概率论与数理统计课件(最新完整版)

合集下载

概率论与数理统计课件完整版.ppt

概率论与数理统计课件完整版.ppt
P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
25
2.概率的性质:
性质1. P() 0.
性质2. 若 A1, A2, , An是两两互不相容的事件, 则 P(A1 A2 An)
P(A1) P(A2) P(An). (有限可加性)
性质3. 若A B,则有 P(B A) P(B) P(A);
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 , 两两互不相容, 则
P(Bi | A) P(B i | A).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑
在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
例1.老王的妻子一胎生了3个孩子,已知老大是女孩,求另 两个也都是女孩的概率(假设男孩、女孩出生率相同).
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
A2 , A2 A3 , A1 A2 , A1 A2 , A1 A2 A3 , A1 A2 A2 A3 A1 A3 .

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计ppt课件(完整版)

概率论与数理统计ppt课件(完整版)
27
( 1)
n 1
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列 事件的概率:
(1) P ( A B ); (2) P ( A B); (3) P ( A B); (4)P( A B ).
28
§5. 条件概率
(一)条件概率: 设试验E的样本空间为S, A, B是事件, 要考虑 在A已经发生的条件下B发生的概率, 这就是条件概 率问题.
概率论与数理统计
第一章 概率论的基本概念 前 言
1. 确定性现象和不确定性现象.
2. 随机现象: 在个别试验中其结果呈现出不确定性, 在 大量重复试验中其结果又具有统计规律性. 3. 概率与数理统计的广泛应用.
2
§1.随机试验
我们将对自然现象的一次观察或进行一次科学试验 称为试验。
举例:
E1: 抛一枚硬币,观察正(H)反(T) 面 的情 况.
B A 类似地, 事件 S 为可列个事件A1, A2, ...的积事件.
k 1 K
(2) A B A B
S
(3)A B
9
4.差事件:
事件A-B={x|xA且xB} 称为A与B的差. 当且仅当 A发生, B不发生时事件A-B发生. 即:
A - B A AB
显然: A-A=, A- =A, A-S=
(一) 频率 1. 在相同的条件下, 共进行了n次试验,事件A发生的次 数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为 fn(A).
2. 频率的基本性质: (1) 0 f( 1; (非负性) n A) (2) f n ( S ) 1; (规范性) (3)若A1,A 2, , Ak 两两互不相容 ,则 f n ( A1 A2 Ak ) f n ( A1 ) f n ( A2 ) f n ( Ak ).(有限可加性)

概率论与数理统计课件完整版.ppt

概率论与数理统计课件完整版.ppt
E3: 将一枚硬币抛三次,观察出现正面的情况. E4: 电话交换台一分钟内接到的呼唤次数. E5: 在一批灯泡中任取一只, 测试它的寿命.
3
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的 结果; (3) 一次试验前不能确定会出现哪个结果.
4
§2. 样本空间与随机事件
不可能事件:空集φ不包含任何样本点, 它在每次试验中 都不发生,称为不可能事件。
6
例1. 试确定试验E2中样本空间, 样本点的个数, 并给出如
下事件的元素: 事件A1=“第一次出现正面”、事件A2=“ 恰好出现一次正面”、事件A3=“至少出现一次正面”.
7
(三)事件间的关系与事件的运算
1.包含关系和相等关系:
若事件A发生必然导致事件B发生,则称件B包含事件A,记 作AB. 若A B且A B, 即A=B, 则称A与B相等.
B
A S
(1) A B
8
2.和事件:
A B { x | x A或x B}称为A与B的和事件.
即A, B中至少有一个发生, 称为A与B的和, 记A B.
可列个事件A1, A2 , 的和事件记为 Ak .
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包
含S的 k 个样本点,则事件A的概率定义为
A中的基本事件数 k
P( A) S中的基本事件总数 n
15
古典概型概率的计算步骤:
(1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集.
k 1
3.积事件: 事件A B={x|x A 且 x B}称A与B的
积,即事件A与BA同时发生. A B 可简记为AB.

(最新整理)概率论与数理统计ppt课件

(最新整理)概率论与数理统计ppt课件

2021/7/26
4
随机试验:
(1) 可在相同的条件下重复试验; (2) 每次试验的结果不止一个,且能事先明确所有可能的 结果; (3) 一次试验前不能确定会出现哪个结果.
2021/7/26
5
§2. 样本空间与随机事件
(一) 样本空间:
定义 随机试验E的所有可能结果组成的集合称为 E的样 本空间, 记为S. 样本空间的元素称为样本点,用表示.
概率的古典定义:
对于古典概型, 样本空间S={1, 2, … , n}, 设事件A包 含S的 k 个样本点,则事件A的概率定义为
A中的基本事k件数 2021/7/26 P(A)S中的基本事n件总数 16
古典概型概率的计算步骤:
(1) 选取适当的样本空间S, 使它满足有限等可能的要求, 且把事件A表示成S的某个子集. (2) 计算样本点总数n及事件A包含的样本点数k.
1. 定义: 设A, B是两个事件, 且P(A)>0, 称
P(B| A) P(AB ) P(A)
为202在1/7/2事6 件A发生的条件下事件B发生的条件概率3.0
2. 性质: 条件概率符合概率定义中的三个条件, 即 10 对于每一 B个 有 , 1事 P件 (|BA )0.
20 P(|SA)Байду номын сангаас.
33
(二) 乘法公式:
由 条 件,概 立率 即P定 可 ( A 义 0得 则 ), 有 P (A P B()A|)A P)(.B
推广 P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
(2 )P ( ) 1 ,P ( ) 0 ; (3) 对 于 两 两 互 斥个的事可 A1件 ,A列 2,多 , P(A1A2)P(A1)P(A2)

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

概率论与数理统计课件(完整)

概率论与数理统计课件(完整)
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
1.3 频率与概率
某人向目标射击, 以A表示事件“命中目标”, P( A) =? 定义:(p8) 事件A在n次重复试验中出现nA次,则 比值nA/n称为事件A在n次重复试验中
(1) P(A) ≥0;
(2) P()=1;

(3) 可列可加性:设A1,A2,…, 是一列两两互不 相容的事件,即AiAj=,(ij), i , j=1, 2, …, 有 P( A1 A2 … )= P(A1) +P(A2)+…. 则称P(A)为事件A的概率。 (1.1)
2.概率的性质 P(8-9) (1) 有限可加性:设A1,A2,…An , 是n个两两互 不相容的事件,即AiAj= ,(ij), i , j=1, 2, …, n ,则有 P( A1 A2 … An)= P(A1) +P(A2)+… P(An); (2) 单调不减性:若事件AB,则 P(A)≥P(B) (3)事件差 A、B是两个事件, 则 P(A-B)=P(A)-P(AB)
种取法.
1、抽球问题
例1:设合中有3个白球,2个红球,现从合中 任抽2个球,求取到一红一白的概率。 解:设A-----取到一红一白
N () C
2 5
1 1 N ( A) C3 C2

CC 3 P( A) 2 C5 5
1 3
1 2
答:取到一红一白的概率为3/5
一般地,设盒中有N个球,其中有M个白 球,现从中任抽n个球,则这n个球中恰有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
2020年最新
相关文档
最新文档