
k
k 1, 2, , n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1 , A2 , , Ak ) P g(1, 2 , , k )
其中g为连续函数.
矩估计法的理论依据
2. 经验分布函数
设X1, X2,
,
X
是
n
总
体
F的
一
个Hale Waihona Puke 本,用S(
x
则称变量
t X Yn
所服从的分布为自由度为 n的 t 分布.
概率论与数理统计教材第六章习题PPT课件

d 2i 1xi 0
参数θ的最大似然估计值为
ˆ
1 n
n
i 1
xi
14
3.
设总体X服从伽玛分布:
f(x;,)()
x1ex,
x0 ,
0,
x0
其中 0,0. 如果取得样本观测值为 x1,x2,,xn,
(1) 求参数α及β的矩估计值;
(2) 已知 0, 求参数β 的最大似然估计值.
解 (1) 矩估计法
定 义 若E (ˆ)0或 E (ˆ), 则 称ˆ为θ的无偏估计量。
结论1 样本均值 X 是总体均值μ的无偏估计量.
结论2 样本方差 S 2是总体方差 2 的无偏估计量.
3
2.有效性
定义 ˆ1X1,X2, ,Xn及 ˆ2X1,X2, ,Xn都是θ的无偏估计量,
如果D(ˆ1)D(ˆ2), 则称ˆ1 较ˆ 2 有效。
23
9、已知高度表的误差 X~N(,0 2) ,01米5,飞机上应该
有多少 这样的仪器,才能使得以概率0.98保持平均高度
的误差的绝对值小于30米?
解 PX300.98
PX3
0
P
X
15 n
30 15 n
P2
nX2
15 n
n2 2n10.98
2n0 .99(2.33)0.9901
X
k i
来估计总体原点矩
vk E(Xk).
(1)设总体分布函数 F(x;)含有一个未知参数θ,令
v1()E(X)n1
n i1
Xi
解方程得:ˆˆ(X1,X2, ,Xn)——θ 的矩估计量
1
(2)设总体分布函数 F(x;1,2)含有两个未知参数θ1,θ2,
令
参数θ的最大似然估计值为
ˆ
1 n
n
i 1
xi
14
3.
设总体X服从伽玛分布:
f(x;,)()
x1ex,
x0 ,
0,
x0
其中 0,0. 如果取得样本观测值为 x1,x2,,xn,
(1) 求参数α及β的矩估计值;
(2) 已知 0, 求参数β 的最大似然估计值.
解 (1) 矩估计法
定 义 若E (ˆ)0或 E (ˆ), 则 称ˆ为θ的无偏估计量。
结论1 样本均值 X 是总体均值μ的无偏估计量.
结论2 样本方差 S 2是总体方差 2 的无偏估计量.
3
2.有效性
定义 ˆ1X1,X2, ,Xn及 ˆ2X1,X2, ,Xn都是θ的无偏估计量,
如果D(ˆ1)D(ˆ2), 则称ˆ1 较ˆ 2 有效。
23
9、已知高度表的误差 X~N(,0 2) ,01米5,飞机上应该
有多少 这样的仪器,才能使得以概率0.98保持平均高度
的误差的绝对值小于30米?
解 PX300.98
PX3
0
P
X
15 n
30 15 n
P2
nX2
15 n
n2 2n10.98
2n0 .99(2.33)0.9901
X
k i
来估计总体原点矩
vk E(Xk).
(1)设总体分布函数 F(x;)含有一个未知参数θ,令
v1()E(X)n1
n i1
Xi
解方程得:ˆˆ(X1,X2, ,Xn)——θ 的矩估计量
1
(2)设总体分布函数 F(x;1,2)含有两个未知参数θ1,θ2,
令
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 t 分布 t(n) 若 X~N(0,1) ,Y~ 2 (n) ,且相互独立,则 X 随机变量 T Y n 服从自由度为 n 的 t 分布,记为 T~t(n). t 分布 t(20)的密度函数曲线和 N(0,1)的 曲线形状相似.理论上 n 时,T~t(n) N(0,1).
0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 -6
1. 样本具有随机性:每一个样品Xi与总体X具有相同的分布
(要求总体中每一个个体都有同等机会被选入样本) 2. 样本具有独立性:x1,x2,…,xn是相互独立的随机变量(即 要求样本中每一个样品的取值不影响其他样品的取值)
[说明]:后面提到的样本均指简单随机样本,由
概率论知,若总体X具有密度函数f(x),则样本
一些常用的统计量
2、表示变异程度的统计量—标准差、方差和极差 样本方差: 设 x1 , x2 ,..., xn 为取自总体的样本,则 n 1 2 称为样本方差 s2 ( X X ) i n 1 i 1 它是各个数据与均值偏离程度的度量。
样本标准差:样本方差的算术平方根 s 称为样本标准关。 . 极差:样本中最大值与最小值之差.
样本标准差
s s 2 133.9368 11.5731
3.
表示分布形状的统计量—偏度和峰度 1 n 1 3 偏度: g1 3 ( X i X ) 峰度: g 2 4 s i 1 s
4 ( X X ) i i 1
n
偏度反映分布的对称性:g1 >0 称为右偏态,此时数据位 于均值右边的比位于左边的多;g1 <0 称为左偏态,情况相反; 而 g1 接近 0 则可认为分布是对称的. 峰度是分布形状的另一种度量,正态分布的峰度为 3,若 g2 比 3 大很多,表示分布有沉重的尾巴,说明样本中含有较多 远离均值的数据,因而峰度可用作衡量偏离正态分布的尺度之一.
1 n k k 阶原点矩: Vk X i n i 1 1 n k 阶中心矩: U k ( X i X ) k n i 1
4.
几个在统计中常用的概率分布
. 正态分布 N ( , )
2 ( x )2
2
1 1 2 e 密度函数: p( x) 分布函数: F ( x) 2p 2p 2 其中 为均值, 为方差, < x < .
则来自这一总体的简单随机样本
x1 , x2 ,..., xn 的联合概率密度为
n
xi n e i1 , x 0(i 1,2,...,n) f X ( x1 ) f X ( x2 ) f X ( xn ) i 0, 其他
例4:考虑电话交换台一小时内的呼唤次数X,求来自这一总体的
i 1 i 1
n
i 1 n
i 1
2
都不是统计量。
一些常用的统计量
1、 表示位置的统计量—平均值和中位数 样本均值:设 x1 , x2 ,..., xn 为取自总体的样本, 1 n 其算术平均值称为样本均值,记为 X X i n i 1 中位数:将数据由小到大排序后位于中间位置的那个数值.
第六章 统计量及其抽样分布
6.1 引言 6.2 总体和样本 6.3 统计量及其分布
6.1引
言
在我们的现实生活中,许多问题的不确定现象都是由随机 因素的影响所造成的 通常情况下,需要经过对实际中大量数据的处理或理论分 析,可以确定这些随机因素所要服从的概率分布,根据其概 率分布规律利用一些统计方法可对所研究的问题做出估计、 推断和预测 具体地讲,数理统计方法是研究从一定总体中随机抽取一 部分(称为样本)的性质,来推断和预测总体的性质的一类 有效方法
简单随机样本 x1 , x2 ,..., xn 的样本分布。 解:由概率论知识,X服从泊松分布P(λ),其分布律为
p X ( x) p{ X x}
则来自这一总体的简单随机样本
x
x!
e ( 0)
x1 , x2 ,..., xn 的联合分布律为
p X ( x1 ) p X ( x2 ) p X ( xn )
注:对多数实际问题,总体中的个体是一些实在的人或物。比如, 我们要研究某大学的学生身高情况,则该大学的全体学生构成问
题的总体,而每个学生即是一个个体。
事实上,每个学生都有许多特征:性别、年龄、身高、体重 等等,而在该问题中,我们关心的只是该校学生的身高如何,对 其他的特征不予考虑。这样,每个学生(个体)所具有的数量指 标值——身高就是个体,而将所有的身高全体看成总体。
再来看一个例子: 某公司要采购一批产品,每件产品要么是正品,要 么是次品。若设这批产品的次品率为p(一般是未知的), 则从该批产品中随机抽取一件,用X表示抽到的次品数, 不难看出X服从0-1分布。当分布中的参数p是不知道的。 而p的大小决定了该批产品的质量,它直接影响采购行 为的经济效益,因此人们对p提出一些问题,例如,“p 的大小是多少?”,“p大概落在什么范围内”
i 1
xi
n
x1! x2! xn !
e n
§6.3 统计量及其分布
样本来自总体,样本观测值中含有总体的各种信息,但
这些信息较为分散,有时显得杂乱无章。为将这些分散在
样本中的有关总体的信息集中起来以反映总体的各种特征, 需要对样本进行加工,其中最常用的一种方法就是构造关 于样本的函数,不同的函数反映总体的不同特征。
概率论与数理统计之间的关系:
数理统计学是一门研究怎样去有效地收集、整理和分析带
有随机性的数据,以对所考察的问题做出推测和预测,直至
采取一定的决策和行动提供依据和建议的数学分支学科。 统计方法的数学理论要用到很多近代数学知识,如函数论、
拓扑学、矩阵代数、组合数学等等,
但关系最密切的是概率论,故可以这这样说:概率论是数
例如:某单位收集到20名青年人某月的娱乐支出费用数据 79 84 84 88 92 93 94 97 98 99 100 101 101 102 102 108 110 113 118 125 样本均值 X 99.4 样本方差
n 1 s2 ( X i X )2 n 1 i 1 1 [(79 99.4) 2 (84 99.4) 2 (125 99.4) 2 ] 20 1 133.9368
(x1,x2,…,xn)具有联合密度函数:
f n ( x1 , x2 ,, xn ) f ( x1 ) f ( x2 ) f ( xn ) f ( xi )
i 1
n
例3:设某种电灯泡的寿命X服从指数分布E(λ),其概率密度为
e x , x 0 f X ( x) x0 0,
0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0
0
5
10
15Biblioteka 20当随机变量 ~ (n),对给定的
2 2
(0 < < 1)称满足P{ 2 2 (n)} 的 2 (n) 为自由度为n的卡方分布的分位数。
注:分位数的值可以人表中查到。
例如:n 10, 0.05, 20.05 (10) 18.307
这样一来,若抛开实际背景,总体就是一堆数,这堆
数中有大有小,有的出现机会多,有的出现机会少,因此
用一个概率分布去描述和归纳是恰当的 从这个意义上看,总体就是一个分布,而其数量指标 就是服从这个分布的随机变量,以后说“从总体中抽样” 与“从某分布中抽样”是同一个意思。
例1:考察某厂的产品质量,将其产品只分为合格品
称为总体的一个样本,n称为样本容量,或简称样本量,
例2:啤酒厂生产的瓶装啤酒规定净含量为640g,由于随机 性,事实上不可能使得所有的啤酒净含量均为640g。现从
某厂生产的啤酒中随机抽取10瓶测定其净含量,得到如下
结果:641 635 640 637 642 638 645 643 639 640 这是一个容量为10的样本的观测值,对应的总体为该厂生产 的瓶装啤酒的净含量。
以标准正态变量为基石而构造的三个著名统计量在实 际中有着广泛的应用。这是因为这三个统计量不仅有 明确背景,而且其抽样分布的密度函数有明显表达式, 它们被称为统计中的“三大抽样分布”
1、 2 分布(卡方分布)
若随机变量 X1,X2,„ Xn 相互独立,都服 从标准正态分布 N(0,1) ,则随机变量 2 2 Y= X 12 X 2 X n 服从自由度为 n 的 2 分布,记为 Y~ 2 (n). Y 的均值为 n,方差为 2n.
定义:设 数
x1 , x2 ,..., xn 为取自总体的样本,若关于样本的函
T T ( x1, x2 ,...,xn ) 中不含有任何未知参数,则称T为统
计量。统计量的分布称为抽样分布。 例如:若x1,x2,…,xn为样本,则 xi , xi 2 都是统计量;
n n
而当 ,
未知时, ( xi )2 , xi
与不合格品,并以0记合格品,以1记不合格品,则
总体={该厂生产的全部合格品与不合格品}={由0或1组成的一堆数} 设P表示这堆数中1的比例(不合格品率),则该总
体可由一个二点分布表示
X P 0 1-P 1 P
不同的P反映了总体的差异。
比如:两个生产同类产品的工厂的产品总体分布为:
X P
0
0.983
1
0.017
X
P
0
0.915
1
0.085
显然第一个工厂的产品质量优于第二个工厂,但
是在实际中,分布中的不合格品率是未知的,如何对
之进行估计是统计学要研究的问题。
二、样本 样本:为了了解总体的分布,我们从总体中随机地抽取n